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1 Introduction

Multilevel optimization problems are mathematical programs that have a subset of their
variables constrained to be an optimal solution of another programs parameterized by their
remaining variables. When these parameterized programs are pure mathematical programs,
we are dealing with bilevel programming problems (BPP). Early formulations of BPP can
be found in [32, 46] while Candler and Norton [14, 15] were the first to use the term ‘bilevel’
or ‘multilevel’. Comprehensive overview of BPP can be found in [18, 20, 49]. Properties
as optimality conditions of BPP have been studied in some papers: [2, 6, 9, 12, 13, 16, 19,
44]. Jeroslow [29], Ben-Ayed and Blair [8] proved that the linear BPP is NP-hard while
Hansen et al. [27] strengthened this result by showing its strongly NP-hardness. Marcotte
and Savard [39] present the relationship between two specific classes of bilevel programs
to well-known combinatorial problems. Recently, an alternative definition of linear bilevel
programming solution has been proposed in [33, 34, 35] pointing out a deficiency on well
known definition of this problem. The proposed new definition is equivalent to moving the
upper-level constraints involving the second variable into the lower level, which change the
nature of the problem [40]. The number of papers presenting applications is constantly
growing. Interesting applications include the investigation of network of oligopolies [1], as
well as the determination of optimal prices, as road tolls or prices for electricity [11, 44].
Related is the determination of optimal tax credits for biofuel production [8]. An overview
on applications of bilevel programming can be found in [20, 22, 38, 49].

∗This research was completed during a PhD thesis research of the author [21].
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Algorithms usually used to solve bilevel programming problems can be subdivided into
three classes: (i) algorithms solving BPP globally, (ii) methods for computing locally optimal
solutions namely stationary points and (iii) heuristics. For linear bilevel BPP, it is well
known that if the induced region is nonempty, at least an optimal solution is obtained at
an extreme point of the feasible set. This motivated Jdice and Faustino [30] to propose an
algorithm for computing an ε-approximative global optimum for a BPP. The other class
of methods contains branch-and-bound algorithms which exploit the disjunctive nature of
the complementarity constraints obtained from the optimality conditions of the lower level
problem (see [7, 21, 27]). Local optimization procedures have also been developed (see [5,
23, 25, 26, 31, 37, 42, 45, 47]).

The HJS algorithm (see [27]) exploits necessary conditions for subsets of the lower level
problem to contain at least one active constraint. That algorithm also investigates branching
rules, based on logical relation expressing the conditions of the tightness of constraints which
have been detected. In this paper, we use a similar framework and we introduce the new
concept of monotonicity networks. A monotonicity path is used to express the tightness
of subsets of the lower level constraints, depending on the current rational solution. We
propose an enumeration algorithm to solve a BPP with linear constraints and nonlinear
differentiable upper level objective function. The method performs a sequential search of
partitions of indexes of lower level variables, exploiting monotonicity properties. For a given
partition, a sequential linear approximation algorithm is used to compute an improving
rational solution. The algorithm proposed in this paper is a descent method that produces
rational iterates converging to a local optimal of the problem solved.

The rest of the paper is divided into three sections. The next section is devoted to
the conceptual framework of our algorithm. We introduce sufficient optimality conditions
for a bilevel programming problem. Using monotonicity principles within an enumeration
framework, we introduce the concept of monotonicity networks to express the tightness of
the lower level problem. The algorithm is stated in Section 3 and illustrated by an example
in Section 4. Computational experiences are reported in Section 5 on nonlinear and linear
problems.

2 Conceptual Framework of Enumeration Sequential Linear Pro-
gramming Algorithm (ESLP)

This section presents two notions. The first one defines the concept of rational solutions
which characterize the feasible set of a bilevel program. The second one presents the concept
of monotonicity analysis that allows deducing necessary optimality conditions on the tight-
ness of the constraints. The ESLP algorithm presented in Section 3 consists in a sequential
algorithm, driven by an efficient walk along these monotonicity conditions that iterates from
a rational solution to better one, by solving at any iteration a linear program.

2.1 Theoretical Considerations

The bilevel program considered in this paper is formulated as:
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minx,yf
1(x, y)

BPPL: s.t.



x ∈ P,

maxyf
T
2 y,

s.t.

{
Ax+By = b,
x, y ≥ 0,

(2.1)

where A ∈ Rm×nx , b ∈ Rm, f2 ∈ Rm+ny , P = {x ∈ Rnx
+ : A1x ≤ b1} is a polyhedron in Rnx

+ ,
with A1 ∈ Rm1∗nx , b ∈ Rm1 x and y ∈ Rm+ny represent respectively the upper level and
lower level variables, f1 : Rnx × Rm+ny → R is assumed to be continuously differentiable.
x ∈ P represents the upper level constraints, while the constraints defined by Ax+By = b
represent the lower level constraints. The matrix B is such that B = [Be Im] where

Be ∈ Rm×ny and y =
(
y1, y2, ..., yny , y1̄, ..., ym̄)

T
, where y1̄, ..., ym̄ are slack variables and

Im is the identity matrix.

The polyhedron Ω =
{
(x, y) ∈ P × Rny+m

+ : Ax+By = b
}

defined by both upper and

lower level is called the feasible region of the problem BPPL. Given a value x of the upper
level variable, M(x) is the set of optimal solutions of the lower level problem, while an
element of the induced region defined by IR = {(x, y) ∈ Ω : y ∈ M(x)} is called a rational
solution. The induced region is usually nonconvex and, in the presence of upper level
constraints involving lower level variables can be disconnect (see [44]). In the absence of
lower level variables in upper level constraints, it has been shown that the induced region is
the union of finite connected faces of the feasible region Ω (see [9, 10, 12]).

The lower level variable includes slack variables; we assume that ny ≥ m and the rank of
the matrix Be is equal to m (as usually in linear programming). The following assumption
is made in order to assure that problem (2.1) is well posed.
H1. We assume that the polyhedron Ω of the feasible region is nonempty as well as the
induced region IR.

From optimality conditions of the lower level linear program, we obtain the equivalent
KKT formulation of the problem (2.1):

minx,y,λf
1(x, y)

LKS: s.t


Ax+By = b,
λTB ≥ f2,
(λTB − f2)y = 0,
x ∈ P, y ≥ 0,

(2.2)

where λ ∈ Rm corresponds to the dual variables of the lower level constraints. LKS is
a mathematical program with equilibrium constraints. If we assume that the solution of
the problem LKS is nondegenerate, the stationarity conditions at a nondegenerate feasible
solution of (LKS ) can be easily derived from corollary 6.1.3 in [36]. Let FLKS be the
nonempty set of feasible solutions of the problem (2.2).

