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Abstract: Convex quadratic semidefinite programming (QSDP) has been widely applied in solving engi-
neering and scientific problems such as nearest correlation problems and nearest Euclidean distance matrix
problems. In this paper, we study an inexact primal-dual infeasible path-following algorithm for QSDP
problems of the form: minX{ 1

2
X • Q(X) + C • X : A(X) = b, X ≽ 0}, where Q is a self-adjoint positive

semidefinite linear operator on Sn, b ∈ Rm, and A is a linear map from Sn to Rm. This algorithm is
designed for the purpose of using an iterative solver to compute an approximate search direction at each
iteration. It does not require feasibility to be maintained even if some iterates happened to be feasible. By
imposing mild conditions on the inexactness of the computed directions, we show that the algorithm can
find an ϵ-solution in O(n2 ln(1/ϵ)) iterations.
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1 Introduction

We consider the following linearly constrained convex quadratic semidefinite programming
(QSDP) problem defined in the vector space of n× n real symmetric matrices Sn endowed
with the inner product

⟨
A, B

⟩
= A •B = Tr(AB):

(P ) min f(X) := 1
2X • Q(X) + C •X

s.t. Ai •X = bi, i = 1, · · · ,m
X ≽ 0,

(1.1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite linear operator. Here,
Ai, C ∈ Sn, b ∈ Rm are given data and X ≽ 0 (X ≻ 0) indicates that X is in Sn

+ (Sn
++). The

set Sn
+ (Sn

++) denotes the set of positive semidefinite (definite) matrices in Sn. In addition,
we assume that {Ai | i = 1, . . . ,m} is linearly independent. The dual problem of (P ) is
given as follows:

(D) max −1
2X • Q(X) + bT y

s.t.
∑m

i=1 yiAi + Z = ∇f(X) = Q(X) + C

Z ≽ 0.

(1.2)
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The problem (P ) includes linear SDP as a special case when Q = 0. It also includes the
following linearly constrained convex quadratic programming (LCCQP) [8]:

min
{1

2
xTQx+ cTx : Ax = b, x ∈ Rn

+

}
,

where Q is a given positive semidefinite matrix.
A recent application of QSDP is the nearest correlation matrix problem [3]. QSDP

also arises in nearest Euclidean distance matrix problems [1] and other matrix least square
problems [9]. Many problems in metric embeddings, covariance estimations, and molecular
conformations can also be formulated as QSDP, see for example [5] and [13].

We use the following notation and terminology. Let n̄ = n(n+1)/2. We define the linear
map svec : Sn → Rn̄ by:

svec(X) := (x11,
√
2x21, . . . ,

√
2xn1, x22,

√
2x32, . . . ,

√
2xn2, . . . , xnn)

T .

The inverse map of svec is denoted by smat. The matrix representation of Q in the
standard basis of Sn is the unique matrix Q ∈ S n̄

+ that satisfies svec(Q(X)) = Q(svecX)
for all X ∈ Sn. Also, let AT = [svecA1 svecA2 · · · svecAm], the matrix representations of
Ai • X (i = 1, · · · ,m) and

∑m
i=1 yiAi can be written as A(svecX) and AT y respectively.

Note that A has full row rank and hence AAT is non-singular. The pseudo inverse of A
is defined as A+ = AT (AAT )−1. We use ∥ · ∥ to denote the Frobenius norm for a matrix
or Euclidean norm for a vector, and ∥ · ∥2 to denote the spectral norm of a matrix or the
induced norm of a linear operator. For an n×n matrix M , we ordered its eigenvalues λi(M)
as follows: Reλ1(M) ≤ . . . ≤ Reλn(M).

The perturbed Karush-Kuhn-Tucker (KKT) optimality conditions for the problems (P )
and (D) are as follows: −svec∇f(X) +AT y + svecZ

A(svecX)− b

XZ

 =

 0

0

νI

 , X, Z ≽ 0, (1.3)

where ν ≥ 0 is a given parameter that is to be driven to zero explicitly. Note that when
ν = 0, (1.3) gives the optimal conditions for (P ) and (D). As the system (1.3) has more
independent equations than unknowns due to the fact that XZ is usually nonsymmetric,
the last equation XZ = νI is usually symmetrized to HP (XZ) = νI, where for a given
positive definite matrix P , HP : Rn×n → Sn is the following symmetrization operator [20]
defined by

HP (M) :=
1

2

[
PMP−1 + (PMP−1)T

]
.

In [20], P is chosen to be in the class C(X,Z) := {P ∈ Sn
++ | PXP and P−1ZP−1 commutes}.

This class includes the common choices: P = Z1/2, P = X−1/2, and P = W−1/2 where W
is the Nesterov-Todd (NT) scaling matrix satisfying WZW = X [14]. It has been shown in
[20] that for X,Z ∈ Sn

++ and P ∈ C(X,Z), HP (XZ) = νI if and only if XZ = νI.
In this paper, we choose P to be the NT scaling matrix rather than any P ∈ C(X,Z) as

considered in [20]. The main reasons for considering only the NT scaling matrix are that it
simplifies the complexity analysis and also gives the best iteration complexity. In addition,
it is employed in practical computations since it has certain desirable properties that allow
one to design efficient preconditioners for the augmented system (3.5a) for computing search
directions; see [16] for details.
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Primal-dual path-following interior-point methods (IPM) are known to be highly efficient
methods for solving linear SDP problems, both in computation [15] and in theoretical com-
plexity [11, 20]. The earliest extension of standard primal-dual path-following algorithms
to solve QSDP was done in [1] where for each iteration, a linear system of dimension m+ p
must be solved directly, say by Cholesky decomposition. Here, p is the rank of Q, and p = n̄
if Q is nonsingular. For an ordinary desktop PC, this direct approach can only solve small
size problems with n less than a hundred due to the prohibitive computational cost and
huge memory requirement when n is large.

