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Abstract: We develop a numerical method for solving an optimal control problem whose terminal time
is not fixed, but is instead determined by a state-dependent stopping criterion. The main idea of this
method is to approximate the control by a piecewise constant function whose values and switching times are
decision variables to be determined optimally. The optimal control problem then becomes an optimization
problem with a finite number of decision variables. We develop a novel method for computing the gradient
of the cost function in this approximate problem. On this basis, the approximate problem can be solved
using any gradient-based optimization technique. We use this approach to solve an aeronautical control
problem involving a gliding projectile. We also prove several important convergence results that justify our
approximation scheme.
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1 Introduction

In this paper, we consider an optimal control problem for a system of ordinary differential
equations whose terminal time is determined by a stopping criterion. This stopping criterion
is defined by a smooth surface in the state space; when the state trajectory hits this surface,
the system stops. Hence, changing the input to the system not only influences its state
trajectory, but also changes the time horizon over which it evolves. The problem is to
choose the control input function in an optimal manner.

This type of optimal control problem was introduced in [8], where a control policy was
sought for a gliding projectile launched from an aircraft. The control function in this context
is the glider’s angle of attack; the state represents its horizontal and vertical coordinates.
The problem is to vary the glider’s angle of attack during flight so that the glider covers
as much ground as possible before crashing. In [8], a numerical method is discussed for
solving this problem. Another numerical method is discussed in [9]. Both of these methods
are based on control parameterization, whereby the control is approximated by a piecewise
constant function with pre-fixed switching times. Under this approximation scheme, the
original optimal control problem is reduced to an approximate optimization problem with
a finite number of decision variables. The approximate problem can then be solved using a
standard optimization method, such as a quasi-Newton method [5, 6].

The numerical methods discussed in [8, 9] have several disadvantages. First, the switch-
ing times for the approximate controls are pre-specified and cannot be varied adaptively
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during the optimization process. Thus, a very fine discretization of the time horizon may
be necessary to ensure accurate results. Second, the methods for computing the gradient of
the cost function involve integrating two systems of differential equations—the state system
and the so-called costate system—successively in different directions. Since the state and
costate systems are integrated in opposite directions, it is impossible to ensure that their
knot sets coincide (unless a crude integration technique with fixed step lengths is used).
This is a major problem, because the costate system actually depends on the solution of
the state system. Therefore, the state needs to be interpolated when the costate system is
being solved, which compromises accuracy.

Furthermore, the numerical method proposed in [9] involves not one, but two successive
approximations of the original optimal control problem. In fact, in this method, for every
primary approximate problem a sequence of secondary approximate problems needs to be
solved. The method in [9] is therefore very complex and intensive.

In this paper, we propose a new computational method for solving the optimal control
problem formulated in [8, 9]. This method, like those in [8, 9], is based on control parameter-
ization. The major difference is that we use a more flexible piecewise constant approximation
of the control. More specifically, we allow both the control heights and the control switch-
ing times to be decision variables. Hence, the control switching times do not need to be
specified beforehand and are instead determined optimally. Furthermore, inspired by work
in [3, 4, 11], we develop a new scheme for computing the cost function’s gradient. Our new
scheme involves integrating an auxiliary dynamical system forward in time, simultaneously
with the state system. Accordingly, state interpolation is not required. This makes our new
method much easier to implement than those in [8, 9].

2 Problem Statement

Consider the following nonlinear control system:

ẋ(t) = f
(
x(t),u(t)

)
, t ≥ 0, (2.1)

and

x(0) = x0, (2.2)

where x(t) ∈ Rn is the system state at time t; u(t) ∈ Rr is the control input at time t;
f : Rn × Rr → Rn is a given function; and x0 ∈ Rn is a given initial state.

Define

Υ :=
{
u = [u1, . . . , ur]

T ∈ Rr : aς ≤ uς ≤ bς , ς = 1, . . . , r
}
,

where aς and bς are given real numbers such that aς < bς . Any measurable function u :
[0,∞) → Rr such that u(t) ∈ Υ for almost all t ∈ [0,∞) is called an admissible control. Let
U denote the class of all such admissible controls.

We assume that the following two conditions are satisfied.

Assumption 2.1. The function f is continuously differentiable.

Assumption 2.2. There exists a real number K > 0 such that∥∥f(x,u)∥∥ ≤ K(1 + ∥x∥), (x,u) ∈ Rn ×Υ,

where ∥ · ∥ denotes the Euclidean norm.
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It follows from Theorem 3.1.6 of [1] that the system (2.1)-(2.2) has a unique solution cor-
responding to each admissible control u ∈ U . We denote this solution by x(·|u). The
function x(·|u) is absolutely continuous, satisfies the dynamics (2.1) almost everywhere on
[0,∞), and satisfies the initial condition (2.2).

Define a functional T : U → [0,∞) as follows:

T (u) := inf
{
t ∈ (0,∞) : Φ(x(t|u)) = 0

}
,

where Φ : Rn → R is a given continuously differentiable function such that Φ(x0) > 0.
Clearly,

Φ
(
x(T (u)|u)

)
= 0. (2.3)

Furthermore, T (u) is the first positive time at which the state trajectory hits the surface{
x ∈ Rn : Φ(x) = 0

}
.

