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1 Introduction

Let H be a real Hilbert space with inner product ⟨., .⟩ and norm ∥.∥, respectively. Let C
be a nonempty closed convex subset of H. Let F be a bifunction from C × C to R and let
B : C → H be a nonlinear mapping, where R is the set of real numbers. Takahashi and
Takahashi [25] considered the following generalized equilibrium problem:

Find x ∈ C such that F (x, y) + ⟨Bx, y − x⟩ ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GEP (F ). If B = 0, the generalized equilibrium
problem (1.1) becomes the equilibrium problem for F : C × C → R, which is to find x ∈ C
such that

F (x, y) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by EP (F ).
The problem (1.1) is very general in the sense that it includes, as special cases, opti-

mization problems, variational inequalities, minimax problems, Nash equilibrium problem
in noncooperative games and others; see for instance, [3] and [8].
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Recall that a mapping S of a closed convex subset C of H is nonexpansive [10] if there
holds that

∥Sx− Sy∥ ≤ ∥x− y∥ for all x, y ∈ C.

We denote the set of fixed points of S by Fix(S). It is known (see [10]) that Fix(S) is
closed and convex, but possibly empty. A mapping A of C into H is called monotone if

⟨Ax−Ay, x− y⟩ ≥ 0

for all x, y ∈ C. A mapping A of C into H is called α-inverse-strongly monotone if there
exists a positive real number α such that

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2

for all x, y ∈ C. It is noted that the α-inverse-strong monotonicity of A is also called
cocoerciveness of A. A mapping A : C → H is called k-Lipschitz-continuous if there exists
a positive real number k such that

∥Ax−Ay∥ ≤ k∥x− y∥

for all x, y ∈ C. It is easy to see that the class of α-inverse-strongly monotone mappings
does not contain some important classes of mappings even in a finite-dimensional case. For
example, if the matrix in the corresponding linear complementarity problem is positively
semidefinite, but not positively definite, then the mapping A will be monotone and Lipschitz-
continuous, but not α-inverse-strongly monotone.

Let A : C → H. The variational inequality problem is to find a x ∈ C such that

⟨Ax, y − x⟩ ≥ 0

for all y ∈ C. The set of solutions of the variational inequality problem is denoted by
V I(C,A).

Takahashi and Takahashi [25] introduced the following iterative scheme for finding a
common element of the set of solutions of (1.1) and the set of fixed points of a nonexpansive
mapping in a Hilbert space. Starting with an arbitrary u ∈ C and x1 ∈ C, define sequences
{xn} and {un} by{

F (un, y) + ⟨Bxn, y − un⟩+ 1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)un], ∀n ∈ N.
(1.3)

They proved that under certain appropriate conditions imposed on {αn}, {βn} and {rn},
the sequences {xn} generated by (1.3) converges strongly to z ∈ Fix(S) ∩GEP (F ).

Some methods have been proposed to solve the problem (1.2); see, for instance, [3, 7,
8, 19, 24, 26]. Recently, Combettes and Hirstoaga [7] introduced an iterative scheme of
finding the best approximation to the initial data when EP (F ) is nonempty and proved a
strong convergence theorem. Takahashi and Takahashi [26] introduced the following iterative
scheme by the viscosity approximation method for finding a common element of the set of
solutions of (1.2) and the set of fixed points of a nonexpansive mapping in a Hilbert space.
Starting with an arbitrary x1 ∈ H, define sequences {xn} and {un} by{

F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Sun,∀n ∈ N.
(1.4)
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They proved that under certain appropriate conditions imposed on {αn} and {rn}, the
sequences {xn} and {un} generated by (1.4) converge strongly to z ∈ Fix(S) ∩ EP (F ),
where z = PFix(S)∩EP (F )f(z) and f is a contraction on H.

Tada and Takahashi [24] introduced the following iterative scheme by the hybrid method
for finding a common element of the set of solutions of (1.2) and the set of fixed points
of a nonexpansive mapping in a Hilbert space. Starting with an arbitrary x1 ∈ H, define
sequences {xn} and {un} by

un ∈ C, F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

wn = (1− αn)xn + αnSun,
Cn = {z ∈ H : ∥wn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x.

(1.5)

They proved that under certain appropriate conditions imposed on {αn} and {rn}, the
sequences {xn} and {un} generated by (1.5) converge strongly to PFix(S)∩EP (F )x. Gen-
erally speaking, the algorithm suggested by Tada and Takahashi is based on two well-
known types of methods, namely, on the Mann iterative methods and so-called hybrid or
”outer-approximation” for solving fixed point problem. The idea of ”hybrid” or ”outer-
approximation” types of methods was originally introduced by Haugazeau in 1968 and was
successfully generalized and extended in recent papers of Bauschke and Combettes [1], [2],
Burachik, Lopes and Svaiter [5], Combettes [6], Nakajo and Takahashi [16], and Solodov
and Svaiter [21], Kikkawa and Takahashi [12], Nadezhkina and Takahashi [14].

