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We are interesting in problem (P), because this programming problem is a wide problem.
Indeed, there are some special cases for problem (P). For details, please refer to [6–9] and [11].
The minimax fractional complex programming problem has several applications in such as
electrical engineering, filter theory, etc. We can find an application in the field of filter
theory, that is a problem to evaluate the eigenvalues λ1, . . . , λm of the correlation matrix A
as the following:

λk = min
dim(S)=k

max
z∈S

zHAz

zHz
, k = 1, . . . ,m

where S is a subspace of Cm, dim(S) denotes the dimension of subspace S ∈ Cm, A is
a positive semidefine Hermitian matrix, and the maximum is taken the nonzero complex
vector z over the subspace S.

The main purpose of this article extend paper [11]. We will establish the mixed type
duality (MD) w.r.t. problem (P). We will know that this new dual problem (MD) in this
paper contains dual problems (WD) and (MWD) in [11], and then we will prove its duality
theorems (cf. [1], [2]). In 2009, Lai and Huang [10] already found the optimality conditions
of problem (P). We can employ to establish a mixed type duality of (P) as follows.

The constraint function in (P) is h(ζ) =
(
h1(ζ), h2(ζ), . . . , hp(ζ)

)
∈ Cp. By optimality

conditions of (P), there is a vector multiplier µ = (µ1, . . . , µp) ∈ S∗ ⊂ Cp on h(ζ) ⊂ Cp,
where S∗ is the dual cone of S in Cp. Now, we partition P = {1, . . . , p}, the index set of
the constraint function h(ζ) to be P = P0 ∪ P1 ∪ · · · ∪ Pt with Re ⟨ hPr (ζ), µPr ⟩ ≤ 0 for
r = 0, 1, . . . , t, where hPr (ζ) ≡

(
hi(ζ)

)
i∈Pr

, µPr ≡
(
µi

)
i∈Pr

.

We define the mixed type dual problem of (P) as the form:

(MD) max
(k,λ̃,η̃)∈K(ξ)

max
(ξ,µ,w1,w2)∈X3(k,λ̃,η̃)

k∑
i=1

λiRe
[
f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩

]
k∑

i=1

λiRe
[
g(ξ, ηi)− (αHBα)1/2

]
with the constraint satisfing some conditions (it will be described in section 4).

In 2010, Lai and Huang [11] constructed the Wolfe type dual (WD) and Mond-Weir type
dual (MWD) problems. By later section 4 of this paper, we can know that dual problem
(MD) of problem (P) contains dual problems (WD) and (MWD) as the special cases. Finally,
we will prove the duality theorems of (MD) in section 5. This means that there are no duality
gaps between problem (P) and problem (MD).

2 Some Definitions and Notations

In order to get the duality theorems, we need some generalizations of convexity as follows.
(cf. Lai and Huang [9, 10]).

Definition 2.1. The real part of an analytic function f(·) from C2n to R is called, respec-
tively,

(i) convex (strictly) at ζ0 ∈ Q ⊂ C2n if
Re
[
f(ζ)− f(ζ0)

]
≥ Re

[
f ′
ζ(ζ0)(ζ − ζ0)

]
,

(>)

(ii) pseudoconvex (strictly) at ζ0 ∈ Q if
Re
[
f ′
ζ(ζ0)(ζ − ζ0)

]
≥ 0 ⇒ Re

[
f(ζ)− f(ζ0)

]
≥ 0,

(> 0)
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(iii) quasiconvex at ζ0 ∈ Q if
Re
[
f(ζ)− f(ζ0)

]
≤ 0 ⇒ Re

[
f ′
ζ(ζ0)(ζ − ζ0)

]
≤ 0.

Definition 2.2. An analytic mapping h(·) : C2n → Cp is called, respectively,

(i) convex at ζ0 ∈ Q with respect to (w.r.t.) a polyhedral cone S in Cp if there is a
nonzero µ ∈ S∗( ⊂ Cp

)
, the dual cone of S, such that

Re⟨h(ζ)− h(ζ0), µ⟩ ≥ Re⟨h′(ζ0)(ζ − ζ0), µ⟩.
Here ⟨·, ·⟩ stands for the inner product in complex spaces.