We define the support of y ∈ Rny+m
+ as

sp(y) = {j ∈ H : yj = 0}, where H = {1, 2, ..., ny} ∪ {1̄, 2̄, .., m̄}

By the assumption (H1), the set FLKS is nonempty, i.e., there exists at least (xe, ye, λe) ∈
FLKS . Each point (xe, ye, λe) ∈ FLKS is such that the complementary relation (λT

e B −
f2)ye = 0 is satisfied; hence there exists T ⊂ H : T ̸= ∅ such that T ⊂ sp(ye).
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The ESLP algorithm is closed to an active set procedure (see [24]): it consists in comput-
ing a series of points contained in the induced region by means of exploring the support of
the lower level variable as well as the tightness of the lower level dual constraint λTB ≥ f2.
A rational solution (x̄, ȳ) computed by the ESLP algorithm is defined as an improving
rational solution if we have f1(x̄, ȳ) < f1(x∗, y∗). From a rational solution z∗ = (x∗, y∗),
within an enumeration framework, the main idea of the ESLP algorithm is to find a new
partition (T, TC) of indexes of lower level variables with T ̸= ∅ such that T ⊆ sp(ȳ),
T ∪ TC = H, (x̄, ȳ) being an improving rational solution. The optimal solution computed
by ESLP algorithm is a local optimal solution.

We use a sequential linear programming algorithm similar to the method described in
[41, 43] for nonlinear programming to compute an induced descent direction d = (dx, dy)
defined as follow:

Definition 2.1. We consider the bilevel programming problem (2.1) and let zk = (xk, yk) ∈
Ω; d = (dx, dy) ∈ Rnx+m+ny is called an induced descent direction computed from zk

if there exists σ0 > 0 such that:

(xk + σdx, yk + σdy) ∈ IR forall σ ∈ [0, σ0] and∇(x,y)f
1(xk, yk)

(
dx
dy

)
< 0.

From a given feasible solution, our algorithm computes some descent direction or some
induce descent direction that improves the value of the upper level function. Let (xk, yk) ∈ Ω,
and λk ∈ Rm be the corresponding dual variables of the lower level constraints. From a
feasible solution wk = (xk, yk, λk) ∈ FLKS , our algorithm attempts to compute a next
feasible solution wk+1 = (xk + σdx, yk + σdy, λk + σdλ) of problem LKS with σ > 0 such
that (fk

2 − σdλTB)j(y
k + σdy)j = 0, j ∈ H where fk

2 = f2 − (λk)TB. Let (T, TC) be a
partition of the set of indexes Hsuch that:{

(fk
2 − σdλTB)T = 0 if (yk + σdy)T > 0,

(fk
2 − σdλTB)TC < 0 if (yk + σdy)TC = 0.

(2.3)

To simplify, we assume that σ = 1. A descent direction (dx, dy, dλ) can be computed by
solving the linearized program:

maxdx,dy,dλ,ξξ

LLP (wk , T ): s.t.



∇(x,y)f
1(xk, yk)

(
dx
dy

)
+ ξ ≤ −ε,

Adx+Bdy = 0,
(fk

2 − dλTB)T ≤ 0,
(fk

2 − dλTB)TC = 0
dyT = −ykT , dyTC ≥ −ykTC , x

k + dx ∈ P, ξ ≥ 0,

(2.4)

where ε > 0 being very small and VL represents the components of a vector V with indexes
in L. In the formulation (2.4), if the first constraint in (2.4) is removed as well as the variable
ξ , and the objective function is replaced by

min
dx,dy,dλ

∇xf
1(xk, yk)dx+∇yf

1(xk, yk)dy ≤ −ε, (2.5)

the result is an equivalent formulation of LLP (wk, T ).
The linearization method above is based on the approach described in [41, 48] to solve

a convex nonlinear programming problem. In the following definition, we introduce the
concept of optimal solution computed by our algorithm.
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Definition 2.2. We consider the bilevel programming problem (2.1) and let zk = (xk, yk) ∈
Ω be a rational solution; if for all partitions (T, TC) in H, no induced descent direction from
zk exists, then zk is an optimal solution of the problem (2.1). The best rational solution
computed by the ESLP algorithm is called an ESLP optimal solution.

Remark 2.3. Assume that the linear program LLP (wk, T ) has an optimal solution
(dw, ξ∗) = (dx, dy, dλ, ξ∗). The following situation may occur if one uses the program
LLP (wk, T ) to compute a descent direction or an induced descent direction from wk:

i) If LLP (wk, T ) does not have a solution, another partition (T, TC) has to be considered.
ii) If ξ∗ > 0, we have ∇(x,y)f

1(xk, yk)T (dx, dy) ≤ −ξ < 0; then (dx, dy) is a descent

direction , see [41, Theorem 7]. Let σ > 0 such that f1(xk + σdx, yk + σdy) ≤ f1(xk, yk)
and let wk+1 = (xk + σdx, yk + σdy, λk + σdλ). According to (2.4), we have :

Axk+1 +Byk+1 = b,

yk+1
T = 0 and ((λk+1)TB − fk+1

2 )T ≥ 0,

yk+1
TC ≥ 0 and ((λk+1)TB − fk+1

2 )TC = 0,
xk+1 ∈ P,

(2.6)

i.e. wk+1 is a feasible solution of the problem LKS and (dx, dy) is an induced descent
direction.

iii) (x̄, ȳ, λ̄) = (xk, yk, λk) is the best computable solution of the problem LKS, i.e.(x̄, ȳ) is
an ESLP optimal solution of the BPPL problem (2.1) if for the partition the given (T, TC),
we have:

(a) ξ∗ = 0 when ε ∼= 0 ; then the current solution wk = (xk, yk, λk) is a stationary point of
LKS : the KKT multipliers of the mathematical program with equilibrium constraints
defined by (2.2) are derived from the multipliers of the linear programming problem
LLP (wk, T )(use [41, Theorem 7] and corollary 6.1.3 in [36] for the proof);

(b) for all partitions (T1, T
C
1 ) ̸= (T, TC) in H, the linearized program LLP (wk, T1) is such

that:

- LLP (wk, T1) does not have a solution;

- the solution (dw, ξ∗) = (dx, dy, dλ, ξ∗) of LLP (wk, T1) is such that (dx, dy) is not
an induced descent direction from zk.