We assume that the control system (2.1)-(2.2) stops when t = T (u). Hence, T (u) is called
the stopping time or terminal time corresponding to the admissible control u ∈ U .

We assume that the following condition is satisfied.

Assumption 2.3. There exists a real number Tmax > 0 such that

Tmax = sup
{
T (u) : u ∈ U

}
.

We now define the following optimal control problem.

Problem P. Choose an admissible control u ∈ U such that the cost functional

J(u) := Ψ
(
x(T (u)|u)

)
, (2.4)

where Ψ : Rn → R is a given continuously differentiable function, is minimized over U .

Remark 2.4. We can easily incorporate an integral term of the form∫ T (u)

0

L
(
x(t|u),u(t)

)
dt, (2.5)

where L : Rn × Rr → R, into the cost functional (2.4). This is done by augmenting the
dynamic system (2.1)-(2.2) with the following auxiliary dynamics:

v̇(t) = L
(
x(t),u(t)

)
, t ≥ 0,

and
v(0) = 0.

Clearly, the value of v at the stopping time is equal to the integral cost (2.5).

3 Control Parameterization

In general, Problem P is too complicated to solve analytically. We will instead approximate
it by a finite-dimensional optimization problem.

Let p ≥ 2 be a fixed integer and define corresponding sets Ξ and Θ as follows:

Ξ :=

p∏
i=1

Υ
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and
Θ :=

{
θ = [θ1, . . . , θp−1]

T ∈ Rp−1 : θi ≥ 0, i = 1, . . . , p− 1
}
.

Notice that Ξ is the set of all tuples (σ1, . . . ,σp) such that σi ∈ Υ, i = 1, . . . , p.
Now, for each pair (σ,θ) ∈ Ξ × Θ, define a corresponding control function up(·|σ,θ) :

[0,∞) → Rr as follows:

up(t|σ,θ) :=
p∑

i=1

σiχIi(θ)(t), t ∈ [0,∞), (3.1)

where Ii(θ) := [ti−1(θ), ti(θ)),

ti(θ) :=


0, if i = 0,
i∑

j=1

θj , if i ∈ {1, . . . , p− 1},

∞, if i = p,

and χI : R → R is the indicator function defined by

χI(t) :=

{
1, if t ∈ I,
0, otherwise.

Clearly, for each θ ∈ Θ,
ti−1(θ) ≤ ti(θ), i = 1, . . . , p.

Since the function up(·|σ,θ) changes its value at ti(θ), i = 1, . . . , p − 1, these times are
called switching times.

We immediately see that for each (σ,θ) ∈ Ξ × Θ, the piecewise constant function
up(·|σ,θ) is an admissible control for Problem P. Accordingly, we may define

xp(·|σ,θ) := x(·|up(·|σ,θ)),

T p(σ,θ) := T (up(·|σ,θ)),

and
Jp(σ,θ) := J(up(·|σ,θ)) = Ψ

(
xp(T p(σ,θ)|σ,θ)

)
.

Thus, when the controls are restricted to those described by equation (3.1), Problem P
becomes the following optimization problem.

Problem P(p). Choose a pair (σ,θ) ∈ Ξ×Θ to minimize the objective function Jp over
Ξ×Θ.

Remark 3.1. If (σ∗,θ∗) is an optimal solution of Problem P(p), then up(·|σ∗,θ∗) is a
suboptimal control for Problem P.

4 Solving Problem P(p)

Problem P(p) is a nonlinear optimization problem whose decision variables are the com-
ponents of σ and θ. To solve this problem using a gradient-based optimization technique,
we need a method for computing the gradient of the cost function Jp. The purpose of this
section is to develop such a method.



FREE TERMINAL TIME OPTIMAL CONTROL PROBLEMS 67

Consider Problem P(p) for a fixed integer p ≥ 2. Define

Γ :=
{
(σ,θ) ∈ Ξ×Θ : tp−1(θ) < T p(σ,θ)

}
.

Thus, (σ,θ) ∈ Γ if and only if the corresponding control up(·|σ,θ) changes value p−1 times
before the end of the time horizon.

We now prove the following important result.

Theorem 4.1. Let (σ,θ) ∈ Ξ × Θ and suppose that T p(σ,θ) > 0. Then there exists a

corresponding (σ̂, θ̂) ∈ Γ such that

Jp(σ,θ) = Jp(σ̂, θ̂).

Proof. Let σ ∈ Ξ and θ ∈ Θ be arbitrary but fixed. Since the result follows immediately
when (σ,θ) ∈ Γ, we assume that (σ,θ) /∈ Γ. Thus, since T p(σ,θ) is strictly positive, there
exists an integer κ ∈ {1, . . . , p− 1} such that

tκ−1(θ) < T p(σ,θ) ≤ tκ(θ).

We consider two cases: (i) κ = 1; and (ii) κ ≥ 2.
We start with Case (i). In this case,

0 = t0(θ) < T p(σ,θ) ≤ t1(θ).

Define vectors σ̂i ∈ Rr, i = 1, . . . , p, and θ̂ ∈ Rp−1 as follows:

σ̂i := σ1, i = 1, . . . , p,

and

θ̂i :=
T p(σ,θ)

p
, i = 1, . . . , p− 1.