(ii) pseudoconvex (strictly) at ζ0 ∈ Q w.r.t. S if there is a nonzero µ ∈ S∗( ⊂ Cp
)
the

dual cone of S, such that
Re⟨h′(ζ0)(ζ − ζ0), µ⟩ ≥ 0 ⇒ Re⟨h(ζ)− h(ζ0), µ⟩ ≥ 0,

(> 0)

(iii) quasiconvex at ζ0 ∈ Q w.r.t. S if there is a nonzero µ ∈ S∗( ⊂ Cp
)
such that

Re⟨h(ζ)− h(ζ0), µ⟩ ≤ 0 ⇒ Re⟨h′(ζ0)(ζ − ζ0), µ⟩ ≤ 0.

Definition 2.3. The problem (P) satisfies the constraint qualification
at a point ζ0 = (z0, z0) if for any nonzero µ ∈ S∗ ⊂ Cp,

Re ⟨ h′(ζ0)(ζ − ζ0), µ ⟩ ̸= 0 for ζ ̸= ζ0. (2.1)

From the next section, we often use the differential property. In order to employ the
behavior, the differential of a complex function is often replaced by the gradient expressions
∇z and ∇z which we introduce as follows.

Lemma 2.4. (Lai and Huang [9, Lemma 2])
For η ∈ Y ⊂ C2m, w ∈ Cn and ζ = (z, z) ∈ Q ⊂ C2n, we denote the function

Φ(ζ) = f(ζ, η) + zHAw + ⟨h(ζ), µ⟩.

Then Φ(ζ) is differentiable at ζ0 = (z0, z0), and

Re[Φ′(ζ0)(ζ−ζ0)] = Re

[⟨
z−z0, ∇zf(ζ0, η)+∇zf(ζ0, η)+Aw+µT∇zh(ζ0)+µH∇zh(ζ0)

⟩]
.

The generalized Schwarz inequality in complex space can be as the form:

Re(zHAu) ≤ (zHAz)1/2(uHAu)1/2.

3 Necessary and Sufficient Optimality Conditions

Throughout this paper, let S = {ξ ∈ Cp | Re(Kξ) ≥ 0} be a polyhedral cone where
K ∈ Ck×p is a k × p matrix; the dual cone S∗ of S is defined by

S∗ = {µ ∈ Cp | Re⟨ξ, µ⟩ ≥ 0, for ξ ∈ S}.

For zp ∈ S, define the set S(zp) as the intersection of those closed half spaces which include
zp in their boundaries. That is, given K = (a1, . . . , ak)

T ∈ Ck×p (of polyhedral cone S) for
ai ∈ Cp, i = 1, . . . , k, and let I(zp) ≡ {i | Re⟨zp, ai⟩ = 0}, define the set

S(zp) ≡ ∩i∈I(zp){ξ ∈ Cp | Re⟨ξ, ai⟩ = 0}.
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Let X be a subset of C2n, and for ζ = (z, z) ∈ X, f(ζ, ·) and g(ζ, ·) are continuous on the
compact set Y . Thus we can denote

Y (ζ) =

{
η ∈ Y

∣∣∣ Re[f(ζ, η) + (zHAz)1/2]

Re[g(ζ, η)− (zHBz)1/2]
= max

ν∈Y

Re[f(ζ, ν) + (zHAz)1/2]

Re[g(ζ, ν)− (zHBz)1/2]

}
since Y is compact, the supremum in the above v ∈ Y is attained. This set Y (ζ) is also a
compact subset of Y .

In [10], Lai et al. have established the optimality conditions. We restate the necessary
optimality conditions as follows.

Theorem 3.1 (Necessary Optimality Conditions [10, Theorem 2]). Let ζ0 = (z0, z0) ∈ Q be
a (P)-optimal with optimal value v∗. Suppose that the problem (P) satisfies the constraint
qualification at ζ0 with assumptions zH0 Az0 = ⟨Az0, z0⟩ > 0 and zH0 Bz0 = ⟨Bz0, z0⟩ > 0.
Then there exist 0 ̸= µ ∈ S∗ ⊂ Cp, u1, u2 ∈ Cn and positive integer k with the following
properties (as Y (ζ0) ⊂ Y is provided a compact subset in C2m):

(i) finite points ηi ∈ Y (ζ0) for i = 1, . . . , k;

(ii) for i = 1, . . . , k, multipliers λi > 0 and
∑k

i=1 λi = 1

such that

k∑
i=1

λi[f(ζ, ηi) − v∗g(ζ, ηi)] + ⟨h(ζ), µ⟩ + ⟨Az, z⟩1/2 + v∗⟨Bz, z⟩1/2 satisfies the

following conditions

k∑
i=1

λi

{[
∇zf(ζ0, ηi) +∇zf(ζ0, ηi)

]
− v∗

[
∇zg(ζ0, ηi) +∇zg(ζ0, ηi)