On the other hand, for solving the variational inequality problem in the finite-dimensional
Euclidean Rn, Korpelevich [13] introduced the following so-called extragradient method: x1 = x ∈ C,

yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn),

(1.6)

for every n = 0, 1, 2, ..., where λ ∈ (0, 1
k ). She showed that if V I(C,A) is nonempty, then

the sequences {xn} and {yn}, generated by (1.6), converge to the same point z ∈ V I(C,A).
The idea of the extragradient iterative process introduced by Korpelevich was successfully
generalized and extended not only in Euclidean but also in Hilbert and Banach spaces; see,
e. g., the recent papers of He, Yang and Yuan [11], Gárciga Otero and Iuzem [9], Noor
[17], Solodov and Svaiter [22], Solodov [23]. Moreover, Zeng and Yao [28] and Nadezhkina
and Takahashi [14, 15] where some iterative processes based on the extragradient method
for finding the common element of the set of fixed points of nonexpansive mappings and
the set of solutions of variational inequality problem for a monotone, Lipschitz-continuous
mapping where introduced. Yao and Yao [27] introduced an iterative process based on
the extragradient method for finding the common element of the set of fixed points of
nonexpansive mappings and the set of solutions of variational inequality problem for an α-
inverse strongly monotone mapping. Plubtieng and Punpaeng [19] introduced an iterative
process based on the extragradient method for finding the common element of the set of
fixed points of nonexpansive mappings, the set solutions of an equilibrium problem and the
set of solutions of variational inequality problem for α-inverse strongly monotone mappings.

In the present paper, by combining the hybrid and extragradient methods, we introduce
an iterative process for finding a common element of the set of solutions of a generalized
equilibrium problem, the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality for a monotone, Lipschitz-continuous mapping in a
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Hilbert space. We derive a strong convergence theorem for four sequences generated by this
process. Based on this result, we also get several new and interesting results which generalize
and extend some well-known strong convergence theorems in the literature.

2 Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, respectively. Let C
be a nonempty closed convex subset of H. Let symbols → and ⇀ denote strong and weak
convergence, respectively. In a real Hilbert space H, it is well known that

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

∥x − PC(x)∥ ≤ ∥x − y∥ for all y ∈ C. The mapping PC is called the metric projection of
H onto C. We know that PC is a nonexpansive mapping from H onto C. It is also known
that PCx ∈ C and

⟨x− PC(x), PC(x)− y⟩ ≥ 0 (2.1)

for all x ∈ H and y ∈ C.
It is easy to see that (2.1) is equivalent to

∥x− y∥2 ≥ ∥x− PC(x)∥2 + ∥y − PC(x)∥2 (2.2)

for all x ∈ H and y ∈ C. Let A be a monotone mapping of C into H. In the context of the
variational inequality problem the characterization of projection (2.1) implies the following:

u ∈ V I(C,A) ⇒ u = PC(u− λAu), λ > 0,

and

u = PC(u− λAu) for some λ > 0 ⇒ u ∈ V I(C,A).

It is also known thatH satisfies the Opial’s condition [18], i.e., for any sequence {xn} ⊂ H
with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

holds for every y ∈ H with x ̸= y.
A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and

g ∈ Ty we have ⟨x−y, f−g⟩ ≥ 0. A monotone mapping T : H → 2H is maximal if its graph
G(T ) of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f) ∈ H×H, ⟨x−y, f−g⟩ ≥ 0 for
every (y, g) ∈ G(T ) implies f ∈ Tx. Let A be a monotone, k-Lipschitz-continuous mapping
of C into H and let NCv be the normal cone to C at v ∈ C, i.e, NCv = {w ∈ H : ⟨v−u,w⟩ ≥
0, ∀u ∈ C}. Define

Tv =

{
Av +NCv if v ∈ C,
∅ if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A)(see [20]).
For solving the equilibrium problem, let us assume that the bifunction F satisfies the

following conditions:
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(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.
We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.1 ([3]). Let C be a nonempty closed convex subset of H, let F be a bifunction
from C×C to R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such
that

F (z, y) + 1
r ⟨y − z, z − x⟩ ≥ 0, for all y ∈ C.

Lemma 2.2 ([7]). Let C be a nonempty closed convex subset of H, let F be a bifunction
from C×C to R satisfying (A1)-(A4). For r > 0 and x ∈ H, define a mapping Tr : H → C
as follows.

Tr(x) = {z ∈ C : F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}

for all x ∈ H. Then, the following statements hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e, for any x, y ∈ H,

∥Tr(x)− Tr(y)∥2 ≤ ⟨Tr(x)− Tr(y), x− y⟩;

(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

3 Strong Convergence Theorem

In this section, we first show a strong convergence theorem which solves the problem of
finding a common element of the set of solutions of a generalized equilibrium problem, the
set of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality for a monotone, Lipschitz-continuous mapping in a Hilbert space. Then, based
on this result, we also get several new and interesting results which generalize and extend
some well-known results in [26] and [6].