The rate of convergence of such method is generally linear (see [21, 43]). Instead of
solving problem LLP (wk, T ), and following the approach taken by HJS [27], we solve two
problems. The first problem LPR(zk, T ) defined in the primal space, computes an improving
solution that is then checked for rationality by evaluating the lower level problem. We have:

maxdx,dy,ξξ

LPR( zk, T ): s.t.



∇zf
1(xk, yk)

(
dx
dy

)
+ ξ ≤ −ε,

Adx+Bdy = 0,
ykj + dyj = 0, j ∈ T,
ykj + dyj ≥ 0, j ∈ TC ,
xk + dx ∈ P, ξ ≥ 0,

(2.7)

where zk = (xk, yk) ∈ Ω and ε > 0 being very small; the presence of −ε in the first constraint
of LPR(zk, T ) is to prevent to have (ξ∗, dx, dy) = (0, 0, 0) as optimal solution. An optimal
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solution (ξ∗, dx, dy) of the problem LPR(zk, T )corresponds to a rational solution if for some
σ > 0, yk+1 = yk + σdy is solution of the lower level linear problem for xk+1 = xk + σdx
fixed:

maxyd
t
2y

LP2 (xk) : s.t.

{
By = b−A(xk + σdx),
y ≥ 0.

(2.8)

This last linear program insures that the solution is a rational one, that is (xk+1, yk+1) ∈ IR.
The dual variables λ associated to the constraints of (2.8) and any solution of LPR(zk, T )
is a solution of LLP (wk, T ). At optimality of LP (2.7), the computed value σ0 of σ can lead
to some different partition (T ′, T ′C) of H rather than (T, TC).

In the following theorem, we introduce sufficient optimality conditions for the problem
(2.1) to be used in our algorithm. The proof is deduced from Definition 2.2 and Remark
2.3.

Theorem 2.4. Under assumption (H1), let IR be the induced region of the bilevel pro-
gram defined by (2.1). For a given integer k, we consider a rational solution (xk, yk) =
(x∗, y∗) ∈ IR, the set of indexes H = {1, 2, ..., ny} ∪ {1̄, 2̄, ..., m̄} and the family of LP prob-
lems LPR(zk0 , T ), T ⊂ H where k0 ≥ k and zk0 ∈ Ω. For (x∗, y∗) to be an optimal solution
of the problem (2.1), it is sufficient to have, for all T ⊂ H, one of the following situations:

1. The program LPR(zk0 , T ) does not have a solution.

2. If (ξ∗, dx, dy) is an optimal solution of the program LPR(zk0 , T ), then (dx, dy) is not
an induced descent direction.

2.2 Necessary Optimality Conditions: the M-Principles

This subsection presents the monotonicity principles that are used to exploit efficiently the
partition of indexes in H at each step of our algorithm, in order to compute an induced
descent direction. These principles where first introduced by Wilde [51] and generalized
by Hansen et al. [27]. The HJS algorithm [27] takes advantage of these principles within
a branch and bound framework by exploiting the condition of tightness of the lower level
constraints. For the rest of the paper, a monotonicity property will be denoted by an
M-principle.

Let LP2(x̄) be the follower parametric LP problem in standard form:

maxy
ny∑
j=1

f2jyj

LP2(x̄): s.t.


ny∑
j=1

Be
ijyj + yī = bi −

nx∑
t=1

Aitx̄t,

yj ≥ 0, j = 1, 2, ..., ny; yī ≥ 0, i = 1, 2, ...,m.

For each structural variable yj , with j ∈ {1, 2, ..., ny}, we define the following set of indexes:

I+j =
{
i ∈ {1, 2, ...,m} : Be

ij > 0
}
,

I−j =
{
i ∈ {1, 2, ...,m} : Be

ij < 0
}
.

The following properties summarized the two M-principles, with respect to PL2(x̄).

Property 2.5 (first M-principle). Let (x∗, y∗) be an optimal solution of problem (2.4).
Then, for any j ∈ {1, 2, ..., ny} such that f2j < 0, there exists at least one index i ∈ I−j ∪{j}
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such that: a) ī ∈ sp(y∗) (dyī = −y∗
ī
) if i ∈ I−j , b) j ∈ sp(y∗) (dyj = −y∗j ) if i = j. For

any j ∈ {1, 2, ..., ny} such that f2j > 0, there exists at least one index i ∈ I+j such that

ī ∈ sp(y∗).

The above property is a consequence of corollary metric converter Corollary 4.2 in [27].
Another formulation of theorem metric converter Corollary 3.2 in [44] is contained in the
following property, an expression of the second M-principles, applied when the objective
function does not depend on a variable. It is only valid when the set M(x) has at most one
element.

Property 2.6 (second M-principle). Under the assumption (H1), we assume that the set
M(x) has at most one element. Let (x∗, y∗) be an optimal solution of the problem (2.1)
according to Definition 2.2. Then, for all j ∈ {1, 2, ..., ny} such that f2j = 0, there exists at
least an index i ∈ I+j ∪ I−j such that ī ∈ sp(y∗).

The following property is another formulation of Property 2.5 and represents necessary
optimality conditions, formulated as the tightness of the lower level constraints. Each of
such constraint is associated to a boolean variable αi equal to 1 if the constraint is active
(̄i ∈ sp(y∗)), and equal to 0 otherwise.

Property 2.7 (Theorem 4.1 and Corollary 4.2, [27]). For any rational solution of problem
(2.1), the tightness of the constraints in the lower level problem is such that∑

i:Be
ij>0

αi ≥ 1 if f2j > 0, (m1)∑
i:Be

ij<0

αi + αm+j ≥ 1 if f2j < 0, (m2)∑
i:Be

ij ̸=0

αi ≥ 1 if f2j = 0, (m3)

for j = 1, ..., ny and i = 1, ...,m.
For any rational solution (x∗, y∗), if a boolean variable αi (respectively αm+j) is equal

to 1, necessarily, ī ∈ sp(y∗) (respectively j ∈ sp(y∗)). If each element of the set of boolean
variables αi with indexes included in T ⊂ H is equal to one, then T ⊂ sp(y∗). From
the above logical relations and, for any value f2j of the lower level objective function, we
introduce an M-indexes subset defined as follows for j ∈ {1, 2, ..., ny} and i ∈ {1, 2, ...,m}:

Jj =


{̄i : Be

ij > 0} if f2j > 0,
{̄i : Be

ij < 0} ∪ {j} if f2j < 0,
{̄i : Be

ij ̸= 0} if f2j = 0.

