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1 Introduction

In optimization theory, the convexity plays an important role in deriving optimality condi-
tions and duality for the nonlinear programming problem. Various classes of generalized of
convex functions have appeared in the literature for the purpose of weaking the limitation
of convexity. Hanson [5] introduced a class of functions which were called invex by Craven
[4] as a generalization of convexity. Later, Weir and Mond [13] introduced preinvex func-
tions, and they studied how and where preinvex functions can replace convex functions in
optimization problem.

On the other hand, Bector and Singh [1] considered a class of functions, called B-vex
functions, which are also generalization of convex function. They also studied the properties
of differentiable B-vex functions. Later, the concept of B-vexity of functions was extend to
B-invex and B-preinvex functions by Bector et al. [2], to explicitly B-preinvex functions
by Yang et al. [14], to semilocally B-preinvex functions by Stancu-Minasian [11], to semi-
B-preinvex functions by Long and Peng [8]. For a differentiable programming problem
involving B-vex and B-invex functions, sufficient optimality conditions and duality results
for Mond-Weir duality were otained by Bector et al. [2]. Recently, Li et al. [7] obtained
necessary and sufficient optimality conditions for a nonsmooth single-objective programming
involving B-vex functions. In [12], Suneja et al. obtained some properties of B-preinvex
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functions. Very recently, Stancu-Minasian [11] derived some sufficient optimality conditions
and duality results for nonsmooth single-objective programming problems under semilocally
B-preinvexity.

In this paper, we consider the B-preinvex functions introduced by Bector et al. [2].
In terms of the Clarke subdifferentiable, some characterizations of B-preinvex are derived
under suitable conditions. Moreover, a sufficient optimality condition is obtained for a
nonsmooth multiobjective programming problem involving B-preinvex functions. Finally,
weak and strong duality theorems are proved for Mond-Weir type dual under B-preinvexity
assumption.

2 Preliminaries

Throughout this paper, let Rn be the n-dimensional Euclidean space with Euclidean norm
∥ · ∥ and the usual inner product ⟨·, ·⟩, respectively. Let X be a nonempty subset of Rn and
denote by R+ the set of nonnegative real numbers. Suppose that f : X → R, η : X×X → X,
and b : X ×X × [0, 1] → R+ such that λb(x, y, λ) ∈ [0, 1] for all x, y ∈ X and λ ∈ [0, 1].

We now recall some definitions as follows.

Definition 2.1 ([13]). A set X is said to be invex at y ∈ X with respect to η if, for all
x ∈ X and λ ∈ [0, 1], we have

y + λη(x, y) ∈ X.

The set X is said to be invex with respect to η if X is invex at each y ∈ X with respect to
same η.

Definition 2.2 ([2]). Let X be a nonempty invex set in Rn with respect to η. The function
f is said to be B-preinvex at y ∈ X with respect to η and b if for all x ∈ X and λ ∈ [0, 1],
one has

f(y + λη(x, y)) ≤ λb(x, y, λ)f(x) + (1− λb(x, y, λ))f(y).

f is said to be B-preinvex on X with respect to η and b if it is B-preinvex at each y ∈ X
with respect to same η and b.

Remark 2.3. Every preinvex function with respect to η is B-preinvex with respect to η, b,
where

b(x, y, λ) = 1.

However, the converse is not true, as can be seen from the following example.

Example 2.4. Let f : R → R be defined by

f(x) =

{
0 if x ≤ 0;
−x if x > 0.

Then, f is B-preinvex with respect to η, b, where

η(x, y) =


0 if x ≤ 0, y > 0;
x− y if x ≤ 0, y ≤ 0;
x− y if x > 0, y > 0;
y − x if x > 0, y ≤ 0
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and

b(x, y, λ) =


λ if x ≤ 0, y > 0;
1 if x ≤ 0, y ≤ 0;
1 if x > 0, y > 0;
0 if x > 0, y ≤ 0.

But f is not preinvex with respect to η, because

f(y + λη(x, y)) > λf(x) + (1− λ)f(y), for x = 1, y = 0, λ =
1

2
.

Remark 2.5. Every B-vex function with respect to b is B-preinvex with respect to η, b,
where

η(x, y) = x− y.

But the converse is not true.