It is clear that σ̂ := (σ̂1, . . . , σ̂p) ∈ Ξ and θ̂ ∈ Θ. Moreover,

tp−1(θ̂) =

p−1∑
j=1

θ̂j =

p−1∑
j=1

T p(σ,θ)

p
< T p(σ,θ). (4.1)

Now, we immediately see that

up(t|σ̂, θ̂) = up(t|σ,θ), t ∈ [0, T p(σ,θ)).

Hence,

xp(t|σ̂, θ̂) = xp(t|σ,θ), t ∈ [0, T p(σ,θ)],

and

T p(σ̂, θ̂) = T p(σ,θ).

Substituting this into (4.1) shows that (σ̂, θ̂) ∈ Γ. Furthermore, this implies that

Jp(σ̂, θ̂) = Jp(σ,θ).

Thus, (σ̂, θ̂) ∈ Γ is the required pair.
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We now consider Case (ii), when κ ≥ 2. Define vectors σ̂i ∈ Rr, i = 1, . . . , p, and

θ̂ ∈ Rp−1 by

σ̂i :=

{
σ1, if i = 1, . . . , p− κ+ 1,

σi−p+κ, if i = p− κ+ 2, . . . , p,

and

θ̂i :=

{
θ1/(p− κ+ 1), if i = 1, . . . , p− κ+ 1,

θi−p+κ, if i = p− κ+ 2, . . . , p− 1.

It is clear that σ̂ := (σ̂1, . . . , σ̂p) ∈ Ξ and θ̂ ∈ Θ. Furthermore, although the working is
rather tedious, it is not too difficult to show that

up(t|σ̂, θ̂) = up(t|σ,θ), t ∈ [0, T p(σ,θ)).

Hence,
xp(t|σ̂, θ̂) = xp(t|σ,θ), t ∈ [0, T p(σ,θ)], (4.2)

and
T p(σ̂, θ̂) = T p(σ,θ). (4.3)

Equations (4.2) and (4.3) imply that

Jp(σ̂, θ̂) = Jp(σ,θ).

It remains to show that (σ̂, θ̂) ∈ Γ. Indeed, we have

tp−1(θ̂) =

p−1∑
j=1

θ̂j =

p−κ+1∑
j=1

θ1
p− κ+ 1

+

p−1∑
j=p−κ+2

θj−p+κ

=
κ−1∑
j=1

θj = tκ−1(θ) < T p(σ,θ) = T p(σ̂, θ̂).

Thus, (σ̂, θ̂) ∈ Γ, as required.

Remark 4.2. The proof of Theorem 4.1 is constructive; it shows how to construct (σ̂, θ̂)
from (σ,θ).

Now, for each k = 1, . . . , p and ς = 1, . . . , r, consider the following auxiliary dynamic system:

ϕ̇
k,ς

(t) = ρk,i
∂f

(
xp(t|σ,θ),σi

)
∂x

ϕk,ς(t) + δk,i
∂f

(
xp(t|σ,θ),σi

)
∂uς

,

t ∈ Ii(θ), i = 1, . . . , p, (4.4)

and
ϕk,ς(0) = 0, (4.5)

where (σ,θ) ∈ Ξ×Θ and

δk,i :=

{
1, if k = i,

0, otherwise,

and

ρk,i :=

{
1, if k ≤ i,

0, otherwise.
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Let ϕk,ς(·|σ,θ) denote the solution of (4.4)-(4.5) corresponding to (σ,θ) ∈ Ξ×Θ.
We now show that the partial derivatives of Jp with respect to the decision variables σk

ς ,

k = 1, . . . , p, ς = 1, . . . , r, can be expressed in terms of ϕk,ς(·|σ,θ).

Theorem 4.3. Let (σ,θ) ∈ Γ. Furthermore, let T p := T p(σ,θ), xp:= xp(·|σ,θ), and ϕk,ς :=
ϕk,ς(·|σ,θ). Then for each k = 1, . . . , p and ς = 1, . . . , r,

∂Jp(σ,θ)

∂σk
ς

=
∂Ψ(xp(T p))

∂x
ϕk,ς(T p) + αk,ς

∂Ψ(xp(T p))

∂x
f
(
xp(T p),σp

)
,

where

αk,ς := −∂Φ(xp(T p))

∂x
ϕk,ς(T p)

[
∂Φ(xp(T p))

∂x
f
(
xp(T p),σp

)]−1

.

Proof. Let (σ,θ) ∈ Γ, k ∈ {1, . . . , p}, and ς ∈ {1, . . . , r} be arbitrary but fixed. For
simplicity, we write ti instead of ti(θ) and Ii instead of Ii(θ). Since (σ,θ) is fixed, these
simplifications will not cause confusion.

Recall that
Jp(σ,θ) = Ψ

(
xp(T p|σ,θ)

)
.