We mention that, when a subset Jj is such that |Jj | = 1, then necessarily at optimality,
we have, t ∈ sp(y∗) for {t} = Jj .

3 Conceptual Framework of the ESLP Algorithm

We now introduce the notion of M-networks, constructed from the M-indexes subsets for
a given problem (2.1). M-networks are based on the support of the lower level variable as
well as on some logical relations expressing the tightness of lower level constraints at the
optimality; these M-networks are used in our algorithm in a branch and bound framework
can compute improving rational solution from a given feasible solution of problem (2.2).
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3.1 The M-Networks

The M-principles are used in the ESLP algorithm as follows: let Jj0 be an M-indexes subset
with the smallest cardinality, i.e. |Jj0 | = min1≤j≤ny

|Jj |. We introduce the M-network G0
M

as follows: consider an initial ordered sequence of M-indexes subsets (Jj0 , Jj1 , Jj2 , ...., JjRo
,

JjRo+1
,..., Jjny−1

); each element of Jjt constitutes a node of level t ∈ {0, 1, 2 , ..., ny − 1} in

the network G0
M . Within an initial enumeration of M-indexes subsets, let Jjt and Jjt+1 be

two successive subsets of indexes. An edge (i1, i2) ∈ G0
M is such that i1 ∈ Jjt , i2 ∈ Jjt+1

and i1 ̸= i2. We now introduce the concept of M-tree and M-path as follows:

Definition 3.1. Let G0
M be an M-network; we define an M-tree with a root i0 ∈ Jj0 as a

subset of vertices in ∈ G0
M such that there exists a path called M-path, connecting i0 to

in.

Walk on M-trees: Let A0
M be the set of M-trees, and let T = {i0, i1, ..., ir} be an M-path

such that i0 ∈ Jj0 ; for r > 0, we have ir ∈ Jjr . An M-path T is such that αi = 1 for
all i ∈ Tand αi ≥ 0 if i /∈ T ; this means that, at a given step k of the ESLP algorithm,
the lower level variables are such that i ∈ sp(yk) (dyi = −yk−1

i ) for all i ∈ T , and yki ≥
0 (dyi ≥ −yk−1

i ) if i /∈ T . In other words, the lower level constraints with indexes of slack
variables i ∈ Tare active at zk. Moreover, by construction of the M-network, if we have for
all r ≥ 0 ir ∈ Jjr ∩ T , then αir = 1 and αi ≥ 0 for all i ∈ Jjr such that i ̸= ir.

The ESLP algorithm consists in applying a branch and bound method on sequential M-
trees, using the link between each M-variable yi and the corresponding binary variable αi.
Consider problem (2.1) and the corresponding subsets of M-indexes Jj , j ∈ {1, 2, ..., ny}, as
well as the M-property

∑
i∈Jj

αi ≥ 1 attached to each M-indexes subsetJj . The enumeration

uses M-indexes subsets according to a dichotomous branching rule: sequentially, for each
M-indexes subset Jj , a single index i0 ∈ Jj is chosen and the corresponding boolean variable
αi0 is fixed to be equal to 1, whereas αi ≥ 0 for all i ∈ Jj , i ̸= i0. This means that, after
setting i0 ∈ sp(y), we check if this additional constraint leads to an improving rational solu-
tion. If yi0 is a slack variable, the corresponding constraint is active. At optimality, active
constraints of the lower level problem correspond to an M-indexes subset T ⊆ {i1, i2, ..., iny},
where ij ∈ Jj , j ∈ {1, 2, ..., ny}. From M-constraints, the ESLP algorithm finds such subset
T corresponding to an optimal solution.

Let zk = (xk, yk) ∈ Ω be a feasible solution at iteration k. The ESLP algorithm uses a
branch-and-bound with depth-first search technique within M-trees. Let Am be an M-tree
and T an M-path with nodes included in a subset Pa such that Pa = {i0, i1, i2...} with
i0 ∈ Jj0 and ir ∈ Jjr , r ≥ 1. The ESLP algorithm solves sequentially LPR(zk, {i0}),
LPR(zk, {i0, i1}), ..., LPR(zk, Pa) where zk ∈ Ω. Let (dx, dy) be a solution of one of these
problems. The backtracking is performed if we have one of the following conditions:

- i) an improving rational solution (xk+1, yk+1) = (xk + σdx, yk + σdy) is computed and
we have T ⊂ sp(yk+1);

- ii) one of the above LP has no feasible solution;

- iii) (xk+1, yk+1) is a rational solution obtained from one of the above LP such that
f1(xk+1, yk+1) > f1(xk, yk).

Let nis be the level of a node is in the network G0
M , and A0

M the set of M-trees. If a
backtracking condition is verified at a node is contained in the M-path T, then the walk
along the corresponding M-tree is stopped. From the node is, we trace back indexes in
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T. Let TB = {is, is−1, ..., ib} be a subset of T containing backtracking nodes. Then, for
the next LP to be solved in ESLP algorithm, the constraints i ∈ sp(y) for i ∈ TB (i.e.
yi = 0 or αi = 1 for all i ∈ TB) are relaxed and transformed into yi ≥ 0 for i ∈ TB (i.e.
αi ≥ 0 for all i ∈ TB). From the node ib−1 ∈ T including at least one successor which has
not been investigated, other investigable M-paths are constructed. The walk procedure is
stopped for an M-tree if there is no more investigable M-path from the root of such M-tree.
Let

Ro = min
Am∈A0

M

{nis : is ∈ Am} .

Ro represents the smallest value on the set of levels of nodes corresponding to backtrack-
ing nodes is in the network G0

M .

Remark 3.2. Let
∑
i∈Jj

αi ≥ 1 be an M-constraint and let Jj be an M-indexes subset. With

a dichotomous branching rule, a single index i0 ∈ Jj is chosen and we set αi0 = 1. According
to Ro and the backtracking rule, it is easy to show that, walks on the network consisting of
the sequence of subsets Jj0 , Jj1 , Jj2 , ...., JjRo

can not improve the value of the current solution.
Let JjRo+1 , JjRo+2 , ...., Jjny−1 be subsets for which some indexes have not been investigated
by ESLP algorithm, due to backtracking or dichotomous branching rules; an investigation
on some of the indexes in these subsets may improve the solution.