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C×C to R satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz-
continuous mapping of C into H, B be an α-inverse-strongly monotone mapping of C into H.
Let S be a nonexpansive mapping of C into itself such that Fix(S)∩V I(C,A)∩GEP (F ) ̸= ∅.
Let {xn}, {un}, {yn} and {zn} be sequences generated by

x1 = x ∈ H,
F (un, y) + ⟨Bxn, y − un⟩+ 1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
zn = αnxn + (1− αn)SPC(un − λnAyn),
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x
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for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [0, c] for some c ∈ [0, 1)

and {rn} ⊂ [d, e] for some d, e ∈ (0, 2α). Then, {xn}, {un}, {yn} and {zn} converge strongly
to w = PFix(S)∩V I(C,A)∩GEP (F )(x).

Proof. It is obvious that Cn is closed and Qn is closed and convex for every n = 1, 2, ....
From [12], we know that

Cn = {z ∈ H : ∥zn − xn∥2 + 2⟨zn − xn, xn − z⟩ ≤ 0}.

Thus Cn is convex for every n = 1, 2, .... It is easy to see that ⟨xn − z, x − xn⟩ ≥ 0 for all
z ∈ Qn and by (2.1), xn = PQnx. Put tn = PC(un − λnAyn) for every n = 1, 2, .... Let
u ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ) and let {Trn} be a sequence of mappings defined as in
Lemma 2.2. Then u = PC(u− λnAu) = Trn(u− rnBu). From un = Trn(xn − rnBxn) ∈ C
and the α-inverse-strong monotonicity of B, we have

∥un − u∥2 = ∥Trn(xn − rnBxn)− Trn(u− rnBu)∥2

≤ ∥xn − rnBxn − (u− rnBu)∥2

≤ ∥xn − u∥2 − 2rn⟨xn − u,Bxn −Bu⟩+ r2n∥Bxn −Bu∥2

≤ ∥xn − u∥2 − 2rnα∥Bxn −Bu∥2 + r2n∥Bxn −Bu∥2

= ∥xn − u∥2 + rn(rn − 2α)∥Bxn −Bu∥2

≤ ∥xn − u∥. (3.1)

From (2.2), the monotonicity of A and u ∈ V I(C,A), we have

∥tn − u∥2 ≤ ∥un − λnAyn − u∥2 − ∥un − λnAyn − tn∥2

= ∥un − u∥2 − ∥un − tn∥2 + 2λn⟨Ayn, u− tn⟩
= ∥un − u∥2 − ∥un − tn∥2 + 2λn(⟨Ayn −Au, u− yn⟩
+ ⟨Au, u− yn⟩+ ⟨Ayn, yn − tn⟩)

≤ ∥un − u∥2 − ∥un − tn∥2 + 2λn⟨Ayn, yn − tn⟩
≤ ∥un − u∥2 − ∥un − yn∥2 − 2⟨un − yn, yn − tn⟩ − ∥yn − tn∥2

+ 2λn⟨Ayn, yn − tn⟩
= ∥un − u∥2 − ∥un − yn∥2 − ∥yn − tn∥2

+ 2⟨un − λnAyn − yn, tn − yn⟩.

Further, Since yn = PC(un − λnAun) and A is k-Lipschitz-continuous, we have

⟨un − λnAyn − yn, tn − yn⟩ = ⟨un − λnAun − yn, tn − yn⟩+ ⟨λnAun − λnAyn, tn − yn⟩
≤ ⟨λnAun − λnAyn, tn − yn⟩
≤ λnk∥un − yn∥∥tn − yn∥.

So, we have

∥tn − u∥2 ≤ ∥un − u∥2 − ∥un − yn∥2 − ∥yn − tn∥2 + 2λnk∥un − yn∥∥tn − yn∥
≤ ∥un − u∥2 − ∥un − yn∥2 − ∥yn − tn∥2 + λn

2k2∥un − yn∥2 + ∥tn − yn∥2

= ∥un − u∥2 + (λn
2k2 − 1)∥un − yn∥2

≤ ∥un − u∥2. (3.2)
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Therefore from (3.1), (3.2), zn = αnxn + (1− αn)Stn and u = Su, we have

∥zn − u∥2 = ∥αnxn + (1− αn)Stn − u∥2

≤ αn∥xn − u∥2 + (1− αn)∥Stn − u∥2

≤ αn∥xn − u∥2 + (1− αn)∥tn − u∥2

≤ αn∥xn − u∥2 + (1− αn)[∥un − u∥2 + (λn
2k2 − 1)∥un − yn∥2]