In recent applications such as the nearest Euclidean distance matrix completion problems
arising from molecular conformation or senor network localization, there is an increasing de-
mand for methods that can handle QSDP where n or m is large. This motivated us to
pursue the idea of solving the large linear system inexactly by an iterative solver to over-
come the bottleneck mentioned in the last paragraph. Infeasible primal-dual path-following
algorithms using inexact search directions have been investigated extensively in LP, linear
SDP, and more generally monotone linear complementarity problems; see [2], [7], [12] and
[18]. For linear SDP, an inexact infeasible interior-point algorithm was introduced by Kojima
et al. in [6] wherein the algorithm only allowed inexactness in the component corresponding
to the complementarity equation (the third equation in (1.3)). Subsequently, Zhou and Toh
[19] developed an infeasible inexact path-following algorithm which allowed inexactness in
the primal and dual feasibilities, and complementarity equations. Furthermore, primal and
dual feasibilities need not be maintained even if some iterates happen to lie in the feasible
region. In [19], it is proved that the algorithm needs at most O(n2 ln(1/ϵ)) iterations to
compute an ϵ-optimal solution.

Our interest in this paper is to extend the inexact primal-dual infeasible path-following
algorithm in [19] to the case of QSDP. We will focus on establishing the polynomial iteration
complexity of the algorithm. In particular, we show that the algorithm needs at most
O(n2 ln(1/ϵ)) iterations to compute an ϵ-optimal solution for (P ) and (D). This complexity
result is the same as that established for a linear SDP in [19]. The complexity analysis of
our proposed algorithm is similar to the case of a linear SDP in [19]. But there is a major
difference in that we always have to consider the effect of the quadratic term in the objective
function of QSDP. In particular, Lemma 3.5 shows that the complexity bound we obtained
is dependent on ∥Q∥2. We hope that the theoretical framework we developed here for QSDP
can lead to further development of inexact primal-dual infeasible path-following methods for
broader classes of SDP problems such as those with an objective function f(X) in (P ) that
is convex with a Lipschitz continuous gradient but not necessarily quadratic.

We should point out that the numerical implementation and evaluation of our proposed
inexact algorithm for QSDP has been thoroughly studied in [16] and [17].

The rest of this paper is organized as follows. In the next section, we define the infeasible
central path and its corresponding neighborhood. In addition, we also establish some key
lemmas that are needed for subsequent complexity analysis. In section 3, we discuss the
computation of inexact search directions. We also present our inexact primal-dual infeasible
path-following algorithm and establish a polynomial complexity result for this algorithm.
In section 4, we give detailed proofs on the polynomial complexity result.

Throughout the paper, we made the following assumption.

Assumption 1.1. Problems (P) and (D) are strictly feasible. We say that (P) and (D)
are (strictly) feasible if there exists (X, y, Z) satisfying the linear constraints in (1.3) and
X,Z ≽ 0 (X,Z ≻ 0).
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2 An Infeasible Central Path and Its Neighborhood

Let L = ∥Q∥2. Note that L is a Lipschitz constant of the gradient of f(X) defined in (P ),
i.e.,

∥∇f(X)−∇f(Y )∥ = ∥Q(X)−Q(Y )∥ ≤ L∥X − Y ∥. (2.1)

Let (X0, y0, Z0) be an initial point such that

X0 = Z0 = ρI, (2.2)

where ρ > 0 is a given constant. For given positive constants γp ≤ γd such that γd + Lγp ∈
(0, 1), the constant ρ is chosen to be sufficiently large so that for some solution (X∗, y∗, Z∗)
to (P ) and (D), the following conditions hold:

(1− γp)X0 ≻ X∗ ≽ 0, (1− (γd + Lγp))Z0 ≻ Z∗ ≽ 0, (2.3)

Tr(X∗) + Tr(Z∗) ≤ nρ. (2.4)

Remark 2.1. Under the condition γd + Lγp < 1, γp could be close to 0 for a large L.
Without loss of generality, we may always assume L ≤ 1. This can be easily achieved by
scaling f(X) with a proper constant. In particular, for the case where ∥Q∥2 > 1, we may
consider the following pair of scaled primal and dual problems instead:

(P ′) min

{
1

2
X • Q̂(X) + Ĉ •X | A(svecX) = b, X ≽ 0

}
,

(D′) max

{
−1

2
X • Q̂(X) + bT y | AT y + Z = Q̂(X) + Ĉ, Z ≽ 0

}
,

where Q̂ = Q/∥Q∥2 and Ĉ = C/∥Q∥2.

We define

µ0 = X0 • Z0/n = ρ2, (2.5)

Rp
0 = A(svecX0)− b, (2.6)

svecRd
0 = −svec∇f(X0) +AT y0 + svecZ0. (2.7)

For θ, ν ∈ (0, 1], the following infeasible KKT system has a unique solution under Assump-
tion 1.1:  −svec∇f(X) +AT y + svecZ

A(svecX)− b

HP (XZ)

 =

 θsvecRd
0

θRp
0

νµ0I

 , X, Z ≻ 0. (2.8)

Define the infeasible central path as:

P =
{
(θ, ν,X, y, Z) ∈ R++ × R++ × Sn

++ × Rm × Sn
++ such that (2.8) holds

}
.

The primary idea of a primal-dual infeasible path-following algorithm is to generate a se-
quence of points (Xk, yk, Zk) such that (θk, νk, Xk, yk, Zk) ∈ P and (Xk, yk, Zk) converges
to a solution of (P ) and (D) when θk and νk are driven to 0. In practice of course, the points
are never exactly on the central path P but lie in some neighborhood of P. In our inexact
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primal-dual infeasible path-following algorithm, we consider the following neighborhood of
P. Choose a constant γ ∈ (0, 1) in addition to γp and γd, we define the neighborhood to be:

N =


(θ, ν,X, y, Z) ∈ (0, 1]× (0, 1]× Sn

++ × Rm × Sn
++ : θ ≤ ν,

−svec∇f(X) +AT y + svecZ = θ(svecRd
0 + ξd), ∥ξd∥ ≤ γdρ,

A(svecX)− b = θ(Rp
0 + ξp), ∥A+ξp∥ ≤ γpρ,

(1− γ)νµ0 ≤ λmin(XZ) ≤ λmax(XZ) ≤ (1 + γ)νµ0

 .