According to Remark 3.2, new relevant M-paths follow the construction of a sequence of
M-networks Gt

M , t = 1, 2, ..., ny − Roas follows: we derive an M-network G1
M from the fol-

lowing ordered sequence of M-indexes subsets JjRo+1
, Jj0 , Jj1 , Jj2 , ...., JjRo

, JjRo+2
, ..., Jjny−1 ;

the numeration of levels of nodes in subsets Jji , i = 0, 1, 2, ..., ny − 1 is therefore up-
dated, all the nodes of level Ro + 1 in the M-network G0

M become nodes of level met-
ricconverterProductID1 in1 in the M-network G1

M , and the nodes of level 2, 3, ..., Ro in
G1

M are the nodes of level 1, 2, 3, ..., Ro − 1 in G0
M . In the same way, from the network

G1
M , we derive M-network G2

M from the following ordered sequence of M-indexes subsets
JRo+2, JRo+1, Jj0 , Jj1 , Jj2 , ...., JjRo

, JjRo+3
, ..., Jjny−1 , and so on for the sequence of networks

Gt
M , t = 3, 4, ..., ny −Ro.

3.2 Principles of an Implicit Enumeration Algorithm

ESLP algorithm consists of walks through M-paths as defined in the previous subsection.
More precisely, let Pa be a path in an M-tree Am, and for some σ > 0 let (xk+1, yk+1) =
(xk + σdx, yk + σdy) be a rational solution such that (dx, dy) is an optimal solution of a
linear programming problem LPR(zk, T ), T ⊂ Pa. The subset T is constructed gradually
within the indexes of the set Pa. The evaluation carrying on the variables yi, i ∈ T consists
of comparing the solution of the lower level problem LP2(x

k+1) with (xk+1, yk+1). If the
solution (xk+1, yk+1) is rational and improves the value of the upper level objective function
f1, then the variables yi, i ∈ T keep temporally the state related to the descent direction
dyi, i ∈ T , then we have T ⊂ sp(yk+1). In this case, we say that the evaluation (dykt =
−ykt , t ∈ T ) corresponding to the set of variables yi, i ∈ T is successful. Next, we
select another path if either a backtracking condition is satisfied, or there exists at least one
M-tree that has not been explored. In each stage of ESLP algorithm, the objective consists
in the computation of an improving rational solution (xk+1, yk+1) such that T ⊂ sp(yk+1).
We write beside a node of an M-network, the index of the lower level variable related, as
well as the triplet (T, zk, f1(zk)) where T represents the subset used to solve the problem
LPR(zk, T ). An edge (i, j) has the letter S if, because of backtracking, one can no longer
walk through the M-tree from the node i.
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Remark 3.3. We consider the bilevel programming problem (2.1).
1) A node in an M-network corresponds to some partition of indexes (T, TC) used solve

the problem LPR(zk, T ). Let N be the number of partitions (T, TC) in the subset of indexes
H.

2) There exist ny M-indexes subsets, and each M-indexes subset has at most m + 1
elements.

3) By construction, an M-network has at most N nodes. A walk on an M-tree is an
elementary path of length p (p = 1, 2, ..., ny). Let N be the order of a network; according to

its properties, the number of paths of length p is equal to Ap+1
N = N !

(N−p−1)! . Consequently,

we may guess that this number of paths is equal to O (N !).
4) Let AI be an M-tree. The number of children of a node i ∈ AI written as dI(i), is the

degree of that node. From the construction an M-network, we have dI(i) ≤ m. The number
NAM of M-trees with nodes i such that dI(i) = k, where i ∈ {1, 2, ..., ny} ∪ {1̄, 2̄, ..., m̄} is
given by NAM = (N − 1)(N−k−1)CN−2

k−1 (See [17]).

3.3 ESLP Algorithm

We consider the BPP problem (2.1); valf represents the current value of the upper level
objective function, while a rational solution is z∗ = (x∗, y∗). Using notations introduced
in the previous subsection, we present first the procedure WALK(Gt

M , z∗) used in ESLP
algorithm to investigate an M-networkGt

M ; let At
M be the number of M-trees. The procedure

WALK(Gt
M , z∗) follows:

Procedure WALK(Gt
M , z∗)

If t = 0, set Ro = ny. Set MT = At
M (set of trees). While MT ̸= ∅, execute A-procedure.

A-Procedure:
Select an M-tree Am ∈ MT , then set MT = At

M\Am and
CHT = {Ch ∈ Am : Ch is an elementary path}. While CHT ̸= ∅, execute B-procedure.
B-Procedure:

Select a path Ch ∈ CHT , then set Pa = Ch,CHT = CHT \ {Ch}and T = ∅.
While (i) Pa ̸= ∅ or (ii) a backtracking condition is not satisfied, execute C-procedure.

C-Procedure:
Select an index i ∈ Paof level ni in Gt

M , then set Pa = Pa\ {i} and
T = T ∪ {i}.

Let (dx, dy) be a solution of the program LPR(zk, T ) (if it exists)
where zk ∈ Ω.
For some σ > 0, set (xk+1, yk+1) = (xk + σdx, yk + σdy).
If f1(xk+1, yk+1) < f1(xk, yk), solve
LP (xk+1) to check if (xk+1, yk+1) ∈ IR. Set k = k + 1.
Backtracking is performed on a node i0 within the path Ch if:
(i) the program LPR(zk, T ) does not have a solution.
(ii) (xk+1, yk+1) ∈ IR with f1(xk+1, yk+1) < valf. Set
z∗ = (x∗, y∗) = (xk+1, yk+1),
and valf = f1(x∗, y∗).
(iii) f1(xk+1, yk+1) > f1(xk, yk).
Remove from Ch the node i0 as well as its children, then go out of
C-procedure.

End of C-procedure.
End B-procedure.
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If t = 0, set Ro = min(Ro, ni0).

End of A-procedure. (Logout with a rational solution z∗ = (x∗, y∗) and the number Ro
if t = 0).

ESLP algorithm now follows:

ESLP algorithm (solving the BPP problem (2.1))

Step 0 (Initialization).

Set k = 0, compute a rational solution z̄ = (x̄, ȳ) and set valf = f1(x̄, ȳ). For j = 1, 2, ..., ny,
compute the list LM of all M-indexes subsets Jj .

For any subset Jj such that |Jj | = 1, set yt = 0,with {t} = Jj ; remove the subset Jj from
the list LM , then construct the M-network G0

M .