Example 2.6. The function f considered in Example 2.4 is B-preinvex with respect to η,
b, but f is not a B-vex function with respect to b, because

f(λx+ (1− λ)y) > λb(x, y, λ)f(x) + (1− λb(x, y, λ))f(y), for x = 0, y = 1, λ =
1

2
.

Let f be a real-valued function defined on an open subset U of Rn. f is said to be
directionally differentiable at a point u ∈ U if the one-sided directional derivative

f ′(x; v) = lim
t↓0

[f(x+ tv)− f(x)]

t

exists for every v ∈ Rn.
A real-valued function f : Rn → R is said to be locally Lipscitz at a point u ∈ Rn if

there exists a number K > 0 such that

|f(x)− f(y)| ≤ K∥x− y∥,

for all x, y in a neighbourhood of u. A function f is said to be locally Lipschitiz on Rn if it
is locally Lipschitz at each point of Rn.

Let f be a locally Lipschitz function at x, the Clarke [3] generalized directional derivative
of f at x in the direction v ∈ Rn is defined by

f◦(x; v) = lim sup
y→x
t↓0

f(y + tv)− f(y)

t

and the Clarke [3] generalized gradient of f at x is denoted by

∂f(x) = {ξ ∈ Rn | f◦(x; v) ≥ ⟨ξ, v⟩,∀ v ∈ Rn}.

It follows that
f◦(x; v) = max{⟨ξ, v⟩ | ξ ∈ ∂f(x)}, ∀ v ∈ Rn.

When f is locally Lipschitz at x, f is said to be regular [3] at x if it is directionally differ-
entiable at x and if

f◦(x; v) = f ′(x; v), ∀ v ∈ Rn.
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Mohan and Neogy [9] introduced Condition C defined as follows.

Condition C ([9]). The vector-valued function η : X ×X → X is said to satisfy Condition
C if for any x, y ∈ X and λ ∈ [0, 1],

η(y, y + λη(x, y)) = −λη(x, y),

η(x, y + λη(x, y)) = (1− λ)η(x, y).

And they proved that a differentiable function which is invex with respect to η is also
preinvex under Condition C. Mohan and Neogy [9] also gave an example which shows that
Condition C may hold for a general class of function η, rather than just for the trivial case
of η(x, y) = x− y.

3 Characterizations of B-Preinvex Functions

In this section, we obtain necessary and sufficient conditions for a locally Lispschitz function
to be B-preinvex functions.

Theorem 3.1. Let f be a locally Lipschitz function on X. Suppose that

(i) f is B-preinvex with respect to η, b at y ∈ X, and limλ↓0 b(x, z, λ) = b(x, z, 0) for any
x, z ∈ X;

(ii) f is regular at y.

Then, for all x ∈ X,

b(x, y, 0)[f(x)− f(y)] ≥ ⟨η(x, y), ξ⟩, ∀ ξ ∈ ∂f(y). (3.1)

Proof. Since f is B-preinvex at y ∈ X, for all x ∈ X and λ ∈ (0, 1), one has

f(y + λη(x, y)) ≤ λb(x, y, λ)f(x) + (1− λb(x, y, λ))f(y),

which implies
f(y + λη(x, y))− f(y)

λ
≤ b(x, y, λ)[f(x)− f(y)].

Taking limit as λ ↓ 0, and noting that f is regular at y, we get

b(x, y, 0)[f(x)− f(y)] = lim
λ↓0

b(x, y, λ)[f(x)− f(y)]

≥ lim
λ↓0

f(y + λη(x, y))− f(y)

λ

=f ′(y; η(x, y))

=f◦(y; η(x, y))

=max{⟨ξ, η(x, y)⟩ | ξ ∈ ∂f(y)},

that is

b(x, y, 0)[f(x)− f(y)] ≥ ⟨η(x, y), ξ⟩, ∀ ξ ∈ ∂f(y).

This completes the proof.
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Remark 3.2. It is worth nothing that the assumption that the function f is regular at
y ∈ X in Theorem 3.1 is essential. To illustrate this point, we give an example.

Example 3.3. The function f considered in Example 2.4 is B-preinvex with respect to
η, b defined there. Moreover, f is globally Lipschitz of rank 1 on R and is directionally
differentiable at each point in R and

∂f(0) = [−1, 0], f ′(0;−1) = 0,

f◦(0;−1) = max{⟨ξ,−1⟩ | ξ ∈ [−1, 0]} = 1.