Let θ0 = ν0 = 1. It follows from (2.2) that (θ0, ν0, X0, y0, Z0) ∈ N . It is easy to show that if
(θ, ν,X, y, Z) ∈ N and P ∈ C(X,Z), then HP (XZ) = PXZP−1 is symmetric and has the
same set of eigenvalues as XZ. From the definition of N , it is easy to see that we have

(1− γ)νµ0I ≼ HP (XZ) ≼ (1 + γ)νµ0I (2.9)

(1− γ)νµ0 ≤ X • Z/n ≤ (1 + γ)νµ0. (2.10)

Next, we present two lemmas that are needed for the iteration complexity analysis in
section 3.

Lemma 2.2. For any rp and rd satisfying ∥rd∥ ≤ γdρ and ∥A+rp∥ ≤ γpρ, there exists

(X̃, ỹ, Z̃) that satisfies the following conditions:

−svec∇f(X̃) +AT ỹ + svecZ̃ = svecRd
0 + rd , (2.11)

A(svecX̃)− b = Rp
0 + rp , (2.12)

(1− γp)ρI ≼ X̃ ≼ (1 + γp)ρI , (2.13)

[1− (γd + Lγp)]ρI ≼ Z̃ ≼ [1 + (γd + Lγp)]ρI . (2.14)

Proof. Let

svecX̃ = svecX0 +A+rp ,

ỹ = y0 ,

svecZ̃ = svecZ0 + rd +Q(svecX̃)−Q(svecX0) ,

(2.11)–(2.13) are readily shown. To show (2.14), we only need to establish the following
inequality:

∥rd +Q(svecX̃)−Q(svecX0)∥ ≤ ∥rd∥+ ∥Q(svecX̃ − svecX0)∥ ≤ (γd + Lγp)ρ.

Lemma 2.3. Given the initial conditions (2.2), (2.3) and (2.4), for any (θ, ν,X, y, Z) ∈ N ,
we have

θTr(X) ≤ 6νρn

1− (γd + Lγp)
, θTr(Z) ≤ 6νρn

1− γp
.

Proof. This proof is adapted from that for Lemma 2 in [19]. For (θ, ν,X, y, Z) ∈ N , we have

−svec∇f(X) +AT y + svecZ = θ(svecRd
0 + rd), ∥rd∥ ≤ γdρ, (2.15)

A(svecX)− b = θ(Rp
0 + rp), ∥A+rp∥ ≤ γpρ. (2.16)
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By Lemma 2.2, there exists (X̃, ỹ, Z̃) satisfies conditions (2.11)–(2.14). Also, a solution
(X∗, y∗, Z∗) to (P ) and (D) satisfies the following equations:

A(svecX∗)− b = 0,

−svec∇f(X∗) +AT y∗ + svecZ∗ = 0.

Let

X̂ = (1− θ)X∗ + θX̃ −X, ŷ = (1− θ)y∗ + θỹ − y, Ẑ = (1− θ)Z∗ + θZ̃ − Z.

Then we have

A(svecX̂) = 0, AT (ŷ) + svecẐ = Q svecX̂.

Hence
⟨
X̂, Ẑ

⟩
=

⟨
X̂, Q(X̂)

⟩
. Together with the fact that Q is positive semidefinite, we

have ⟨
(1− θ)X∗ + θX̃, Z

⟩
+

⟨
X, (1− θ)Z∗ + θZ̃

⟩
=

⟨
(1− θ)X∗ + θX̃, (1− θ)Z∗ + θZ̃

⟩
+
⟨
X, Z

⟩
−
⟨
X̂, Q(X̂)

⟩
≤

⟨
(1− θ)X∗ + θX̃, (1− θ)Z∗ + θZ̃

⟩
+
⟨
X, Z

⟩
. (2.17)

By using (2.4), (2.10), (2.13), (2.14), (2.17), and the fact thatX∗•Z∗ = 0, X∗•Z, X•Z∗ ≥ 0,
we have that

θρ[(1− (γd + Lγp))I •X + (1− γp)I • Z] ≤ θ(Z̃ •X + X̃ • Z)

≤
⟨
(1− θ)X∗ + θX̃, Z

⟩
+

⟨
X, (1− θ)Z∗ + θZ̃

⟩
≤

⟨
(1− θ)X∗ + θX̃, (1− θ)Z∗ + θZ̃

⟩
+

⟨
X, Z

⟩
≤ θ(1− θ)(X∗ • Z̃ + X̃ • Z∗) + θ2X̃ • Z̃ +X • Z

≤ θ(1− θ)(1 + γd + Lγp)ρ(X∗ • I + I • Z∗)

+θ2(1 + γp)(1 + γd + Lγp)ρ
2n+ (1 + γ)νµ0n

≤ 6νρ2n.

From here, the required results follow.

Remark 2.4. {(X, y, Z) | (θ, ν,X, y, Z) ∈ N} is bounded if θ = ν, since from Lemma 2.2 we
have ∥X∥ ≤ Tr(X) ≤ O(ρn) and ∥Z∥ ≤ Tr(Z) ≤ O(ρn). Suppose we generate a sequence
{(θk, νk, Xk, yk, Zk)} ∈ N such that

νk ≥ θk, ∀k, and 1 = ν0 ≥ νk ≥ νk+1 ≥ 0.

If νk → 0 as k → ∞, then any limit point of the sequence {Xk, yk, Zk} is a solution of (P )
and (D). In particular, if θk = νk, then the sequence {Xk, Zk} is also bounded.
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3 An Inexact Infeasible Interior Point Algorithm

Let η1, η2 ∈ (0, 1] be given constants such that η1 ≥ η2. Given a current iterate (θk, νk,
Xk, yk, Zk) ∈ N , we want to construct a new iterate which remains in N with respect to
smaller θ and ν. To this end, we consider the search direction (∆Xk,∆yk,∆Zk) determined
by the following linear system: −Q AT I

A 0 0

Ek 0 Fk


 svec∆Xk

∆yk

svec∆Zk

 =

 −η1(svecR
d
k + rdk)

−η1(R
p
k + rpk)

svecRc
k + rck

 , (3.1)

where for Pk = W
−1/2
k (Wk is the NT scaling matrix satisfying WkZkWk = Xk),

Ek = Pk ~ P−1
k Zk, Fk = P−1

k ~ PkXk

svecRd
k = −svec∇f(Xk) +AT yk + svecZk, Rp

k = A(svecXk)− b

Rc
k = (1− η2)νkµ0I −HPk

(XkZk).