Execute procedure WALK(G0
M , z∗) to compute an improving rational solution z∗ = (x∗, y∗)

and the number Ro.

For t = 1, 2, ..., ny −Ro, construct each of the M-network Gt
M .

Step 1 (Looking for subsets of lower level indexes leading to an improving rational solution).

For t = 1, 2, ..., ny −Ro, execute the procedure WALK(Gt
M , z∗).

Step 2 (Optimality). Stop, when Step 1 is completed, z∗ = (x∗, y∗) is an ESLP optimal
solution of the problem (2.1).

Let z∗ be a rational solution of the problem (2.1). The following proposition shows that
each descent direction is computed by ESLP algorithm in a finite time.

Proposition 3.4. We consider the BPP problem (2.1) such that assumption (H1) is sat-
isfied. Let (x∗, y∗) ∈ IR be a rational solution of a given step kof ESLP algorithm. We
assume that there exists an improving rational solution (x̄, ȳ). Hence, ESLP algorithm can
compute an induced descent direction by means of solving a finite number of LP.

Proof. Let (x∗, y∗) ∈ IR be the current rational solution of a step k of ESLP algorithm
and let k0 ≥ k. Given an M-path T ⊂ H, let (Gt

M ), t = 0, 1, 2, ... be a sequence of
M-networks and let us consider the LP PLR(zk0 , T ) defined by (2.7). Let (x̄, ȳ) be an
improving rational solution of the problem (2.1) computed from a given zk0 = (xk0 , yk0) ∈ Ω.
By hypothesis, there exists a path T such that (ξ∗, dx, dy) is an optimal solution of the LP
problem LPR(zk0 , T ) with (xk0+1, yk0+1) = (xk0 + σdx, yk0 + σdy), for some σ > 0 and
f1(xk0+1, yk0+1) < f1(xk0 , yk0). According to Remarks 3.2, each M-network Gt

M has a
finite number of trees, hence a finite number of M-paths. On each of such paths, we solve a
finite number of LP LPR(zk0 , T ) in order to compute an induced descent direction. When
this problem has a solution, then one solves the LPLP2(x

k0) in order to verify that the new
solution (xk0+1, yk0+1) = (xk0 + σdx, yk0 + σdy) is rational. The conclusion follows.

When the problem (2.4) has a solution, ESLP algorithm computes a rational solution
by means of walks on all M-trees. From the induced solution (x∗, y∗) of the step k, ESLP
algorithm leads to an ESLP optimal solution of the problem (2.1) in a finite number of
steps. However, according to the proposition above, the solution (ξ∗, dx, dy) is computed
by solving a finite number of LP LPR(zk0 , T ) where k0 ≥ k. Moreover, we have for some
σ > 0, (x̄, ȳ) = (xk0+1, yk0+1) = (xk0 + σdx, yk0 + σdy), (dx, dy) being an induced descent
direction. A given set of indexes H has a finite number of partition (T, TC). Any step of
ESLP algorithm consists in examining partitions of indexes (T, TC) such that (x̄, ȳ) ∈ IR
and T ⊂ sp(ȳ). Problem (2.1) can then be solved in a finite number of steps.

Remark 3.5. If the functional f1 is linear in (2.1), we have a linear bilevel programming
problem. In this case, instead of solving LPR(zk, T ) to compute a descent direction inside
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the procedure WALK(Gt
M , z∗), an improving rational solution is computed by solving the

following LP:
minx,yf

1(x, y)

s.t.


Ax+By = b,
yi ≥ 0 ∀i /∈ T,
yi = 0 ∀i ∈ T,
x ∈ P,

where the subset of indexes T is built according to the previous M-analysis. Any partition
(T, TC) used by our algorithm corresponds in this case to an extreme point of the set of
feasible solution problem (2.1).

4 An Example

Consider the following linear bilevel programming problem:

Example 1 (Data randomly generated according to Audet et al. [4]).

min − 10x1 − 10x2 − 7x3 − 10x4 + 5x5 + 3x6 + 2y1 + 3y2 + 4y3 − 11y4 − 3y5 + 9y6

s.t.



min − y1 + y2 − 6y3 + 5y4 − 12y5 − 10y6

s.t.



6x4 − y5 + 15y6 ≤ 9,
− 9x1 + 3y4 + 6y6 ≤ 11,

18x3 − 2x4 + 5y3 ≤ 7,
− 3x3 ≤ 14,

x1 + x2 + x3 + x4 + x5 + x6 + y1 + y2 + y3 + y4 + y5 + y6 ≤ 6,
xi, yi ≥ 0, i = 1, .., 6.

The resulting constraints when the lower level problem is in standard form are represented
below. 

6x4 − y5 + 15y6 + y1̄ = 9,
− 9x1 + 3y4 + 6y6 + y2̄ = 11,

18x3 − 2x4 + 5y3 + y3̄ = 7,
− 3x3 + y4̄ = 14,

x1 + x2 + x3 + x4 + x5 + x6 + y1 + y2 + y3 + y4 + y5 + y6 + y5̄ = 6,
−y1 ≤ 0,
−y2 ≤ 0,
−y3 ≤ 0,
−y4 ≤ 0,
−y5 ≤ 0,
−y6 ≤ 0,
xi ≥ 0, i = 1, .., 6.

A Boolean variable αi, i = 1, 2, ..., 11 corresponds to each equation in above system of
constraints. The M-constraints follow:{

α5 ≥ 1 ; α7 ≥ 1; α3 + α5 ≥ 1;
α1 + α9 ≥ 1; α5 ≥ 1; α1 + α2 + α3 ≥ 1.

Then, the M-indexes subsets are:

J1 = {5̄}, J2 = {2}, J3 = {3̄, 5̄}, J4 = {4, 1̄}, J5 = J1, J6 = {1̄, 2̄, 5̄}.
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At the optimality, we havey2 = y5̄ = 0. But, in order to illustrate how ESLP algo-
rithm works, we do not take into account this implication. The initial solution is z0 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0) and valf0 = −18. The values of the slack variables are not in-
dicated in this solution. The M-network G0

M is constructed form the ordered sequence of
M-indexes subsets (J1, J2, J3, J4, J6). The adjacency-matrix representation of G0

M is given
on Table 4.1, while Figure 4.1 represents the corresponding tree.

1) Walks on the first M-tree: the resolution of the program LPR(z0, T2) on path T2 =
{5̄, 2, 3̄, 4}, gives the following rational solution:

z1 = (1.9918, 3.6194, 0.3889, 0, 0, 0, 0, 0, 0, 0, 0, 0) and valf1 = −58.8333.