≤ ∥xn − u∥2 + (1− αn)(λn
2k2 − 1)∥un − yn∥2

≤ ∥xn − u∥2, (3.3)

for every n = 1, 2, ... and hence u ∈ Cn. So, Fix(S) ∩ V I(C,A) ∩ GEP (F ) ⊂ Cn for
every n = 1, 2, .... Next, let us show by mathematical induction that {xn} is well defined
and Fix(S) ∩ V I(C,A) ∩ GEP (F ) ⊂ Cn ∩ Qn for every n = 1, 2, .... For n = 1 we have
x1 = x ∈ C and Q1 = H. Hence we obtain Fix(S) ∩ V I(C,A) ∩ GEP (F ) ⊂ C1 ∩ Q1.
Suppose that xk is given and Fix(S) ∩ V I(C,A) ∩ GEP (F ) ⊂ Ck ∩ Qk for some k ∈ N .
Since Fix(S) ∩ V I(C,A) ∩ GEP (F ) is nonempty, Ck ∩ Qk is a nonempty closed convex
subset of H. So, there exists a unique element xk+1 ∈ Ck ∩Qk such that xk+1 = PCk∩Qk

x.
It is also obvious that there holds ⟨xk+1 − z, x − xk+1⟩ ≥ 0 for every z ∈ Ck ∩Qk. Since
Fix(S) ∩ V I(C,A) ∩ GEP (F ) ⊂ Ck ∩ Qk, we have ⟨xk+1 − z, x − xk+1⟩ ≥ 0 for every
z ∈ Fix(S) ∩ V I(C,A) ∩ GEP (F ) and hence Fix(S) ∩ V I(C,A) ∩ GEP (F ) ⊂ Qk+1.
Therefore, we obtain Fix(S) ∩ V I(C,A) ∩GEP (F ) ⊂ Ck+1 ∩Qk+1.

Let l0 = PFix(S)∩V I(C,A)∩GEP (F )x. From xn+1 = PCn∩Qnx and l0 ∈ Fix(S)∩V I(C,A)∩
GEP (F ) ⊂ Cn ∩Qn, we have

∥xn+1 − x∥ ≤ ∥l0 − x∥ (3.4)

for every n = 1, 2, .... Therefore, {xn} is bounded. From (3.1)-(3.3), we also obtain that
{tn}, {zn} and {un} are bounded. Since xn+1 ∈ Cn ∩Qn ⊂ Cn and xn = PQnx, we have

∥xn − x∥ ≤ ∥xn+1 − x∥

for every n = 1, 2, .... Therefore, limn→∞ ∥xn − x∥ exists.
Since xn = PQnx and xn+1 ∈ Qn, using (2.2), we have

∥xn+1 − xn∥2 ≤ ∥xn+1 − x∥2 − ∥xn − x∥2

for every n = 1, 2, .... This implies that

lim
n→∞

∥xn+1 − xn∥ = 0.

Since xn+1 ∈ Cn, we have ∥zn − xn+1∥ ≤ ∥xn − xn+1∥ and hence

∥xn − zn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − zn∥ ≤ 2∥xn − xn+1∥

for every n = 1, 2, .... From limn→∞ ∥xn+1 − xn∥ = 0, we have ∥xn − zn∥ → 0.
For u ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ), from (3.3) we obtain

∥zn − u∥2 ≤ ∥xn − u∥2 + (1− αn)(λn
2k2 − 1)∥un − yn∥2.

Therefore, we have

∥un − yn∥2 ≤ 1

(1− αn)(1− λn
2k2)

(
∥xn − u∥2 − ∥zn − u∥2

)
=

1

(1− αn)(1− λn
2k2)

(∥xn − u∥+ ∥zn − u∥)(∥xn − u∥ − ∥zn − u∥)

=
1

(1− αn)(1− λn
2k2)

(∥xn − u∥+ ∥zn − u∥)∥xn − zn∥. (3.5)
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Since ∥xn−zn∥ → 0 and the sequences {xn} and {zn} are bounded, we obtain ∥un−yn∥ → 0.
By the same process as in (3.2), we also have

∥tn − u∥2 ≤ ∥un − u∥2 − ∥un − yn∥2 − ∥yn − tn∥2 + 2λnk∥un − yn∥∥tn − yn∥
≤ ∥un − u∥2 − ∥un − yn∥2 − ∥yn − tn∥2 + ∥un − yn∥2 + λn

2k2∥tn − yn∥2

= ∥un − u∥2 + (λn
2k2 − 1)∥yn − tn∥2.

Then, we have by (3.5),

∥tn − yn∥2 ≤ λn∥AynAuN∥ ≤ kλn∥yn − un∥

≤ kλn

(1− αn)(1− λn
2k2)

(
∥xn − u∥2 − ∥zn − u∥2

)
=

kλn

(1− αn)(1− λn
2k2)

(∥xn − u∥+ ∥zn − u∥)(∥xn − u∥ − ∥zn − u∥)

≤ kλn

(1− αn)(1− λn
2k2)

(∥xn − u∥+ ∥zn − u∥)∥xn − zn∥.