Therefore, f is not regular at 0. Now, let

x = 1, y = 0, ξ = −1 ∈ ∂f(0).

It follows that
b(x, y, 0)[f(x)− f(y)] = 0,

⟨η(x, y), ξ⟩ = ⟨y − x, ξ⟩ = 1

and so
b(x, y, 0)[f(x)− f(y)] < ⟨η(x, y), ξ⟩.

Hence, relation (3.1) is not hold.

Corollary 3.4. Let f be a locally Lipschitz function on X. Suppose that

(i) f is B-preinvex with respect to η, b on X, and limλ↓0 b(x, y, λ) = b(x, y, 0) for any
x, y ∈ X;

(ii) f is regular on X;

(iii) η is a skew function, i.e., η(x, y) + η(y, x) = 0, for all x, y ∈ X.

Then, for all x, y ∈ X,

b(x, y, 0)⟨η(x, y), ζ⟩ − b(y, x, 0)⟨η(x, y), ξ⟩ ≥ 0, ∀ ξ ∈ ∂f(y), ∀ ζ ∈ ∂f(x).

Proof. By Theorem 3.1, for any x, y ∈ X, we have

b(x, y, 0)[f(x)− f(y)] ≥ ⟨η(x, y), ξ⟩, ∀ ξ ∈ ∂f(y), (3.2)

b(y, x, 0)[f(y)− f(x)] ≥ ⟨η(y, x), ζ⟩, ∀ ζ ∈ ∂f(x). (3.3)

Multiplies both side of (3.2) by b(y, x, 0) and of (3.3) by b(x, y, 0), adding them and using
η(x, y) + η(y, x) = 0, we obtain

b(x, y, 0)⟨η(x, y), ζ⟩ − b(y, x, 0)⟨η(x, y), ξ⟩ ≥ 0, ∀ ξ ∈ ∂f(y), ∀ ζ ∈ ∂f(x).

This completes the proof.

We now give a sufficient condition for a locally Lipschitz function to be B-preinvex.

Theorem 3.5. Let f be a locally Lipschitz function on X. Suppose that
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(i) there exists a function k : X ×X → R++ (the set of positive real numbers) such that
for all x, y ∈ X,

k(x, y)[f(x)− f(y)] ≥ ⟨η(x, y), ξ⟩, ∀ ξ ∈ ∂f(y); (3.4)

(ii) the function η : X ×X → X satisfies Condition C.

Then, f is a B-preinvex function on X with respect to η and b, where

b(x, y, λ) =
k(x, y + λη(x, y))

λk(x, y + λη(x, y)) + (1− λ)k(y, y + λη(x, y))
.

Proof. We first note that b in the theorem satisfies the condition that

λb(x, y, λ) ∈ [0, 1], for all x, y ∈ X and λ ∈ [0, 1].

Now, for any x, y ∈ X and λ ∈ (0, 1), we take ξ ∈ ∂f(y + λη(x, y)). By (3.4) and Condition
C, we have

k(x, y + λη(x, y))[f(x)− f(y + λη(x, y))]

≥⟨η(x, y + λη(x, y)), ξ⟩
=(1− λ)⟨η(x, y), ξ⟩, (3.5)

and

k(y, y + λη(x, y))[f(y)− f(y + λη(x, y))]

≥⟨η(y, y + λη(x, y)), ξ⟩
=(−λ)⟨η(x, y), ξ⟩. (3.6)

Multiplying (3.5) by λ and (3.6) by 1− λ, and adding them, we get

λk(x, y+λη(x, y))[f(x)−f(y+λη(x, y))]+(1−λ)k(y, y+λη(x, y))[f(y)−f(y+λη(x, y))] ≥ 0.

It follows that

λk(x, y + λη(x, y))f(x) + (1− λ)k(y, y + λη(x, y))f(y)

≥ [λk(x, y + λη(x, y)) + (1− λ)k(y, y + λη(x, y))]f(y + λη(x, y)). (3.7)

Dividing both sides of (3.7) by

λk(x, y + λη(x, y)) + (1− λ)k(y, y + λη(x, y))

and taking

b(x, y, λ) =
k(x, y + λη(x, y))

λk(x, y + λη(x, y)) + (1− λ)k(y, y + λη(x, y))
,

we have the conclusion. This completes the proof.
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4 Optimality Conditions

In the sequel, for any x = (x1, x2, · · · , xn)
T , y = (y1, y2, · · · , yn)T ∈ Rn, we will use the

following conventions:

x > y ⇔ xi > yi, i = 1, 2, · · · , n;
x = y ⇔ xi = yi, i = 1, 2, · · · , n;
x ≥ y ⇔ xi = yi, i = 1, 2, · · · , n, but x ̸= y,

x � y is the negation of x ≥ y.