Differentiating this equation with respect to σk
ς gives

∂Jp(σ,θ)

∂σk
ς

=
∂Ψ(xp(T p))

∂x

∂xp(T p)

∂σk
ς

+
∂Ψ(xp(T p))

∂x
f
(
x(T p),σp

)∂T p

∂σk
ς

. (4.6)

Now, for each i = 1, . . . , p, it follows from (2.1)-(2.2) that

xp(t) = xp(ti−1) +

∫ t

ti−1

f
(
xp(s),σi

)
ds, t ∈ Ii. (4.7)

If i > k, then differentiating (4.7) with respect to σk
ς yields

∂xp(t)

∂σk
ς

=
∂xp(ti−1)

∂σk
ς

+

∫ t

ti−1

∂f
(
xp(s),σi

)
∂x

∂xp(s)

∂σk
ς

ds, t ∈ Ii. (4.8)

On the other hand, if i = k, then differentiating (4.7) with respect to σk
ς gives

∂xp(t)

∂σk
ς

=
∂x(ti−1)

∂σk
ς

+

∫ t

ti−1

∂f
(
xp(s),σi

)
∂x

∂xp(s)

∂σk
ς

ds

+

∫ t

ti−1

∂f
(
xp(s),σi

)
∂uς

ds, t ∈ Ii. (4.9)

Since σk is the value of up(·|σ,θ) on the subinterval Ik, it does not affect the state before
Ik. Hence, if i < k, then

∂xp(t)

∂σk
ς

= 0, t ∈ Ii. (4.10)

We can combine (4.8)-(4.10) into one equation as follows:

∂xp(t)

∂σk
ς

= ρk,i
∂x(ti−1)

∂σk
ς

+

∫ t

ti−1

ρk,i
∂f

(
xp(s),σi

)
∂x

∂xp(s)

∂σk
ς

ds

+

∫ t

ti−1

δk,i
∂f

(
xp(s),σi

)
∂uς

ds, t ∈ Ii, i = 1, . . . , p.
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Differentiating this equation with respect to time gives

d

dt

{
∂xp(t)

∂σk
ς

}
= ρk,i

∂f
(
xp(t),σi

)
∂x

∂xp(t)

∂σk
ς

+ δk,i
∂f

(
xp(t),σi

)
∂uς

,

t ∈ Ii, i = 1, . . . , p. (4.11)

Furthermore,
∂xp(0)

∂σk
ς

=
∂

∂σk
ς

{
x0

}
= 0. (4.12)

Equations (4.11)-(4.12) show that ∂xp(·)/∂σk
ς is the unique solution of (4.4)-(4.5). Hence,

∂xp(t)

∂σk
ς

= ϕk,ς(t), t ∈ [0,∞). (4.13)

Now, recall from (2.3) that

Φ(xp(T p)) = 0.

Differentiating this equation with respect to σk
ς yields

∂Φ(xp(T p))

∂x

∂xp(T p)

∂σk
ς

+
∂Φ(xp(T p))

∂x
f
(
xp(T p),σp

)∂T p

∂σk
ς

= 0.

Therefore, by using (4.13),

∂T p

∂σk
ς

= −∂Φ(xp(T p))

∂x
ϕk,ς(T p)

[
∂Φ(xp(T p))

∂x
f
(
xp(T p),σp

)]−1

= αk,ς . (4.14)

Substituting equations (4.13) and (4.14) into equation (4.6) completes the proof.

We will now derive formulae for computing the partial derivatives of Jp with respect to θk,
k = 1, . . . , p− 1.

For each k = 1, . . . , p− 1, consider the following auxiliary dynamic system:

ψ̇
k
(t) = (ρk,i − δk,i)

∂f
(
xp(t|σ,θ),σi

)
∂x

ψk(t), t ∈ Ii, i = 1, . . . , p, (4.15)

and, for each i = 1, . . . , p− 1,

lim
t→ti(θ)+

ψk(t) = lim
t→ti(θ)−

ψk(t) + ρk,i

{
f
(
xp(ti(θ)|σ,θ),σi

)
− f

(
xp(ti(θ)|σ,θ),σi+1

)}
, (4.16)

and

ψk(0) = 0, (4.17)

where (σ,θ) ∈ Ξ × Θ. Let ψk(·|σ,θ) denote the solution of (4.15)-(4.17) corresponding to
the pair (σ,θ) ∈ Ξ×Θ.

The next theorem shows that the partial derivatives of Jp with respect to θk, k =
1, . . . , p− 1, can be expressed in terms of ψk(·|σ,θ).
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Theorem 4.4. Let (σ,θ) ∈ Γ. Furthermore, let T p := T p(σ,θ), xp := xp(·|σ,θ), and ψk :=
ψk(·|σ,θ). Then for each k = 1, . . . , p− 1,

∂Jp(σ,θ)

∂θk
=

∂Ψ(xp(T p))

∂x
ψk(T p) + βk

∂Ψ(xp(T p))

∂x
f
(
xp(T p),σp

)
,

where

βk := −∂Φ(xp(T p))

∂x
ψk(T p)

[
∂Φ(xp(T p))

∂x
f
(
xp(T p),σp

)]−1

.

Proof. Let (σ,θ) ∈ Γ and k ∈ {1, . . . , p − 1} be arbitrary but fixed. As in the proof of
Theorem 4.3, we will simplify the notation by writing ti instead of ti(θ) and Ii instead of
Ii(θ).