Since ∥xn − zn∥ → 0 and the sequences {xn} and {zn} are bounded, we obtain ∥tn −
yn∥ → 0. As A is k-Lipschitz-continuous, we have ∥Ayn − Atn∥ → 0. From ∥un − tn∥ ≤
∥un − yn∥+ ∥yn − tn∥ we also have ∥un − tn∥ → 0.

From (3.3) and (3.1), we have

∥zn − u∥2 ≤ α2
n∥xn − u∥2 + (1− αn)[∥un − u∥2 + (λ2

nk
2 − 1)∥un − yn∥2]

≤ α2
n∥xn − u∥2 + (1− αn)∥un − u∥2

≤ α2
n∥xn − u∥2 + (1− αn)[∥xn − u∥2 + rn(rn − 2α)∥Bxn −Bu∥2]

= ∥xn − u∥2 + (1− αn)rn(rn − 2α)∥Bxn −Bu∥2.

Hence, we have

(1− c)d(2α− e)∥Bxn −Bu∥2 ≤ (1− αn)rn(2α− rn)∥Bxn −Bu∥2

≤ ∥xn − u∥2 − ∥zn − u∥2

≤ (∥xn − u∥+ ∥zn − u∥)∥xn − zn∥.

Since ∥xn − zn∥ → 0 and the sequences {xn} and {zn} are bounded, we obtain ∥Bxn −
Bu∥ → 0.

For u ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ), we have, from Lemma 2.2,

∥un − u∥2 = ∥Trn(xn − rnBxn)− Trn(u− rnBu)∥2

≤ ⟨Trn(xn − rnBxn)− Trn(u− rnBu), xn − rnBxn − (u− rnBu)⟩

=
1

2
{∥un − u∥2 + ∥xn − rnBxn − (u− rnBu)∥2

− ∥xn − rnBxn − (u− rnBu)− (un − u)∥2}

≤ 1

2
{∥un − u∥2 + ∥xn − u∥2 − ∥xn − rnBxn − (u− rnBu)− (un − u)∥2}

=
1

2
{∥un − u∥2 + ∥xn − u∥2 − ∥xn − un∥2

+ 2rn⟨Bxn −Bu, xn − un⟩ − r2n∥Bxn −Bu∥2.
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Hence,

∥un − u∥2 ≤ ∥xn − u∥2 − ∥xn − un∥2 + 2rn⟨Bxn −Bu, xn − un⟩ − r2n∥Bxn −Bu∥2.

Then, by (3.3) and (3.2),

∥zn − u∥2 ≤ αn∥xn − u∥2 + (1− αn)∥tn − u∥2

≤ αn∥xn − u∥2 + (1− αn)∥un − u∥2

≤ αn∥xn − u∥2 + (1− αn)[∥xn − u∥2 − ∥xn − un∥2

+ 2rn⟨Bxn −Bu, xn − un⟩ − r2n∥Bxn −Bu∥2]
≤ ∥xn − u∥2 − (1− αn)∥xn − un∥2 + (1− αn)2rn∥Bxn −Bu∥∥xn − un∥.

Hence,

(1− c)∥xn − un∥2 ≤ (1− αn)∥xn − un∥2

≤ ∥xn − u∥2 − ∥zn − u∥2 + (1− αn)2rn∥Bxn −Bu∥∥xn − un∥
= (∥xn − u∥+ ∥zn − u∥)(∥xn − u∥ − ∥zn − u∥)
+ (1− αn)2rn∥Bxn −Bu∥∥xn − un∥

≤ (∥xn − u∥+ ∥zn − u∥)∥xn − zn∥+ (1− αn)2rn∥Bxn −Bu∥∥xn − un∥.

Since ∥xn − zn∥ → 0, ∥Bxn − Bu∥ → 0 and the sequences {xn} and {zn} are bounded,
we obtain ∥xn − un∥ → 0. From ∥zn − tn∥ ≤ ∥zn − xn∥ + ∥xn − un∥ + ∥un − tn∥ we have
∥zn − tn∥ → 0. From ∥tn − xn∥ ≤ ∥tn − un∥+ ∥xn − un∥ we also have ∥tn − xn∥ → 0.

Since zn = αnxn + (1− αn)Stn, we have (1− αn)(Stn − tn) = αn(tn − xn) + (zn − tn).
Then

(1− c)∥Stn − tn∥ ≤ (1− αn)∥Stn − tn∥ ≤ αn∥tn − xn∥+ ∥zn − tn∥
and hence ∥Stn − tn∥ → 0. As {xn} is bounded, there exists a subsequence {xni} of {xn}
such that xni ⇀ w. From ∥xn−un∥ → 0, we obtain that uni ⇀ w. From ∥un− tn∥ → 0, we
also obtain that tni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C.