Consider the following multiobjective programming problem:

(MP) Minimize f(x) = (f1(x), f2(x), · · · , fp(x))T

s.t. x ∈ S = {x ∈ X : g(x) = (g1(x), g2(x), · · · , gm(x))T 5 0},

where X ⊆ Rn is an open set, the functions f : X → Rp and g : X → Rm are locally
Lipschitz functions.

In the sequel, unless specified otherwise, let η(x, y) ̸= 0 for all x ̸= y.

Definition 4.1. A point x0 ∈ S is said to be an efficient solution for (MP) if there does
not exist x ∈ S such that f(x) ≤ f(x0).

Now we establish the following sufficient optimality condition for (MP).

Theorem 4.2. Let x0 ∈ S. Suppose that

(i) fi is B-preinvex with respect to η, bfi at x0 for i = 1, 2, · · · , p, and gj is B-preinvex
with respect to η, bgj at x0 for j = 1, 2, · · · ,m;

(ii) limλ↓0 bfi(x, y, λ) = bfi(x, y, 0) > 0 and limλ↓0 bgj (x, y, λ) = bgj (x, y, 0) ≥ 0 for any
x, y ∈ X;

(iii) fi, i = 1, 2, · · · , p, and gj, j = 1, 2, · · · ,m, are regular at x0.

If there exist µ∗ ∈ Rp, µ∗ > 0, and β∗ ∈ Rm with β∗ = 0 such that

0 ∈ µ∗T∂f(x0) + β∗T∂g(x0), (4.1)

β∗T g(x0) = 0, (4.2)

then, x0 is an efficient solution for (MP).

Proof. Suppose by contradiction that x0 is not an efficient solution for (MP). Then, there
exists x ∈ S such that f(x) ≤ f(x0). Since µ∗ > 0 and bfi > 0, i = 1, 2, · · · , p,

µ∗T bf (x, x0, 0)[f(x)− f(x0)] < 0, (4.3)

where

bf (x, x0, 0)[f(x)− f(x0)] = (bf1(x, x0, 0)[f1(x)− f1(x0)], bf2(x, x0, 0)[f2(x)− f2(x0)], · · · ,
bfp(x, x0, 0)[fp(x)− fp(x0)])

T .
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It follows from (4.1) that there exist ξ ∈ ∂f(x0) and ζ ∈ ∂g(x0) such that

µ∗T ξ + β∗T ζ = 0.

By hypotheses (i), (ii), (iii), (4.2) and Theorem 3.1, we get

µ∗T bf (x, x0, 0)[f(x)− f(x0)] =⟨η(x, x0), µ
∗T ξ⟩

=⟨η(x, x0),−β∗T ζ⟩

=− β∗T bg(x, x0, 0)[g(x)− g(x0)]

=− β∗T bg(x, x0, 0)g(x)

=0,

which contradicts (4.3), where

bg(x, x0, 0)[g(x)− g(x0)] = (bg1(x, x0, 0)[g1(x)− g1(x0)], bg2(x, x0, 0)[g2(x)− g2(x0)], · · · ,
bgm(x, x0, 0)[gm(x)− gm(x0)])

T .

This completes the proof.

We now give an example to illustrate Theorem 4.2.

Example 4.3. Consider the problem

(MP) Minimize f(x) = (f1(x), f2(x))

s.t. x ∈ S = {x ∈ R : g(x) ≤ 0},

where fi : R → R, i = 1, 2, and g : R → R are given by

f1(x) =

{
−x if x < 0;
0 if x ≥ 0;

f2(x) =

{
0 if x < 0;
x if x ≥ 0;

and g(x) = x. Let η(x, x0) = x− x0 and

bf1(x, x0, λ) =

{
λ if x ≥ 0, x0 ≥ 0, λ > 0;
1 otherwise;

bf2(x, x0, λ) = 1,

bg(x, x0, λ) =

{
1 if x ≥ 0, x0 ≥ 0;
0 otherwise.