We first differentiate Jp with respect to θk:

∂Jp(σ,θ)

∂θk
=

∂Ψ(xp(T p))

∂x

∂xp(T p)

∂θk
+

∂Ψ(xp(T p))

∂x
f
(
xp(T p),σp

)∂T p

∂θk
. (4.18)

Next, for each ϵ > 0, define
θϵ := θ + ϵek,

where ek is the kth standard unit vector in Rp−1. Then

ti(θ
ϵ) =

{
ti(θ), if i = 1, . . . , k − 1,

ti(θ) + ϵ, if i = k, . . . , p.
(4.19)

Let t ∈ Ii(θ) for some i ≤ k. Then t < tk(θ), and thus we can find a real number ϵ′ > 0
such that whenever |ϵ| < ϵ′,

t < tk(θ) + ϵ = tk(θ
ϵ). (4.20)

From (4.19), we see that the first k − 1 switching times of u(·|σ,θϵ) and u(·|σ,θ) coincide,
and from (4.20), we see that when |ϵ| < ϵ′ these two controls switch for the kth time after
time t. Thus,

u(s|σ,θϵ) = u(s|σ,θ), s ∈ [0, t], |ϵ| < ϵ′.

Consequently, when ϵ is of sufficiently small magnitude,

xp(t|σ,θϵ) = xp(t|σ,θ),

where we recall that t ∈ Ii(θ), i ≤ k, was chosen arbitrarily. Therefore,

∂xp(t)

∂θk
= lim

ϵ→0

xp(t|θϵ,σ)− xp(t|σ,θ)
ϵ

= 0, t ∈ Ii, i = 1, . . . , k. (4.21)

Differentiating this equation with respect to time yields

d

dt

{
∂xp(t)

∂θk

}
= 0, t ∈ Ii, i = 1, . . . , k. (4.22)

We now consider the case when i > k.
It follows from (2.1)-(2.2) that

xp(t) = x0 +

k−1∑
j=1

∫ tj

tj−1

f
(
xp(s),σj

)
ds+

∫ tk

tk−1

f
(
xp(s),σk

)
ds

+
i−1∑

j=k+1

∫ tj

tj−1

f
(
xp(s),σj

)
ds+

∫ t

ti−1

f
(
xp(s),σi

)
ds, t ∈ Ii.
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Differentiating this equation with respect to θk, and then using (4.21), gives

∂xp(t)

∂θk
= f

(
xp(tk),σ

k
)
+

i−1∑
j=k+1

∫ tj

tj−1

∂f
(
xp(s),σj

)
∂x

∂xp(s)

∂θk
ds

+
i−1∑

j=k+1

{
f
(
xp(tj),σ

j
)
− f

(
xp(tj−1),σ

j
)}

+

∫ t

ti−1

∂f
(
xp(s),σi

)
∂x

∂xp(s)

∂θk
ds− f

(
xp(ti−1),σ

i
)
, t ∈ Ii. (4.23)

Differentiating this equation with respect to time yields

d

dt

{
∂xp(t)

∂θk

}
=

∂f
(
xp(t),σi

)
∂x

∂xp(t)

∂θk
, t ∈ Ii, i = k + 1, . . . , p. (4.24)

We can combine equations (4.22) and (4.24) into one equation as follows:

d

dt

{
∂xp(t)

∂θk

}
= (ρk,i − δk,i)

∂f
(
xp(t),σi

)
∂x

∂xp(t)

∂θk
, t ∈ Ii, i = 1, . . . , p. (4.25)

Now, it is clear from (4.21) that

lim
t→ti+

∂xp(t)

∂θk
= lim

t→ti−

∂xp(t)

∂θk
, i = 1, . . . , k − 1. (4.26)

Furthermore, we see from (4.23) that

lim
t→ti+

∂xp(t)

∂θk
= lim

t→ti−

∂xp(t)

∂θk
+ f

(
xp(ti),σ

i
)
− f

(
xp(ti),σ

i+1
)
,

i = k, . . . , p− 1. (4.27)

Combining (4.26) and (4.27) yields

lim
t→ti+

∂xp(t)

∂θk
= lim

t→ti−

∂xp(t)

∂θk
+ ρk,i

{
f
(
xp(ti),σ

i
)
− f

(
xp(ti),σ

i+1
)}

,

i = 1, . . . , p− 1. (4.28)

Furthermore,
∂xp(0)

∂θk
=

∂

∂θk

{
x0

}
= 0. (4.29)

Equations (4.25), (4.28), and (4.29) show that ∂xp(·)/∂θk is the solution of (4.15)-(4.17).
Hence,

∂xp(t)

∂θk
= ψk(t), t ∈ [0,∞). (4.30)

Now, recall from equation (2.3) that

Φ(xp(T p)) = 0.

Differentiating this equation with respect to θk yields

∂Φ(xp(T p))

∂x
ψk(T p) +

∂Φ(xp(T p))

∂x
f
(
xp(T p),σp

)∂T p

∂θk
= 0.
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Thus, by (4.30),

∂T p

∂θk
= −∂Φ(xp(T p))

∂x
ψk(T p)

[
∂Φ(xp(T p))

∂x
f
(
xp(T p),σp

)]−1

= βk. (4.31)

Substituting equations (4.30) and (4.31) into equation (4.18) completes the proof.