Here A~B denotes the symmetric Kronecker product of any two n× n matrices A and B,
and for any X ∈ Sn, it is defined by

(A~B)svec(X) :=
1

2
svec(AXBT +BXAT ). (3.2)

We refer the reader to the appendix of [14] for some of its properties. The last equation of
(3.1) is equivalent to

HPk
(XkZk +∆XkZk +Xk∆Zk) = (1− η2)νµ0I + smatrck. (3.3)

The search direction (∆Xk,∆yk,∆Zk) is just an “inexact” Newton direction for the per-
turbed KKT system (2.8). On the right hand side of (3.1), Rd

k, R
p
k and Rc

k are the residual
components for infeasibilities and complementarity, whereas the vectors rdk, r

p
k, r

c
k are the

residual components for the inexactness in the computed search direction.
Let {σk}∞k=1 be a given sequence in (0, 1] such that σ̄ :=

∑∞
k=0 σk < ∞. We require the

residual components in the inexactness in (3.1) to satisfy the following accuracy conditions:

∥A+rpk∥ ≤ γpρθkσk, ∥rdk∥ ≤ γdρθkσk, ∥rck∥ ≤ 0.5(1− η2)γνkµ0. (3.4)

Remark 3.1. In practice, we can solve (3.1) by the following procedure:

1. Compute ∆yk and ∆Xk from the following augmented system:[
−Q− F−1

k Ek AT

A 0

][
svec∆Xk

∆yk

]
=

[
−η1(svecR

d
k + rdk)− F−1

k svecRc
k

−η1(R
p
k + rpk)

]
(3.5a)

with the residual vectors rdk and rpk satisfying the conditions in (3.4).

2. Compute ∆Zk from

svec∆Zk = −F−1
k Eksvec∆Xk + F−1

k svecRc
k. (3.5b)
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Here, we can see that ∆Zk is obtained directly from (3.3) with rck = 0. Thus, rck can be
ignored in the system (3.1). The dimension of the augmented system (3.5a) is n2 + m,
which is typically a large number even for n = 100. The computational cost and memory
requirement for solving (3.5a) by a direct solver is about O((n2 +m)3) and O((n2 +m)2)
respectively, which are prohibitively expensive for large scale problems. An iterative solver
would not require the storage or manipulation of the full coefficient matrix. However, the
disadvantage of using an iterative solver is the demand of good preconditioners to accelerate
its convergence. In practice, constructing cheap and effective preconditioners could be the
most challenging task in the implementation of an inexact interior-point algorithm for solving
QSDP; see [16] for details.

After computing the search direction in (3.1), we consider the following trial iterate to
determine the new iterate:

(θk(α), νk(α), Xk(α), yk(α), Zk(α)) (3.6)

= ((1− αη1)θk, (1− αη2)νk, Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk), α ∈ [0, 1].

To find the new iterate, we need to choose an appropriate step length αk to keep the new
iterate in N . The precise choice of αk will be discussed shortly. Before that, we present our
inexact primal-dual infeasible path-following algorithm.

Algorithm IPC. Let θ0 = ν0 = 1. Choose parameters η1, η2 ∈ (0, 1] with η1 ≥ η2,
γp, γd ∈ (0, 1) such that γp ≤ γd and γd + Lγp < 1. Pick a sequence {σk}∞k=1 in (0, 1]
such that σ̄ :=

∑∞
k=0 σk < ∞. Choose (X0, y0, Z0) satisfying (2.2), (2.3), (2.4). Note that

(θ0, ν0, X0, y0, Z0) ∈ N .

For k = 0, 1, . . .

1. Terminate when νk < ϵ.

2. Find an inexact search direction (∆Xk,∆yk,∆Zk) from the linear system (3.1).

3. Let αk ∈ [0, 1] be chosen appropriately so that

(θk+1, νk+1, Xk+1, yk+1, Zk+1) := (θk(αk), νk(αk), Xk(αk), yk(αk), Zk(αk)) ∈ N .

Let α0, α1, . . . , αk−1 be the step lengths that have already been determined in the pre-
vious k iterations. For reasons that will become apparent shortly, we assume that the step
lengths αi, i = 0, . . . , k − 1, are contained in the interval

I :=
[
0,min{1, 1/(η1(1 + σ̄))}

]
. (3.7)

Let the primal and dual infeasibilities associated with (θk(α), νk(α), Xk(α), yk(α), Zk(α)) be

Rp
k(α) = A(svecXk(α))− b,

svecRd
k(α) = −svec∇f(Xk(α)) +AT yk(α) + svecZk(α).

We will show that Rp
k(α) and Rd

k(α) satisfy the first two conditions in N when α is restricted
to be in the interval I given in (3.7).

Lemma 3.2. Suppose the step lengths αi associated with the iterates (θi, νi, Xi, yi, Zi) are
restricted to be in the interval I for i = 0, . . . , k − 1. Then we have

Rp
k(α) = θk(α)(R

p
0 + ξpk(α)) (3.8)

Rd
k(α) = θk(α)(svecR

d
0 + ξdk(α)) (3.9)
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where
∥A+ξpk(α)∥ ≤ γpρ, ∥ξdk(α)∥ ≤ γdρ, ∀ α ∈ I.