Now, we first show w ∈ GEP (F ). By un = Trn(xn − rnBxn), we know that

F (un, y) + ⟨Bxn, y − un⟩+ 1
rn
⟨y − un, un − xn⟩ ≥ 0,∀y ∈ C.

It follows from (A2) that

⟨Bxn, y − un⟩+
1

rn
⟨y − un, un − xn⟩ ≥ F (y, un), ∀y ∈ C.

Hence,

⟨Bxni , y − uni⟩+ ⟨y − uni ,
uni − xni

rni

⟩ ≥ F (y, uni), ∀y ∈ C. (3.6)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty+(1− t)w. Since y ∈ C and w ∈ C, we obtain
yt ∈ C. So, from (3.6) we have

⟨yt − uni , Byt⟩ ≥ ⟨yt − uni , Byt⟩ − ⟨yt − uni , Bxni⟩

− ⟨yt − uni ,
uni − xni

rni

⟩+ F (yt, uni)

= ⟨yt − uni , Byt −Buni⟩+ ⟨yt − uni , Buni −Bxni⟩

− ⟨yt − uni
,
uni

− xni

rni

⟩+ F (yt, uni
).
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Since ∥uni − xni∥ → 0, we have ∥Buni − Bxni∥ → 0. Further, from the inverse-strong
monotonicity of B, we have ⟨yt − uni , Byt −Buni⟩ ≥ 0. So, from (A4) we have

⟨yt − w,Byt⟩ ≥ F (yt, w), (3.7)

as i → ∞. From (A1), (A4) and (3.7), we also have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, w)

≤ tF (yt, y) + (1− t)⟨yt − w,Byt⟩
= tF (yt, y) + (1− t)t⟨y − w,Byt⟩

and hence

0 ≤ F (yt, y) + (1− t)⟨y − w,Byt⟩.

Letting t → 0, we have, for each y ∈ C,

F (w, y) + ⟨y − w,Bw⟩ ≥ 0. (3.8)

This implies that w ∈ GEP (F ).

We next show that w ∈ Fix(S). Assume w /∈ Fix(S). Since tni ⇀ w and w ̸= Sw, from
the Opial theorem [18] we have

lim inf
i→∞

∥tni − w∥ < lim inf
i→∞

∥tni − Sw∥

≤ lim inf
i→∞

{∥tni − Stni∥+ ∥Stni − Sw∥}

≤ lim inf
i→∞

∥tni − w∥.

This is a contradiction. So, we get that w ∈ Fix(S).

Finally we show that w ∈ V I(C,A). Let

Tv =

{
Av +NCv if v ∈ C,
∅ if v /∈ C

where NCv is the normal cone to C at v ∈ C. We have already mentioned that in this case
the mapping T is maximal monotone, 0 ∈ Tv if and only if v ∈ V I(C,A). Let (v, g) ∈ G(T ).
Then Tv = Av + NCv and hence g − Av ∈ NCv. So, we have ⟨v − t, g − Av⟩ ≥ 0 for all
t ∈ C. On the other hand, from tn = PC(un − λnAyn) and v ∈ C we have

⟨un − λnAyn − tn, tn − v⟩ ≥ 0

and hence

⟨v − tn,
tn − un

λn
+Ayn⟩ ≥ 0.
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Therefore, we have

⟨v − tni , g⟩ ≥ ⟨v − tni , Av⟩

≥ ⟨v − tni , Av⟩ − ⟨v − tni ,
tni − uni

λni

+Ayni⟩

= ⟨v − tni , Av −Ayni −
tni − uni

λni

⟩

= ⟨v − tni , Av −Atni +Atni −Ayni −
tni − uni

λni

⟩

= ⟨v − tni , Av −Atni⟩+ ⟨v − tni , Atni −Ayni⟩ − ⟨v − tni ,
tni − uni

λni

⟩

≥ ⟨v − tni , Atni −Ayni⟩ − ⟨v − tni ,
tni − uni

λni

⟩.

Hence we obtain ⟨v − w, g⟩ ≥ 0 as i → ∞. Since T is maximal monotone, we have
w ∈ T−10 and hence w ∈ V I(C,A). This implies w ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ).

From l0 = PFix(S)∩V I(C,A)∩GEP (F )x, w ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ) and (3.4), we
have

∥l0 − x∥ ≤ ∥w − x∥ ≤ lim inf
i→∞

∥xni − x∥ ≤ lim sup
i→∞

∥xni − x∥ ≤ ∥l0 − x∥.

So, we obtain
lim
i→∞

∥xni − x∥ = ∥w − x∥.

From xni − x ⇀ w− x we have xni − x → w− x and hence xni → w. Since xn = PQnx and
l0 ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ) ⊂ Cn ∩Qn ⊂ Qn, we have

−∥l0 − xni∥2 = ⟨l0 − xni , xni − x⟩+ ⟨l0 − xni , x− l0⟩ ≥ ⟨l0 − xni , x− l0⟩.