Theorems 4.3 and 4.4 give formulae for computing the partial derivatives of Jp, but they are
only applicable when the pair (σ,θ) belongs to the set Γ. Nevertheless, when (σ,θ) /∈ Γ,
we can use the procedure shown in the proof of Theorem 4.1 to generate a new pair in Γ
that also has an objective value of Jp(σ,θ). The gradient of Jp at this new pair can then be
calculated using the formulae in Theorems 4.3 and 4.4, and this gradient can subsequently
be used to compute a descent direction. This is the main idea of the following algorithm for
solving Problem P(p), which combines the formulae in Theorems 4.3 and 4.4, the procedure
in the proof of Theorem 4.1, and a gradient-based optimization method.

Algorithm 4.5. Input an initial pair (σ,θ) ∈ Ξ×Θ.

(i) If (σ,θ) /∈ Γ, then go to Step (ii).
Otherwise, go to Step (iv).

(ii) Construct (σ̂, θ̂) ∈ Γ from (σ,θ) using the procedure in the proof of Theorem 4.1.

(iii) Set (σ̂, θ̂) → (σ,θ).

(iv) Compute the partial derivatives ∂Jp(σ,θ)/∂σk
ς and ∂Jp(σ,θ)/∂θk using the formulae

in Theorems 4.3 and 4.4.

(v) If the optimality conditions are satisfied, then stop; (σ,θ) is an optimal solution of
Problem P(p).
Otherwise, use the gradient information obtained in Step (iv) to determine an appro-
priate search direction in Ξ×Θ.

(vi) Obtain a new pair (σ̄, θ̄) ∈ Ξ × Θ by performing a line search along the direction
calculated in Step (v).

(vii) Set (σ̄, θ̄) → (σ,θ) and go to Step (i).

5 Convergence Results

Problem P(p) can be solved using Algorithm 4.5, after which a suboptimal control for
Problem P can be constructed according to Remark 3.1. By repeating these steps for
increasing values of p, we can generate a sequence of suboptimal controls. In this section,
we will present two convergence results linking these suboptimal controls with an optimal
control of Problem P.

Since p is no longer fixed, we now denote Ξ by Ξp, Θ by Θp, ti(θ) by tpi (θ), and Ii(θ)
by Ip

i (θ).
We first recall the following result (Lemma 6.4.1 of [10]).

Lemma 5.1. Let u ∈ U be an admissible control for Problem P. Then there exists a sequence
of admissible controls {up}∞p=1 ⊂ U that converges to u almost everywhere on [0, Tmax].
Furthermore, for each p ≥ 1, up can be expressed as

up(t) =

p∑
i=1

σp,iχ[tpi−1,t
p
i )
(t), t ∈ [0,∞),
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where σp,i ∈ Υ, i = 1, . . . , p, tp0 = 0, tpp = ∞, and tpi−1 < tpi , i = 1, . . . , p.

We also assume that the following condition is satisfied.

Assumption 5.2. For each admissible control u ∈ U , there exists a corresponding real
number ω̄ > 0 such that

Φ
(
x(T (u) + ω|u)

)
< 0, ω ∈ (0, ω̄).

Lemma 5.3. Let {up}∞p=1 ⊂ U be a sequence of admissible controls converging to u ∈ U
almost everywhere on [0, Tmax]. Then the following results hold:

1. x(·|up) → x(·|u) uniformly on [0, Tmax] as p → ∞;

2. T (up) → T (u) as p → ∞; and

3. J(up) → J(u) as p → ∞.

Proof. 1. This result is a simple extension of Lemma 6.4.3 in [10].

2. Suppose, to the contrary, that {T (up)}∞p=1 does not converge to T (u). Then there
exists a real number γ > 0 and a subsequence {T (upj )}∞j=1 such that∣∣T (upj )− T (u)

∣∣ ≥ γ, j ≥ 1. (5.1)

By Assumption 2.3,
0 ≤ T (upj ) ≤ Tmax, j ≥ 1.

Thus, by virtue of the Bolzano-Weierstrass Theorem, and by passing to a subsequence
if necessary, we may assume that {T (upj )}∞j=1 converges to a real number T̄ ∈ [0, Tmax].
It is clear from (5.1) that ∣∣T̄ − T (u)

∣∣ ≥ γ > 0. (5.2)

Hence, T̄ ̸= T (u).

Now, let ϵ > 0 be arbitrary but fixed. By part 1, there exists an integer j′ ≥ 1 such
that ∥∥x(T (upj )|upj )− x(T (upj )|u)

∥∥ <
ϵ

2
, j ≥ j′.

Furthermore, since T (upj ) → T̄ as j → ∞, and x(·|u) is continuous, there exists
another integer j′′ ≥ 1 such that∥∥x(T (upj )|u)− x(T̄ |u)

∥∥ <
ϵ

2
, j ≥ j′′.

Thus, for each integer j ≥ max{j′, j′′},∥∥x(T (upj )|upj )− x(T̄ |u)
∥∥ ≤

∥∥x(T (upj )|upj )− x(T (upj )|u)
∥∥

+
∥∥x(T (upj )|u)− x(T̄ |u)

∥∥
< ϵ/2 + ϵ/2 = ϵ.