A backtracking is then performed on the node 4. On path T3 = {5̄, 2, 3̄, 1̄}, the resolution
of the program LPR(z1, T3) gives the following rational solution:

z2 = (0, 0, 0.6172, 2.0547, 0, 0, 0, 0, 0, 3.3281, 0, 0) and valf2 = −61.4766.

On paths T4 = {5̄, 2, 4}, T5 = {5̄, 2, 1̄}, the programs LPR(z2, T4) and LPR(z2, T5)
have no feasible solution. Walks on the first M-tree are completed, and Ro = 4.

Table 4.1: Exemple2 – adjacency matrix representation of the initial M-network
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Figure 4.1: Example2 – first M-tree

As Ro = 4, the M-network G1
M , is constructed from the ordered sequence subsets of

indexes (J6, J1, J2, J3, J4) as well as paths including combinations of indexes from these
subsets. Table 4.2 is the adjacency-matrix representation of G1

M . Figure 4.2 includes the
corresponding M-trees.

2) Figure 4.2 represents paths on the second M-network: on tree (1), the resolution of the
program LPR(z2, {1̄}) gives the following rational solution

z3 = (0.0494, 0, 0, 2.1358, 0, 0, 0, 0, 0, 3.8148, 0, 0) and valf3 = −63.8148.

Table 4.2: Example2, adjacency matrix representation of the second M-network.
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Figure 4.2: Example2 – M-trees of the second M-network.

The walk of this tree is stopped as a rational solution is computed. On tree (2), the
programs LPR(z3, T7) and LPR(z3, T8) where T7 = {2̄, 5̄, 2, 3̄, 4} and T8 = {2̄, 5̄, 2, 3̄, 1̄}
have no feasible solution. The exploration of the tree (2) is then stopped. On the tree
(3), let T9 = {5̄, 2, 3̄, 4} and T10 = {5̄, 2, 3̄, 1̄}; the programs LPR(z3, T9) and LPR(z3, T10)
have no feasible solution. The exploration of the tree (3) is also stopped and the exploration
on the network G1

M is completed. Hence, z3 is an ESLP optimal solution (z3 is an optimal
solution).

5 Computational Experience with ESLP Algorithm

We recall that ESLP algorithm solves two types of linear programs at each step:

- First, the relaxed linear program LPR(zk, T ), T ⊆ P (P ⊂
∪

1≤j≤ny

Jj) computes a

direction of displacement (dx, dy) of the current step k. For a given problem, the total
number of descent directions calculated is designated by Noded ; this quantity represents the
number of relaxed LP LPR(zk, T ) solved by the BM algorithm.

- Secondly, if (dx, dy) is a solution of the relaxed LP problem, that is LPR(zk, T ),
it is necessary to verify that the solution (xk + σdx, yk + σdy) is rational by solving the
lower level problem LP2(x

k+1). For a given problem, Node represents the number of times
this verification occurs for a given problem, whereas Nodea represents the number of the
rational solutions contributing to improve the value of the upper level objective function.
The columns of the table representing the values of Node and Noded include two numbers:
the smaller value corresponds to the stage of the algorithm computing the optimal solution,
whereas the higher value designates the number of programs solved. The performances
measure include CPU time (seconds) are represented in the same way.

ESLP algorithm was coded in MATLAB and all computations were performed on a
PC Pentium 4 (processor 3.2 GHZ, 1.24 GB of stocktickerRAM). We solved some small
size and medium size problems with data randomly generated: i) as [4], and ii) by the
method introduced by Vicente and Calamai [50]. We compare the results computed by
ESLP algorithm with those obtained by the algorithm of Bard and Moore [7] (BM ) and the
CBB algorithm developed by Audet et al. [3].
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5.1 Solving Small Size Problems

First, we illustrated ESLP algorithm on the following problems with quadratic upper level
objective function.

Problem 1.
minx,y≥0 − 8x2

1 − 4x2
2 + 8y21 − 10y22 − 20y23

s.t.



x1 + 2x2 ≤ 2,
2x2 ≤ 1,

miny 2y1 − y2 + 2y3

s.t.

 − y1 + y2 + y3 ≤ 1,
2x1 − y1 + 2y2 − 0.5y3 ≤ 1,

2x2 + 2y1 − y2 − 0.5y3 ≤ 1.

Problem 2.
minx,y≥0 2x2 + 12y2

s.t.


maxy y

s.t.


x+ y ≥ 8,
−3x+ 2y ≤ 6,
3x+ 4y ≤ 48,
2x− 5y ≤ 9.

Problem 3.
minx,y≥0 − 4x2

1 − 2x2
2 + 2y21 − 20y22 − 2y23

s.t.



x1 + x2 − y3 ≤ 1.3,

miny 2y1 + y2 + y3

s.t.

 − y1 + y2 + y3 ≤ 1,
4x1 − 2y1 + 4y2 − y3 ≤ 2,

4x2 + 4y1 − 2y2 − y3 ≤ 2.

Table 5.1: ESLP algorithm – results on small size problems.

Table 5.2: Bard and Moore’s algorithm – results on small size problems
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Table 5.1 and Table 5.2 contain the computational results of small size problems solved
respectively with ESLP and BM algorithms (the solutions are the same); (x∗, y∗) represents
the optimal solution, while F ∗ and f∗ represent respectively the optimal values of the upper
level and the lower level objective functions. ESLP optimal solutions computed by our
algorithm are optimal solutions for the above small size problems.

5.2 Solving Medium Size Problems

We considered three types of problems:

A) Data are randomly generated as in Audet et al. [4] with 8% of density: the elements
of Be are chosen between −20 and 20, while those of A are taken in the interval [0 20].
The coefficients of c1 belong to the interval [−10 10] and those of d1 belong to [10 20].
The elements of d2 are chosen between 0 and 10. The elements of the second member of
constraints b are randomly chosen between −40 and 40. Finally, the additional lower level

constraint
nx∑
j=1

xj+
ny∑
j=1

yj ≤ nx+ny is added to obtain bounded relaxed problem. The vector

(n, ny,m) characterizes the size of each of the solved problems. The results are presented in
Table 5.3 and Table 5.4. We noticed that the solution computed by ESLP algorithm was
better that the solutions computed by the BM algorithm (with CPU= 10000) even when
using the stopping criteria CPU ≥ 20000 for the problem of size (n, ny,m) = (70, 35, 30).