As i → ∞, we obtain −∥l0 − w∥2 ≥ ⟨l0 − w, x − l0⟩ ≥ 0 by l0 = PFix(S)∩V I(C,A)∩GEP (F )x
and w ∈ Fix(S) ∩ V I(C,A) ∩GEP (F ). Hence we have w = l0. This implies that xn → l0.
It is easy to see un → l0, yn → l0 and zn → l0. The proof is now complete.

By Theorem 3.1, we can obtain the following new and interesting strong convergence
theorems in a real Hilbert space.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F be a bifunction from C ×C to R satisfying (A1)-(A4) and let B be an α-inverse-strongly
monotone mapping of C into H. Let S be a nonexpansive mapping of C into itself such that
Fix(S) ∩GEP (F ) ̸= ∅. Let {xn}, {un} and {zn} be sequences generated by

x1 = x ∈ H,
F (un, y) + ⟨Bxn, y − un⟩+ 1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

zn = αnxn + (1− αn)Sun,
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x

for every n = 1, 2, .... If {αn} ⊂ [0, c] for some c ∈ [0, 1) and {rn} ⊂ [d, e] for some
d, e ∈ (0, 2α). Then, {xn}, {un} and {zn} converge strongly to w = PFix(S)∩GEP (F )(x).

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result.
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Corollary 3.3. Let H be a real Hilbert space. Let S be a nonexpansive mapping of C into
itself such that Fix(S) ̸= ∅. Let {xn} and {zn} be sequences generated by

x1 = x ∈ H,
zn = αnxn + (1− αn)Sxn,
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x

for every n = 1, 2, .... If {αn} ⊂ [0, c] for some c ∈ [0, 1). Then, {xn} and {zn} converge
strongly to w = PFix(S)(x).

Proof. Putting C = H, F = 0 and A = B = 0, by Theorem 3.1 we obtain the desired
result.

A mapping T of a closed convex subset C into itself is pseudocontractive if there holds
that

⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2

for all x, y ∈ C; see [4]. Obviously, the class of pseudocontractive mappings is more general
than the class of nonexpansive mappings. Now we prove a strong convergence theorem of a
new iterative process for finding a common element of the set of solutions of a generalized
equilibrium problem, the set of fixed points of a nonexpansive mapping and the set of fixed
points of a Lipschitz pseudocontractive mapping.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F be a bifunction from C ×C to R satisfying (A1)-(A4) and let B be an α-inverse-strongly
monotone mapping of C into H. Let T be a pseudocontrative and m-Lipschitz-continuous
mapping of C into itself. Let S be a nonexpansive mapping of C into itself such that Fix(S)∩
Fix(T ) ∩GEP (F ) ̸= ∅. Let {xn}, {un}, {yn} and {zn} be sequences generated by

x1 = x ∈ H,
F (un, y) + ⟨Bxn, y − un⟩+ 1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = un − λn(un − Tun),
zn = αnxn + (1− αn)SPC(un − λn(yn − Tyn)),
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
m+1 ), {αn} ⊂ [0, c] for some

c ∈ [0, 1) and {rn} ⊂ [d, e] for some d, e ∈ (0, 2α). Then, {xn}, {un}, {yn} and {zn}
converge strongly to w = PFix(S)∩Fix(T )∩GEP (F )(x).

Proof. Let A = I − T . We show that the mapping A is monotone and (m + 1)-Lipschitz-
continuous. From the definition of the mapping A, we have

⟨Ax−Ay, x− y⟩ = ⟨x− y − Tx+ Ty, x− y⟩
= ∥x− y∥2 − ⟨Tx− Ty, x− y⟩ ≥ ∥x− y∥2 − ∥x− y∥2 = 0.

So, A is monotone. We also have

∥Ax−Ay∥2 = ∥(I − T )x− (I − T )y∥ = ∥x− y∥2 + ∥Tx− Ty∥2 − 2⟨x− y, Tx− Ty⟩
≤ ∥x− y∥2 +m∥x− y∥2 + 2∥x− y∥∥Tx− Ty∥
≤ ∥x− y∥2 +m∥x− y∥2 + 2m∥x− y∥2

= (m+ 1)2∥x− y∥2.
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So, we have ∥Ax−Ay∥ ≤ (m+ 1)∥x− y∥ and A is (m+ 1)-Lipschitz-continuous. It is easy
to check that Fix(T ) = V I(C,A). By Theorem 3.1 we obtain the desired result.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A
be a monotone and k-Lipschitz-continuous mapping of C into H, B be an α-inverse-strongly
monotone mapping of C into H. Let S be a nonexpansive mapping of C into itself such that
Fix(S) ∩ V I(C,A) ∩ V I(C,B) ̸= ∅. Let {xn}, {un}, {yn} and {zn} be sequences generated
by 

x1 = x ∈ H,
un = PC(xn − rnBxn),

yn = PC(un − λnAun),
zn = αnxn + (1− αn)SPC(un − λnAyn),
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [0, c] for some c ∈ [0, 1)

and {rn} ⊂ [d, e] for some d, e ∈ (0, 2α). Then, {xn}, {un}, {yn} and {zn} converge strongly
to w = PFix(S)∩V I(C,A)∩V I(C,B)(x).