Since ϵ > 0 was chosen arbitrarily, this inequality shows that

lim
j→∞

x(T (upj )|upj ) = x(T̄ |u).
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Thus, since Φ is continuous,

lim
j→∞

Φ
(
x(T (upj )|upj )

)
= Φ

(
x(T̄ |u)

)
. (5.3)

However, recall from equation (2.3) that

Φ
(
x(T (upj )|upj )

)
= 0, j ≥ 1. (5.4)

Combining (5.3) and (5.4) gives

Φ
(
x(T̄ |u)

)
= 0.

Therefore, since T (u) ̸= T̄ ,
T (u) < T̄

and so by (5.2),
T (u) + γ ≤ T̄ . (5.5)

Now, define
υ := min

{
ω̄/2, γ/4

}
,

where ω̄ > 0 is the real number in Assumption 5.2 corresponding to the admissible
control u. Then υ < γ/2, and so (5.5) implies that there exists an integer M ≥ 1 such
that

T (u) + υ < T (u) +
γ

2
≤ T (upj ), j ≥ M. (5.6)

Furthermore, υ < ω̄ and thus by Assumption 5.2,

Φ
(
x(T (u) + υ|u)

)
< 0.

By part 1,
lim
j→∞

Φ
(
x(T (u) + υ|upj )

)
= Φ

(
x(T (u) + υ|u)

)
< 0.

Thus, there exists an integer N ≥ 1 such that

Φ
(
x(T (u) + υ|upj )

)
< 0, j ≥ N.

Since Φ(x0) > 0 (see Section 2), this implies that

T (upj ) ≤ T (u) + υ, j ≥ N. (5.7)

When j ≥ max{M,N}, inequalities (5.6) and (5.7) imply

T (u) + υ < T (u) + υ,

a contradiction. This completes the proof.

3. By parts 1 and 2,
lim
p→∞

x(T (up)|up) = x(T (u)|u). (5.8)

Thus, since Ψ is continuous,

lim
p→∞

Ψ
(
x(T (up)|up)

)
= Ψ

(
x(T (u)|u)

)
,

which completes the proof.
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We now present two important convergence results.

Theorem 5.4. Suppose that Problem P has an optimal control u∗. For each integer p ≥ 2,
let up,∗ denote the suboptimal control constructed from the solution of Problem P(p) according
to Remark 3.1. Then

lim
p→∞

J(up,∗) = J(u∗).

Proof. Let ϵ > 0 be arbitrary. By Lemma 5.1, there exists a sequence of admissible controls
{u∗,p}∞p=1 converging to u∗ almost everywhere on [0, Tmax]. Thus, by Lemma 5.3, part 3,
there exists an integer p1 ≥ 1 such that

J(u∗,p) ≤ J(u∗) + ϵ, p ≥ p1. (5.9)

Now, recall from Lemma 5.1 that for each p ≥ 1, u∗,p can be written as

u∗,p(t) =

p∑
i=1

σ∗,p,iχ[t∗,pi−1,t
∗,p
i )(t),

where σ∗,p,i ∈ Υ, i = 1, . . . , p, t∗,p0 = 0, t∗,pp = ∞, and t∗,pi−1 < t∗,pi , i = 1, . . . , p. For each
integer p ≥ 2, define

σ∗,p := (σ∗,p,1, . . . ,σ∗,p,p)

and

θ∗,p := [θ∗,p1 , . . . , θ∗,pp−1]
T ,

where

θ∗,pi := t∗,pi − t∗,pi−1, i = 1, . . . , p− 1.

Clearly, (σ∗,p,θ∗,p) ∈ Ξp ×Θp for each p ≥ 2. Moreover,

tpi (θ
∗,p) = t∗,pi , i = 1, . . . , p.

This implies that for each p ≥ 2, we can express u∗,p as

u∗,p(t) =

p∑
i=1

σ∗,p,iχIp
i (θ

∗,p)(t) = up(t|σ∗,p,θ∗,p).

Thus,

Jp(σ∗,p,θ∗,p) = J(u∗,p), p ≥ 2.

Therefore,

J(up,∗) ≤ Jp(σ∗,p,θ∗,p) = J(u∗,p), p ≥ 2. (5.10)

In view of (5.9) and (5.10), we see that when p ≥ max{p1, 2},

J(u∗) ≤ J(up,∗) ≤ J(u∗) + ϵ.

Since ϵ > 0 was chosen arbitrarily, this shows that J(up,∗) → J(u∗) as p → ∞, completing
the proof.

Theorem 5.5. Let u∗ and up,∗ be as defined in Theorem 5.4. If {up,∗}∞p=2 converges to a
function ū almost everywhere on [0, Tmax], then ū is an optimal control for Problem P.
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Proof. We immediately see that ū is admissible. Furthermore, by part 3 of Lemma 5.3,

lim
p→∞

J(up,∗) = J(ū). (5.11)

On the other hand, Theorem 5.4 implies that

lim
p→∞

J(up,∗) = J(u∗). (5.12)

Combining (5.11) and (5.12) gives

J(ū) = J(u∗),

which shows that ū ∈ U is an optimal control for Problem P.