]}
+
(
µT∇zh(ζ0) + µH∇zh(ζ0)

)
+
(
Au1 + v∗Bu2

)
= 0; (3.1)

Re⟨ h(ζ0), µ ⟩ = 0; (3.2)

uH
1 Au1 ≤ 1, (zH0 Az0)

1/2 = Re(zH0 Au1); (3.3)

uH
2 Bu2 ≤ 1, (zH0 Bz0)

1/2 = Re(zH0 Bu2). (3.4)

Theorem 3.1 holds under the conditions zH0 Az0 = ⟨Az0, z0⟩ > 0 and zH0 Bz0 = ⟨Bz0, z0⟩ >
0. In fact, we may show that this theorem will be true with the assumption either ⟨Az0, z0⟩ =
0 or ⟨Bz0, z0⟩ = 0. In order to prove it, we need the following notations.

Zη̃(ζ0) =
{
ζ ∈ C2n

∣∣∣ − h′
ζ(ζ0)ζ ∈ S(−h(ζ0)), ζ = (z, z) ∈ Q with any one

of the next conditions (i), (ii) and (iii) holds
}
.

(i) Re
{ k∑

i=1

λi

[
f ′
ζ(ζ0, ηi)− v∗g′ζ(ζ0, ηi)

]
ζ +

⟨Az0, z⟩
⟨Az0, z0⟩1/2

+ ⟨(v∗)2Bz, z⟩1/2
}
< 0,

if zH0 Az0 > 0 and zH0 Bz0 = 0;

(ii) Re
{ k∑

i=1

λi

[
f ′
ζ(ζ0, ηi)− v∗g′ζ(ζ0, ηi)

]
ζ + ⟨Az, z⟩1/2 + ⟨v∗Bz0, z⟩

⟨Bz0, z0⟩1/2
}
< 0,

if zH0 Az0 = 0 and zH0 Bz0 > 0;
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(iii) Re
{ k∑

i=1

λi

[
f ′
ζ(ζ0, ηi)− v∗g′ζ(ζ0, ηi)

]
ζ + ⟨[A+ (v∗)2B]z, z⟩1/2

}
< 0,

if zH0 Az0 = 0 and zH0 Bz0 = 0.

Here, S(−h(ζ0)) is the intersection of those closed half spaces which include −h(ζ0)(∈ Cp)
in their boundaries.

Theorem 3.2 (Necessary Optimality Conditions [10, Theorem 3]). Let ζ0 = (z0, z0) ∈
Q be (P)-optimal with optimal value v∗. Suppose that problem (P) possesses constraint
qualification at ζ0 and Zη̃(ζ0) = ∅. Then there exist a nonzero µ ∈ S∗ ⊂ Cp and vectors
u1, u2 ∈ Cn such that the conditions (3.1)∼(3.4) in Theorem 3.1 hold.

We state the sufficient optimality conditions of (P) as follows.

Theorem 3.3 (Sufficient Optimality Conditions [10, Theorem 4]). Let ζ0 = (z0, z0) ∈ Q be
a feasible solution of (P). Suppose that there exist a positive integer k > 0, v∗ ∈ R+, for

i = 1, . . . , k, λi > 0, ηi ∈ Y (ζ0) with
∑k

i=1 λi = 1, and that 0 ̸= µ ∈ S∗ ⊂ Cp, u1, u2 ∈ Cn

satisfying conditions (3.1)∼(3.4) of Theorem 3.1 for Zη̃(ζ0) = ∅. Assume that any one of
the following conditions (i), (ii) and (iii) holds:

(i) Re

{
k∑

i=1

λi

[(
f(ζ, ηi) + zHAu1

)
− v∗

(
g(ζ, ηi)− zHBu2

)]}
is pseudoconvex at

ζ = (z, z) ∈ Q, and h(ζ) is quasiconvex at ζ ∈ Q w.r.t. the polyhedral cone S ⊂ Cp;

(ii) Re

{
k∑

i=1

λi

[(
f(ζ, ηi) + zHAu1

)
− v∗

(
g(ζ, ηi)− zHBu2

)]}
is quasiconvex at

ζ = (z, z) ∈ Q, and h(ζ) is strictly pseudoconvex at ζ ∈ Q w.r.t. S ⊂ Cp;

(iii) Re

{
k∑

i=1

λi

[(
f(ζ, ηi) + zHAu1

)
− v∗

(
g(ζ, ηi)− zHBu2

)]
+ ⟨h(ζ), µ⟩

}
is pseudoconvex

at ζ ∈ Q.