Proof. Note that Rp
k(α) has exactly the same form as in the inexact interior-point algorithm

considered in [19] for a linear SDP. Using the result in [19], we have

Rp
k(α) = θk(α)(R

p
0 + ξpk(α)),

where

ξpk(α) = ξpk − αη1
(1− αη1)θk

rpk = −
k−1∑
i=0

αiη1
(1− αiη1)θi

rpi − αη1
(1− αη1)θk

rpk. (3.10)

The quantity Rd
k(α) is different from its counterpart in a linear SDP as it contains an extra

term coming from the quadratic term in the objective function. Thus, we need to investigate
the details. Given that the current iterate belongs to N , we have

svecRd
k(α) = −svec∇f(Xk(α)) +AT yk(α) + svecZk(α)

= −svec∇f(Xk) +AT yk + svecZk + α[−Q(svec∆Xk) +AT∆yk + svec∆Zk]

= svecRd
k − αη1(svecR

d
k + rdk)

= (1− αη1)θk(svecR
d
0 + ξdk)− αη1r

d
k

= (1− αη1)θk

(
svecRd

0 + ξdk − αη1
(1− αη1)θk

rdk

)
= θ(α)(svecRd

0 + ξdk(α)),

where

ξdk(α) = ξdk − αη1
(1− αη1)θk

rdk = −
k−1∑
i=0

αiη1
(1− αiη1)θi

rdi − αη1
(1− αη1)θk

rdk. (3.11)

From (3.10) and (3.11), we see that since αi ≤ 1
η1(1+σ̄) for i = 1, . . . , k − 1, we have

∥A+ξpk(α)∥ ≤ γpρ, ∥ξdk(α)∥ ≤ γdρ, ∀ α ∈ I.

Let

ᾱk = min
{
1,

1

η1(1 + σ̄)
,
0.5(1− η2)γνkµ0

∥HPk
(∆Xk∆Zk)∥

}
. (3.12)

Next, we check the last condition inN . The following lemma generalizes the result of Lemma
4.2 in [20].

Lemma 3.3. For (θk, νk, Xk, yk, Zk) ∈ N and ∆Xk,∆Zk satisfying (3.1), we have

(a) HPk
(Xk(α)Zk(α)) = (1− α)HPk

(XkZk) + α(1− η2)νkµ0I

+α smatrck + α2HPk
(∆Xk∆Zk)

(b) (1− γ)νk(α)µ0 ≤ λi(Xk(α)Zk(α)) ≤ (1 + γ)νk(α)µ0 ∀ α ∈ [0, ᾱk].
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Proof. (a) The proof of part (a) is quite standard and uses equation (3.3).
(b) The proof uses the fact that for any matrix B ∈ Rn×n, the real part of its spectrum is
contained in the interval given by [λmin(B+BT )/2, λmax(B+BT )/2]. In particular, for any
nonsingular matrix P , we have

Reλi(B) = Reλi(PBP−1) ∈ [λmin(HP (B)), λmax(HP (B))] ∀ i = 1, . . . , n.

Using the above fact, we have for any i = 1, . . . , n,

λi(Xk(α)Zk(α))− (1− γ)νk(α)µ0

≥ λmin(HPk
(Xk(α)Zk(α)))− (1− γ)νk(α)µ0

≥ (1− α)(1− γ)νkµ0 + α(1− η2)νkµ0 − α∥rck∥ − α2∥HPk
(∆Xk∆Zk)∥ − (1− γ)νk(α)µ0

= αγ(1− η2)νkµ0 − α∥rck∥ − α2∥HPk
(∆Xk∆Zk)∥

≥ 0.5α(1− η2)γνkµ0 − α2∥HPk
(∆Xk∆Zk)∥

≥ 0 for α ∈ [0 , ᾱ].

The proof that λi(Xk(α)Zk(α)) ≤ (1 + γ)νk(α)µ0 for all α ∈ [0 , ᾱ] is similar, and we shall
omit it.

Lemma 3.4. Under the conditions in Lemmas 3.2 and 3.3, for any α ∈ [0, ᾱk], we have

(θ(α), ν(α), X(α), y(α), Z(α)) ∈ N .

Proof. The result follows from Lemmas 3.2 and 3.3.

Lemma 3.5. Suppose the conditions in (2.2), (2.3) and (2.4) hold. Then

∥HPk
(∆Xk∆Zk)∥ =

O(1)

(1− (γd + Lγp))2
n2νkµ0. (3.13)

The proof of Lemma 3.5 is non-trivial and we devote the next section to its proof.

We are now ready to present the main result of this paper, the polynomial iteration
complexity of Algorithm IPC.

Theorem 3.6. Let ϵ > 0 be a given tolerance. Suppose the conditions in (2.2), (2.3) and
(2.4) hold. Then νk ≤ ϵ for k = O(n2 ln(1/ϵ)).

Proof. From (3.12), Lemma 3.4 and Lemma 3.5, we know that

αi ≥ ᾱ := min

{
1,

1

η1(1 + σ̄)
,
O(1)

n2

}
, i = 0, . . . , k.

Then we have

νk =

k−1∏
i=0

(1− αiη2) ≤ (1− ᾱη2)
k ≤ ε for k = O(n2 ln(1/ε)).
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4 Proof of Lemma 3.5

For a given (θk, νk, Xk, yk, Zk) ∈ N , the purpose of Lemma 3.5 is to establish an upper bound
for ∥HPk

(∆Xk∆Zk)∥. Throughout this section, we shall consider only the NT direction,

where Pk = W
−1/2
k , with Wk ∈ Sn

++ satisfying WkZkWk = Xk.
It is easy to verify that

Wk = P−2
k = Z

−1/2
k (Z

1/2
k XkZ

1/2
k )1/2Z

−1/2
k = X

1/2
k (X

1/2
k ZkX

1/2
k )−1/2X

1/2
k , (4.1)

and consequently

λmax(Wk) ≤ λmax

(
(X

1/2
k ZkX

1/2
k )−1/2

)
λmax(Xk), (4.2)

λmin(Wk) ≥ λmin

(
(Z

1/2
k XkZ

1/2
k )1/2

)
λmin(Z

−1
k ). (4.3)

To facilitate our analysis, we introduce the following notation:

X̂k = PkXkPk, Ẑk = P−1
k ZkP

−1
k ;

∆X̂k = Pk∆XkPk, ∆Ẑk = P−1
k ∆ZkP

−1
k ;

Êk = Ek(P
−1
k ~ P−1

k ) = Ẑk ~ I,

F̂k = Fk(Pk ~ Pk) = X̂k ~ I.