Proof. In Theorem 3.1, put F = 0. Then, we obtain that

⟨Bxn, y − un⟩+
1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C, ∀n ∈ N.

This implies that

⟨y − un, un − (xn − rnBxn)⟩ ≥ 0, ∀y ∈ C, ∀n ∈ N.

So, we get that un = PC(xn−rnBxn) for all n ∈ N . Then we obtain the desired result from
Theorem 3.1.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let B
be an α-inverse-strongly monotone mapping of C into H. Let S be a nonexpansive mapping
of C into itself such that Fix(S)∩V I(C,B) ̸= ∅. Let {xn} and {zn} be sequences generated
by 

x1 = x ∈ H,
zn = αnxn + (1− αn)SPC(xn − rnBxn),
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn

∩
Qn

x

for every n = 1, 2, .... If {αn} ⊂ [0, c] for some c ∈ [0, 1) and {rn} ⊂ [d, e] for some
d, e ∈ (0, 2α). Then, {xn} and {zn} converge strongly to w = PFix(S)∩V I(C,B)(x).

Proof. In Corollary 3.5, put A = 0. Then we obtain the desired result from Corollary
3.5.
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[9] R.Gárciga Otero and A. Iuzem, Proximal methods with penalization effects in Banach
spaces, Numer. Funct. Anal. Optim. 25 (2004) 69–91.

[10] K. Goebel and W.A. Kirk, Topics on Metric Fixed-Point Theory, Cambridge University
Press, Cambridge, England, 1990.

[11] B.-S. He, Z.-H. Yang, and X.-M. Yuan, An approximate proximal-extragradient type
method for monotone variational inequalities, J. Math. Anal. Appl. 300 (2004) 362–374.

[12] M. Kikkawa and W. Takahashi, Approximating fixed points of infinite nonexpansive
mappings by the hybrid method, J. Optim. Theory Appl. 117 (2003) 93–101.

[13] G.M. Korpelevich, The extragradient method for finding saddle points and other prob-
lems, Matecon 12 (1976) 747–756.

[14] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a Hhybrid method
for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J.
Optim. 16 (2006) 1230–1241.

[15] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient
method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl.
128 (2006) 191–201.

[16] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings
and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372–379.

[17] M.A. Noor, New extragradient-type methods for general variational inequalities, J.
Math. Anal. Appl. 277 (2003) 379–394.



A NEW METHOD FOR GENERALIZED EQUILIBRIUM PROBLEMS 123

[18] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpan-
sive mappings, Bull. Amer. Math. Soc. 73 (1967) 561–597.

[19] S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems and
fixed point problems of nonexpansive mappings and monotone mappings, Appl. Math.
Comput. 197 (2008) 548–558.

[20] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans.
Amer. Math. Soc. 149 (1970) 75–88.

[21] M.V. Solodov and B.F. Svaiter, Forcing strong convergence of proximal point iterations
in a Hilbert space, Math. Program. 87 (2000) 189–202.

[22] M.V. Solodov and B.F. Svaiter, An inexact hybrid generalized proximal point algorithm
and some new results on the theory of Bregman functions, Math. Oper. Res. 25 (2000)
214–230.

[23] M.V. Solodov, Convergence rate analysis of iteractive algorithms for solving variational
inequality problem, Math. Program. 96 (2003) 513–528.

[24] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive
mapping and an Eequilibrium problem, J. Optim. Theory Appl. 133 (2007) 359–370.

[25] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilib-
rium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Analysis 69
(2008) 1025–1033.

[26] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium prob-
lems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2006) 506–
515.

[27] Y. Yao and J.-C. Yao, On modified iterative method for nonexpansive mappings and
monotone mappings, Appl. Math. Comput. 186 (2007) 1551–1558.

[28] L.C. Zeng and J.C. Yao, Strong convergence theorem by an extragradient method for
fixed point problems and variational inequality problems, Taiwan. J. Math. 10 (2006)
1293–1303.

Manuscript received 30 September 2008
revised 1 June 2009

accepted for publication 15 June 2009

Jian-Wen Peng
School of Mathematics, Chongqing Normal University
Chongqing 400047, P. R. China
E-mail address: jwpeng2008@gmail.com

Jen-Chih Yao
Department of Applied Mathematics, National Sun Yat-sen University
Kaohsiung, Taiwan 804 R. O. C.
E-mail address: yaojc@math.nsysu.edu.tw