Table 5.3: ESLP algorithm – Problems of Audet et al. [4]
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Table 5.4: Bard and Moore’s algorithm– Problems of Audet et al. [4]

B) For medium size problems generated as in [3], we compared the computational results
obtained by ESLP algorithm, BM algorithm and CBB algorithm. The comparison was car-
ried on seven problems of size (n, ny,m) = (70, 35, 20) where n = ny + nx. Table 5.5 and
Table 5.6 present the results of this study; FESLP , FCBB and FBM represent respectively
the value of the upper level objective function computed by ESLP, CBB and BM algorithms.
For all the problems solved, comparative studies of Table 5.5 and Table 5.6 show that ESLP
algorithm is efficient: the ESLP optimal solution on Example 6 is better than the solu-
tion computed by the CBB algorithm; the same observation was made on the problem with
(n, ny,m) = (70, 35, 30) of Table 5.3 for which we find FESLP = 418.92 and FCBB = 391.11.
Using stopping criteria CPU ≥ 10000 in Example 4 of Table 5.5, the solution computed
by ESLP algorithm is such that FESLP = 530.81 and FESLP = FESLP = 532.23. While
forcing ESLP algorithm to calculate an 7th improving rational solution for this problem, we
found FESLP = 531.31 with a CPU = 83794, Neud = 100522 and Neudd = 438779.

We mention that ESLP algorithm was coded in MATLAB, and the computational ex-
periments carried out on a PC computer, while linear programs are solved by an interior
point method. Whereas the CBB algorithm coded in C, uses the CPLEX 8.1 library to
solve linear programs and computational experiments carried out on a ULTRA 60 station
under Solaris 2.7-05. Numerical results attached to each computational environment could
constitute one of the explanations attached to these differences, besides the stopping criteria
CPU ≥ 10000 for exemple4.

In general, it could be noted that ESLP algorithm is faster to lead to a step correspond-
ing to an optimal solution, compared to the BM algorithm, at least 9 times on 14. Besides,
the BM algorithm was not able to solve the problem of Example 7, even with the stopping
criteria CPU ≥ 20000.
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Table 5.5: Comparative tests - ESLP and CBB algorithms

Table 5.6: Comparative tests – Bard and Moore, ESLP and CBB algorithms

C) We consider the linear bilevel programming problems (with minimization criteria)
constructed by Vicente and Calamai [50]; we fixed ρi = mod(i, 5) + 4, i = 1, 2, ..., m

3 . The
solution of this BPP problem is known in advance.

Table 5.7 presents the results computed by ESLP algorithm: FTHEO represents the
theoretical optimal value of the upper level objective function. These problems proved
to be the most difficult to solve in terms of the computational time and the number of
linear programs solved in each step. In Table 5.7, we present the results computed by the
ESLP algorithm for n ≥ 50, using the stopping criterions CPU ≥ 10000, CPU ≥ 20000 or
CPU ≥ 30000. We noted that the value of the solution computed by the ESLP algorithm
using the stopping criteria CPU ≥ 30000, was improved compared to the solution computed
with stopping criterions CPU ≥ 10000 or CPU ≥ 20000.
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Table 5.7: ESLP algorithm - Problems of Vicente and Calamai [50]

For example, we got FESLP = 70 using the stopping criteria CPU ≥ 10000, with n = 50
and CPU = 1906. On the other hand with the stopping criteria CPU ≥ 20000, we found
FESLP = FTHEO = 69 with CPU = 19024.

In linear cases, the BM or ESLP algorithms can prematurely be stopped before the global
optimal solution is computed as we do not have an efficient stopping criterion. Moreover,
according to our computational results, we realized that for some problems, a considerable
number of iterations are performed, whereas the optimal solution has already been found.
Here, we considered a compromise between the computational time and the best solution
computed. With the stopping criteria CPU ≥ 10000, the capacity of the ESLP algorithm
(i) to compute several rational solutions faster or (ii) to find at least 96% of the value of
a global optimum shows that this algorithm is not only worthy of interest, but can also
be improved. The improvement concerns the walk strategies on M-trees. The reliability of
ESLP algorithm depends on the sharpness in the construction and the walks trough the
series of M-networks Gt

M . Besides, we realized that, if max(n,m) ≤ 100, ESLP algorithm
computed a global optimum on almost all the problems solved. We also note that ESLP
algorithm presents some similarities with the HJS algorithm of Hansen et al. [27]: in the
ESLP algorithm, the elimination of some lower level variables is done implicitly thanks to
the walks on M-trees. Finally, the size of the linear programs solved by ESLP algorithm is
lower than the size of those solved by BM algorithm.

6 Conclusion and Final Remarks

The ESLP algorithm uses M-networks and investigates the support of active set constraints
sets associated to the KKT formulation of problem (2.1) and performs well in practice; it
is a compromise that leads to a good evaluation of the optimal solution of a nonlinear BPP
problem with linear constraints. In this paper, no theoretical results have been established
concerning the termination of our algorithm; therefore the ESLP algorithm should now be
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seen as a heuristic technique for processing a BLP. Further research needs to be done on
the efficiency of using monotonicity constraints within networks which guarantee in theory
a global optimum for for linear case, as well as a generalization to the nonlinear cases of the
sequential linear programming algorithms developed in this paper. Note that quasi concave
bilevel programs can be solved by using an enumeration sequential quadratic programming
algorithm, based on the same framework developed in this paper. Another perspective of
research may consist in solving a mathematical programming problem with equilibrium con-
straints by an enumeration sequential linear programming algorithm that exploits efficiently
the disjunctive nature of constraints in this problem.
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[26] Z.H. Gümüs and C.H. Floudas, Global optimization of nonlinear bilevel programming
problems, Journal of Global Optimization 20 (2001) 1–31.

[27] P. Hansen, B. Jaumard and G. Savard, New branch-and-bound rules for linear bilevel
programming, SIAM Journal on Scientific and Statistical Computing 13 (1992) 1194–
1217.



BILEVEL PROBLEMS: A SEQUENTIAL PROGRAMMING ALGORITHM 161

[28] A. Haurie, G. Savard and D. White, A note on an efficient point algorithm for a linear
two-stage optimization problem, Operations Research 38 (1990) 553–555.

[29] R.G. Jeroslow, The Polynomial hierarchy and simple model for competitive analysis,
Mathematical Programming 32 (1985) 146–164.
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