6 An Applied Aeronautical Control Problem

As an example, we consider the glider control problem introduced in [8]. This problem
involves a gliding projectile that is described by the following dynamic system:

ẋ1(t) = x3(t) cos(x4(t)), (6.1a)

ẋ2(t) = x3(t) sin(x4(t)), (6.1b)

ẋ3(t) = −
(
KD0 +KD2α

2(t)
)
x2
3(t)− g sin(x4(t)), (6.1c)

ẋ4(t) = KLα(t)x3(t)−
g

x3(t)
cos(x4(t)), (6.1d)

and

x1(0) = 0.0, (6.2a)

x2(0) = 0.0, (6.2b)

x3(0) = 370.0, (6.2c)

x4(0) = 1.5, (6.2d)

where x1(t) is the glider’s horizontal distance from the launch point at time t; x2(t) is the
glider’s height at time t; x3(t) is the glider’s speed at time t; x4(t) is the angle between the
glider’s velocity vector and the horizon at time t; α(t) is the glider’s angle of attack at time
t; and KD0 = 3.289 × 10−5 m−1, KD2 = 1.133 × 10−3 m−1, KL = 3.289 × 10−3 m−1, and
g = 9.80 m s−2 are constants.

Let T > 0 be the time at which the glider crashes. Then T is the first positive time at
which the following equation is satisfied:

x2(T ) = 0. (6.3)

Thus,
x2(t) > 0, t ∈ (0, T ). (6.4)

Assumption 2.3 is clearly satisfied here, because the glider will eventually crash, regardless
of its angle of attack.

The optimal control problem is as follows: choose the angle of attack α in such a way
that the glider’s range, x1(T ), where T is the first positive time satisfying (6.3)-(6.4), is
maximized.
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We wrote a Fortran program, which implements the method discussed in Section 4, for
solving Problem P(p) for the optimal glider control problem described above. This program
uses the differential equation solver LSODAR (see [2]) to solve the state and auxiliary
systems, and NLPQLP (see [7]) to perform the optimization. We started the program with
the following initial control (which is suggested in [8]):

α(t) =

{
0, if t ≤ 40,

0.17, if t > 40.
(6.5)

We first used the program to solve Problem P(4) (that is, Problem P(p) with p = 4 subinter-
vals). This was done on a MacBook Pro with a 2.4GHz Intel Core 2 Duo processor and 4GB
of RAM. The program terminated after 116.79 seconds of computation time. Under the
optimal control that was obtained, the glider reaches a maximum range of 45,782 meters
and glides for 378.68 seconds.

To put these results in perspective, we wrote another Fortran program that implements
the method in [8] (with p = 25 subintervals). This program also uses LSODAR to solve
the state system (and LSODA to solve the costate system), and NLPQLP to perform the
optimization. It was run on the same computer and with the same initial control (equation
(6.5)) as the first program. The program terminated after 818.01 seconds of computation
time, with a maximum range of 45,622 meters and an optimal flight time of 360.66 sec-
onds. These results are slightly worse than those obtained using the first program (which
implements our new method), and took much longer to generate. As expected, allowing
the switching times to be decision variables is a major advantage of our new method: we
only needed four subintervals to generate better results than what was obtained using the
method in [8] with 25 subintervals.

NLPQLP also converged much better when our new method was used to construct the
gradients. In fact, NLPQLP’s line search at each iteration normally used fewer than five
function evaluations. In contrast, NPQLP usually needed more than ten function evalua-
tions when the method in [8] was used to generate the gradients. Again, this is what we
expected—because our new method allows the control switching times to be decision vari-
ables, NLPQLP has more flexibility to update the control, and therefore converges rapidly.

Two important things about the optimal glider control problem are worth mentioning.
First, the problem is highly nonlinear, and thus both our new method and the method in [8]
are very sensitive to the initial guess chosen for the control. Second, the gradient of the
cost function in the approximate Problem P(p) is very large and needs to be normalized.
NLPQLP’s line search procedure does not perform correctly on this problem unless the
gradient is normalized.

In an attempt to improve the glider’s range, we used our solution to Problem P(4) as
the initial guess for Problem P(8). Then, solving Problem P(8) using our program gave a
maximum range of 46,093 meters and an optimal flight time of 374.41 seconds. These results
are superior to the maximum range of 45,490 meters reported in [8].

Our results are displayed in Figures 1-2. In these figures, “old method, p = 25” refers
to the method in [8] with p = 25 subintervals, “new method, p = 4” refers to the method
discussed in this paper with p = 4 subintervals, and “new method, p = 8” also refers to the
method in this paper but with p = 8 subintervals.
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Figure 1: The optimal angle of attack.

7 Conclusion

In this paper, we have developed a new computational method for solving an optimal control
problem whose terminal time is governed by a state-dependent stopping criterion. Thus,
the terminal time in this optimal control problem is “free”—it is not fixed and is instead
determined implicitly as the state system is being solved. Extending the optimal control
method developed in this paper to more complex systems, which may have state and control
constraints and more general stopping conditions, is an interesting topic for future research.
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