From the fact that W
1/2
k ZkW

1/2
k = W

−1/2
k XkW

−1/2
k , we have

Ẑk = X̂k, Êk = F̂k. (4.4)

It is readily shown that F̂k, Êk, F̂kÊk ∈ Sn̄
++. Let the eigenvalue decompositions of X̂k and

Ẑk be:

X̂k = Ẑk = QkΛkQ
T
k , (4.5)

where QT
kQk = I, Λk = diag(λ1

k, . . . , λ
n
k ), and λ1

k ≤ . . . ≤ λn
k . From (2.9), we have

(1− γ)νkµ0 ≤ (λ1
k)

2 ≤ · · · ≤ (λn
k )

2 ≤ (1 + γ)νkµ0. (4.6)

Let

Ŝk := F̂kÊ
T
k =

1

2
(X̂k ~ Ẑk + X̂kẐk ~ I) (4.7)

=
1

2
(Qk ~Qk)(Λk ~ Λk + Λ2

k ~ I)(Qk ~Qk)
T .

Then the eigenvalues of Ŝk are given by

Λ(Ŝk) =
{1

4
(λk

i + λk
j )

2 : 1 ≤ i ≤ j, j = 1, . . . , n
}
.

From (4.5) and (4.6), we have,

(1− γ)νkµ0I ≼ Ŝk ≼ (1 + γ)νkµ0I, (4.8)

and

∥Ŝk∥2 ≤ (1 + γ)νkµ0, ∥Ŝ−1
k ∥2 ≤ 1

(1− γ)νkµ0
. (4.9)

Now we state a few lemmas, which lead to the proof of Lemma 3.5.
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Lemma 4.1. For any M ∈ Rn×n,

∥(Pk ~ Pk)svecM∥2 ≤ 1

(1− γ)νkµ0
∥Zk∥2∥M∥2,

∥(P−1
k ~ P−1

k )svecM∥2 ≤ 1

(1− γ)νkµ0
∥Xk∥2∥M∥2.

Proof. First we note that Z
1/2
k XkZ

1/2
k , X

1/2
k ZkX

1/2
k , and XkZk are similar, and

λmin(XkZk) ≥ (1− γ)νkµ0. From (4.2), (4.3), we have

λmax(Wk) ≤
∥Xk∥√

(1− γ)νkµ0

, λmin(Wk) ≥
√
(1− γ)νkµ0

∥Zk∥
. (4.10)

By (4.10), we have

∥(Pk ~ Pk)svecM∥2 ≤ ∥Pk ~ Pk∥22∥M∥2

≤ λ2
max(W

−1
k )∥M∥2 ≤ 1

(1− γ)νkµ0
∥Zk∥2∥M∥2.

Similarly, by (4.10), we have

∥(P−1
k ~ P−1

k )svecM∥2 ≤ ∥P−1
k ~ P−1

k ∥22∥M∥2

≤ λ2
max(Wk)∥M∥2 ≤ 1

(1− γ)νkµ0
∥Xk∥2∥M∥2.

Lemma 4.2.

∥svec∆X̂k∥2 + ∥svec∆Ẑk∥2 + 2∆X̂k •∆Ẑk = ∥Ŝ−1/2
k (svecRc

k + rck)∥2,

∥HPk
(∆Xk∆Zk)∥ ≤ 1

2

(
∥svec∆X̂k∥2 + ∥svec∆Ẑk∥2

)
.

Proof. The last equation of (3.1) can be rewritten as

Êk(svec∆X̂k) + F̂k(svec∆Ẑk) = svecRc
k + rck. (4.11)

Multiplying (4.11) by Ŝ
−1/2
k from the left, we have

svec∆X̂k + svec∆Ẑk = Ŝ
−1/2
k (svecRc

k + rck).

From here, the first equation in the lemma follows.
For the second inequality, by Lemma 4.6 of [10], we have

∥HPk
(∆Xk∆Zk)∥ =

1

2
∥Pk∆Xk∆ZkP

−1
k + P−1

k ∆Zk∆XkPk∥

≤ ∥Pk∆Xk∆ZkP
−1
k ∥ = ∥∆X̂k∆Ẑk∥ ≤ ∥∆X̂k∥∥∆Ẑk∥

≤ 1

2

(
∥svec∆X̂k∥2 + ∥svec∆Ẑk∥2

)
.
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Lemma 4.3. We have

∥Ŝ−1/2
k (svecRc

k + rck)∥2 = O(nνkµ0).

Proof. From (3.4) and (4.9), we have

∥Ŝ−1/2
k rck∥2 ≤ ∥Ŝ−1

k ∥2∥rck∥2 ≤ 0.25[(1− η2)γνkµ0]
2

(1− γ)νkµ0
=

[(1− η2)γ]
2νkµ0

4(1− γ)
. (4.12)

Observe that from (4.5),

svecRc
k = (Qk ~Qk)svec((1− η2)νkµ0I − Λ2

k).

Thus

∥Ŝ−1/2
k svecRc

k∥2 ≤ ∥Ŝ−1
k ∥2∥svecRc

k∥2

≤ 1

(1− γ)νkµ0

n∑
i=1

(
(1− η2)νkµ0 − (λk

i )
2
)2

≤ nνkµ0

1− γ
(γ + η2)

2, by (4.6). (4.13)

The required result follows from (4.12) and (4.13). This completes the proof.

In the rest of our analysis, we introduce an auxiliary point (X̃k, ỹk, Z̃k) whose existence
is ensured by Lemma 2.2. From Lemma 3.2, we have the following equations at the kth
iteration:

−svec∇f(Xk) +AT yk + svecZk = θk(svecR
d
0 + ξdk), ∥ξdk∥ ≤ γdρ, (4.14)

A(svecXk)− b = θk(svecR
p
0 + ξpk), ∥A

+ξpk∥ ≤ γpρ. (4.15)

Thus by Lemma 2.2, there exists (X̃k, ỹk, Z̃k) such that

−svec∇f(X̃k) +AT ỹk + svecZ̃k = svecRd
0 + ξdk (4.16)

A(svecX̃k)− b = Rp
0 + ξpk (4.17)

(1− γp)ρI ≼ X̃k ≼ (1 + γp)ρI , (4.18)

[1− (γd + Lγp)]ρI ≼ Z̃k ≼ [1 + (γd + Lγp)]ρI. (4.19)

Lemma 4.4. Let

Xk = Xk −X∗ − θk(X̃k −X∗), Zk = Zk − Z∗ − θk(Z̃k − Z∗).