Then fi, i = 1, 2, is B-preinvex with respect to η, bf i at x0 = 0 and g is B-preinvex with
respect to η, bg at x0 = 0. The set of feasible solutions of (MP) is given by S = (−∞, 0]. It
is easy to see that the hypotheses (iii) of Theorem 4.2 is satisfied at x0 = 0 and

∂f1(0) = [−1, 0], ∂f2(0) = [0, 1], ∂g(0) = 1.

Let µ∗ = (1, 1) and β∗ = 1
2 . Then

0 ∈ [−1

2
,
3

2
] = µ∗T∂f(0) + β∗T∂g(0).

Also β∗T g(0) = 0. Therefore (4.1) and (4.2) hold.

Thus by Theorem 4.2, x0 = 0 is an efficient solution of (MP).
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5 Duality

In this section, we shall prove weak and strong duality results for (MP) and (DMP). We
consider the following Mond-Weir type dual [10] for problem (MP):

(DMP) Maximize f(y)

s.t. 0 ∈ µT∂f(y) + βT∂g(y), (5.1)

βT g(y) = 0, (5.2)

µ ≥ 0, β = 0, y ∈ X. (5.3)

Theorem 5.1 (Weak Duality). Let x be feasible for (MP) and (x0, µ, β) be feasible for
(DMP). Suppose that

(i) µ > 0, fi is B-preinvex with respect to η, bfi at x0 for i = 1, 2, · · · , p, and gj is
B-preinvex with respect to η, bgj at x0 for j = 1, 2, · · · ,m;

(ii) limλ↓0 bfi(x, y, λ) = bfi(x, y, 0) > 0 and limλ↓0 bgj (x, y, λ) = bgj (x, y, 0) ≥ 0 for any
x, y ∈ X;

(iii) fi, i = 1, 2, · · · , p, and gj, j = 1, 2, · · · ,m are regular at x0.

Then, the following cannot hold:
f(x) ≤ f(x0).

Proof. Suppose by contradiction that

f(x) ≤ f(x0).

Since µ > 0 and bfi > 0, i = 1, 2, · · · , p,

µT bf (x, x0, 0)[f(x)− f(x0)] < 0,

where

bf (x, x0, 0)[f(x)− f(x0)] = (bf1(x, x0, 0)[f1(x)− f1(x0)], bf2(x, x0, 0)[f2(x)− f2(x0)], · · · ,
bfp(x, x0, 0)[fp(x)− fp(x0)])

T .

By hypotheses (i), (iii) and Theorem 3.1, we have

⟨η(x, x0), µ
T ξ⟩ < 0, ∀ ξ ∈ ∂f(x0). (5.4)

Since x is feasible for (MP) and (x0, µ, β) is feasible for (DMP), it follows that

g(x)− g(x0) 5 0.

By hypotheses (i), (ii), (iii) and Theorem 3.1, we get

⟨η(x, x0), β
T ζ⟩ 5 0, ∀ ζ ∈ ∂g(x0). (5.5)

Combining (5.4) and (5.5) yields

⟨η(x, x0), µ
T ξ + βT ζ⟩ < 0, ∀ ξ ∈ ∂f(x0), ζ ∈ ∂g(x0),

which contradicts (5.1). This completes the proof.
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Theorem 5.2 (Strong Duality). Let x0 be an efficient solution for (MP) at which a suitable
constraint qualification [6] holds. Then there exist µ0 ∈ Rp, β0 ∈ Rm such that (x0, µ0, β0)
is feasible for (DMP). If the conditions of Theorem 4.2 hold, then (x0, µ0, β0) is an efficient
solution of (DMP).

Proof. Since x0 is an efficient solution for (MP) at which a suitable constraint qualification
[6] is satisfied, there exist µ0 ∈ Rp, β0 ∈ Rm such that

0 ∈ µ0
T∂f(x0) + β0

T∂g(x0),

β0
T g(x0) = 0,

µ ≥ 0, β = 0.

Thus, (x0, µ0, β0) is a feasible solution to (DMP). Suppose that (x0, µ0, β0) is not an efficient
solution for (DMP). Then, there exists (x, µ, β) feasible for (DMP) such that

f(x0) ≤ f(x),

which contradicts Theorem 4.2. Therefore, (x0, µ0, β0) is an efficient solution of (DMP).
This completes the proof.
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