The following equations hold: ⟨
Xk, Zk

⟩
=

⟨
Xk, QXk

⟩
, (4.20)

⟨
svec(∆Xk + η1θk(X̃k −X∗)) + η1A

+rpk, svec(∆Zk + η1θk(Z̃k − Z∗)) + η1r
d
k

⟩
=

⟨
svec(∆Xk + η1θk(X̃k −X∗)) + η1A

+rpk, Q svec(∆Xk + η1θk(X̃k −X∗))
⟩
. (4.21)
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Proof. By (4.14)–(4.17) and the fact that

AsvecX∗ − b = 0,

−svec∇f(X∗) +AT y∗ + svecZ∗ = 0,

we have

AsvecXk = 0

AT (yk − y∗ − θk(ỹk − y∗)) + svec(Zk) = Q svec(Xk),

which implies (4.20). Next, by (3.1), and (4.14)–(4.17), we have

A
(
svec(∆Xk + η1θk(X̃k −X∗)) + η1A

+rpk

)
= 0

AT
(
∆yk + η1θk(ỹk − y∗)

)
+ svec(∆Zk + η1θk(Z̃k − Z∗)) + η1r

d
k

= Q svec(∆Xk + η1θk(X̃k −X∗)),

which implies (4.21).

Let

T1 =
(
∥svec∆X̂k∥2 + ∥svec∆Ẑk∥2

)1/2

(4.22)

T2 =
(
∥(Pk ~ Pk)svec(X̃k −X∗)∥2 + ∥(P−1

k ~ P−1
k )svec(Z̃k − Z∗)∥2

)1/2

(4.23)

T3 =
(
∥(Pk ~ Pk)A

+rpk∥
2 + ∥(P−1

k ~ P−1
k )rdk∥2

)1/2

(4.24)

T4 = ∥(P−1
k ~ P−1

k )Q (A+rpk)∥. (4.25)

Then we have the following lemma.

Lemma 4.5.

T1 ≤ 2η1(θkT2 + T3 + T4) +
√
T5,

where

T5 = ∥Ŝ−1/2
k (svecRc

k + rck)∥2 + 2η21θ
2
k

⟨
X̃k −X∗, Z̃k − Z∗

⟩
+ 2η21

(
θkT2T3 + T 2

3 + θkT2T4

)
.

Proof. By (4.21), we have that

−
⟨
∆X̂k, ∆Ẑk

⟩
= −

⟨
∆Xk, ∆Zk

⟩
= η1θk[

⟨
∆Xk, Z̃k − Z∗

⟩
+

⟨
X̃k −X∗, ∆Zk

⟩
] + η1[

⟨
svec∆Xk, r

d
k

⟩
+
⟨
A+rpk, svec∆Zk

⟩
]

+ η21θk[
⟨
svec(X̃k −X∗), r

d
k

⟩
+

⟨
A+rpk, svec(Z̃k − Z∗)

⟩
] + η21

⟨
A+rpk, r

d
k

⟩
+ η21θ

2
k

⟨
X̃k −X∗, Z̃k − Z∗

⟩
− η1

⟨
A+rpk, Q svec(∆Xk + η1θk(X̃k −X∗))

⟩
−
⟨
∆Xk + η1θk(X̃k −X∗), Q (∆Xk + η1θk(X̃k −X∗))

⟩
.
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Also, we have the following inequalities:

|
⟨
∆Xk, Z̃k − Z∗

⟩
+
⟨
X̃k −X∗, ∆Zk

⟩
|

= |
⟨
∆X̂k, P

−1
k (Z̃k − Z∗)P

−1
k

⟩
+
⟨
Pk(X̃k −X∗)Pk, ∆Ẑk

⟩
| ≤ T1T2

|
⟨
svec∆Xk, r

d
k

⟩
+
⟨
A+rpk, svec∆Zk

⟩
| ≤ T1T3

|
⟨
svec(X̃k −X∗), r

d
k

⟩
+

⟨
A+rpk, svec(Z̃k − Z∗)

⟩
| ≤ T2T3

|
⟨
A+rpk, r

d
k

⟩
| ≤ T 2

3

|
⟨
A+rpk, Q svec(X̃k −X∗)

⟩
| ≤ T2T4

|
⟨
A+rpk, Q svec∆Xk

⟩
| ≤ T1T4

−
⟨
∆Xk + η1θk(X̃k −X∗), Q (∆Xk + η1θk(X̃k −X∗))

⟩
≤ 0.

In the above, we used the Cauchy-Schwartz inequality and the fact that ac + bd ≤√
a2 + b2

√
c2 + d2 for a, b, c, d ≥ 0.

By Lemma 4.2, and the above inequalities, we have

T 2
1 = ∥Ŝ−1/2

k (svecRc
k + rck)∥2 − 2

⟨
∆X̂k, ∆Ẑk

⟩
≤ 2

(
η1θkT1T2 + η1T1T3 + η21θkT2T3 + η21T

2
3 + η21θkT2T4 + η1T1T4

)
+∥Ŝ−1/2

k (svecRc
k + rck)∥2 + 2η21θ

2
k

⟨
X̃k −X∗, Z̃k − Z∗

⟩
= 2η1T1(θkT2 + T3 + T4) + T5.

The quadratic function t2 − 2η1(θkT2 + T3 + T4)t− T5 has a unique positive root at

t+ = η1(θkT2 + T3 + T4) +
√
η21(θkT2 + T3 + T4)2 + T5,

and it is positive for t > t+, hence we must have T1 ≤ t+ ≤ 2η1(θkT2 + T3 + T4) +
√
T5.

Lemma 4.6. We have

T 2
3 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. By (3.4), we have

∥A+rpk∥ ≤ θkγpρ, ∥rdk∥ ≤ θkγdρ. (4.26)

By Lemma 4.1 and the fact that ∥M∥ ≤ Tr(M) for M ∈ Sn
+, we have

∥(Pk ~ Pk)A
+rpk∥

2 ≤ 1

(1− γ)νkµ0
∥A+rpk∥

2∥Zk∥2

≤
γ2
pρ

2

(1− γ)νkµ0
θ2k∥Zk∥2 ≤

γ2
pρ

2

(1− γ)νkµ0
θ2k[Tr(Zk)]

2

=
γ2
pρ

2

(1− γ)νkµ0

36

(1− γp)2
n2ν2kρ

2 =
O(1)

(1− γp)2
n2νkµ0 by Lemma 2.3.
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Similarly, we have

∥(P−1
k ~ P−1

k )rdk∥2 ≤ 1

(1− γ)νkµ0
∥rdk∥2∥Xk∥2

≤ γ2
dρ

2

(1− γ)νkµ0
θ2k∥Xk∥2 ≤ γ2

dρ
2

(1− γ)νkµ0
θ2k[Tr(Xk)]

2

=
γ2
dρ

2

(1− γ)νkµ0

36

(1− (γd + Lγp))2
n2ν2kρ

2 =
O(1)

(1− (γd + Lγp))2
n2νkµ0 by Lemma 2.3.

From here, the required result follows.

Lemma 4.7. Under the conditions (2.2), (2.3) and (2.4),⟨
X̃k −X∗, Z̃k − Z∗

⟩
≤ 4nµ0.

Proof. The result follows from Lemma 11 in [19], and (4.18) and (4.19).

Lemma 4.8. Under the conditions (2.2), (2.3), and (2.4),

θ2kT
2
2 = O(n2νkµ0).

Proof. By the fact that 0 ≼ X̃k −X∗ ≼ (1 + γp)ρI, we have

∥(Pk ~ Pk)svec(X̃k −X∗)∥ = ∥Pk(X̃k −X∗)Pk∥

≤ Tr(Pk(X̃k −X∗)Pk) =
⟨
W−1

k , X̃k −X∗
⟩

=
⟨
(Z

1/2
k XkZ

1/2
k )−1/2, Z

1/2
k (X̃k −X∗)Z

1/2
k

⟩
by (4.1)

≤ λmax((Z
1/2
k XkZ

1/2
k )−1/2)

⟨
Zk, X̃k −X∗

⟩
≤ 1√

(1− γ)νkµ0

⟨
Zk, X̃k −X∗

⟩
.

Similarly, from 0 ≼ Z̃k − Z∗ ≼ (1 + γd + Lγp)ρI, we have

∥(P−1
k ~ P−1

k )svec(Z̃k − Z∗)∥ = ∥P−1
k (Z̃k − Z∗)P

−1
k ∥ ≤ Tr(P−1

k (Z̃k − Z∗)P
−1
k )

=
⟨
Wk, Z̃k − Z∗

⟩
=

⟨
(X

1/2
k ZkX

1/2
k )−1/2, X

1/2
k (Z̃k − Z∗)X

1/2
k

⟩
by (4.1)

≤ λmax((X
1/2
k ZkX

1/2
k )−1/2)

⟨
Xk, Z̃k − Z∗

⟩
≤ 1√

(1− γ)νkµ0

⟨
Xk, Z̃k − Z∗

⟩
.

Therefore, we have

θ2kT
2
2 ≤ θ2k

(
∥(Pk ~ Pk)svec(X̃k −X∗)∥+ ∥(P−1

k ~ P−1
k )svec(Z̃k − Z∗)∥

)2

≤ θ2k
(1− γ)νkµ0

(⟨
Zk, X̃k −X∗

⟩
+
⟨
Xk, Z̃k − Z∗

⟩)2

.
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From (4.20) and the facts that X∗ • Z∗ = 0, Xk • Z∗, X∗ • Zk, X̃k • Z∗, Z̃k •X∗ ≽ 0, we
have

θk
⟨
X̃k −X∗, Zk

⟩
+ θk

⟨
Xk, Z̃k − Z∗

⟩
= Xk • Zk −Xk • Z∗ −X∗ • Zk +X∗ • Z∗

+ θk
(⟨
X∗, Z̃k − Z∗

⟩
+
⟨
X̃k −X∗, Z∗

⟩)
+ θ2k

⟨
X̃k −X∗, Z̃k − Z∗

⟩
−
⟨
Xk −X∗ − θk(X̃k −X∗), Q(Xk −X∗ − θk(X̃k −X∗))

⟩
≤ Xk • Zk + θk

(
X∗ • Z̃k + X̃k • Z∗

)
+ θ2kX̃k • Z̃k

≤ (1 + γ)νkµ0n+ θk(1 + γd + Lγp)ρ(X∗ • I + I • Z∗) + θ2k(1 + γp)(1 + γd + Lγp)ρ
2n

≤ 8νkµ0n.

Thus θ2kT
2
2 = O(n2νkµ0).

Lemma 4.9.

T 2
4 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. By Lemma 4.1, we have

T 2
4 ≤ 1

(1− γ)νkµ0
∥Xk∥2∥Q(A+rpk)∥

2

≤ 1

(1− γ)νkµ0
∥Xk∥2L2∥A+rpk∥

2

≤
γ2
pρ

2L2

(1− γ)νkµ0
θ2k∥Xk∥2

≤
γ2
pL

2

(1− γ)νk

O(1)

(1− (γd + Lγp))2
n2ν2kρ

2, by Lemma 2.3

=
O(1)

(1− (γd + Lγp))2
n2νkµ0.

The following proof directly leads to Lemma 3.5.

Lemma 4.10.

T 2
1 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. From Lemma 4.5 to Lemma 4.9 and the fact that (a+ b)2 ≤ 2a2 + 2b2, we have

T 2
1 ≤

(
2η1(θkT2 + T3 + T4) +

√
T5

)2

≤ 8(θkT2 + T3 + T4)
2 + 2T5

≤ 8(θkT2 + T3 + T4)
2 + 2∥Ŝ−1/2

k (svecRc
k + rck)∥2 + 4θ2k

⟨
X̃k −X∗, Z̃k − Z∗

⟩
+4θkT2T3 + 4T 2

3 + 4θkT2T4

≤ O(1)

(1− (γd + Lγp))2
n2νkµ0 +O(nνkµ0).
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Thus, by Lemma 4.2 and Lemma 4.10, we have

∥HPk
(∆Xk∆Zk)∥ ≤ 1

2
T 2
1 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.
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