Then ζ0 = (z0, z0) is an optimal solution of (P).

4 Construction for a Mixed Type Duality Model

To perform a mixed type dual problem to the complex programming problem (P), we need
the following preparation. Let ζ = (z, z) ∈ Q ⊂ C2n be any feasible solution of problem
(P). By the compactness of Y in (P), the closed subset Y (ζ) is also compact in which the
constraints fractional function in η has finite points attained to its maximum, that is, to
maximizing the fractional function

φ(ζ) = max
η∈Y

Re
[
f(ζ, η) + (zHAz)1/2

]
Re
[
g(ζ, η)− (zHBz)1/2

] at η1, η2, . . . , ηk for some k ∈ N,

becomes the objective of problem (P).

Since for each ζ = (z, z) ∈ Q, for i = 1, . . . , k, ηi ∈ Y (ζ), λi > 0 with
∑k

i=1 λi = 1, and
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functions f(ζ, ·) and g(ζ, ·) are continuous on Y (ζ), then the objective fractional functional
of problem (P) has the form:

φ(ζ) ≡ max
η∈Y

Re
[
f(ζ, η) + (zHAz)1/2

]
Re
[
g(ζ, η)− (zHBz)1/2

] =

k∑
i=1

λiRe
[
f(ζ, ηi) + (zHAz)1/2

]
k∑

i=1

λiRe
[
g(ζ, ηi)− (zHBz)1/2

] (4.1)

and the problem (P) becomes

(P) min
ζ∈X

φ(ζ). (4.2)

Usually, we use the objective functional of expression (4.1) to construct the duality problems
w.r.t. (P).

In 2010, Lai and Huang have established the duality models of Wolfe type duality (WD)
and Mond-Weir type duality (MWD). We restate them as follows. (For detail, please refer
to [11, Sections 5, 6].)

The Wolfe type dual in fractional programming problem is considered by the objective
of fractional functional added the constraints of (P) with a multiplier µ ∈ S∗ into the
numerator of the fractional functional in (P), precisely, it is performed by:

(WD) max
(k,λ̃,η̃)∈K(ξ)

max
(ξ,µ,w1,w2)∈X1(k,λ̃,η̃)

∑k
i=1 λiRe

[
f(ξ, ηi) + (αHAα)1/2 + ⟨h(ξ), µ⟩

]∑k
i=1 λiRe

[
g(ξ, ηi)− (αHBα)1/2

] .

Here,

(i) K(ξ) stands for a set of points (k, λ̃, η̃) (where λ̃ = (λ1, . . . , λk) and η̃ = (η1, . . . , ηk))
satisfying the optimality conditions of problem (P) for any given feasible solution
ξ = (α, α) ∈ Q, then there exists a nonzero multiplier µ ∈ S∗ ⊂ Cp such that
Re⟨v, µ⟩ ≥ 0 for v ∈ S. Thus Re⟨h(ξ), µ⟩ ≤ 0 as −h(ξ) ∈ S ⊂ Cp.

(ii) The constraint set X1(k, λ̃, η̃) is the set of all feasible solutions (ξ, µ, w1, w2) of (WD),
which satisfy the following expressions:

For ξ = (α, α) ∈ Q ⊂ C2n,{ k∑
i=1

λi

[
∇zf(ξ, ηi) +∇zf(ξ, ηi)

]
+Aw1 + µT ∇zh(ξ) + µH∇zh(ξ)

}
×

( k∑
i=1

λi [g(ξ, ηi)− (αHBα)1/2]
)
−
( k∑

i=1

λi [f(ξ, ηi) + (αHAα)1/2 + ⟨h(ξ), µ⟩]
)
×

{ k∑
i=1

λi

[
∇zg(ξ, ηi) +∇zg(ξ, ηi)

]
−Bw2

}
= 0, (4.3)

Re⟨h(ξ), µ⟩ ≥ 0, µ ̸= 0 in S∗, (4.4)

wH
1 Aw1 ≤ 1, (αHAα)1/2 = Re(αHAw1), (4.5)

wH
2 Bw2 ≤ 1, (αHBα)1/2 = Re(αHBw2), (4.6)
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The Mond-Weir type dual contains no constraints of problem (P) in the objective frac-
tional functional of (MWD) as the following form:

(MWD) max
(k,λ̃,η̃)∈K(ξ)

max
(ξ,µ,w1,w2)∈X2(k,λ̃,η̃)

∑k
i=1 λiRe

[
f(ξ, ηi) + (αHAα)1/2

]∑k
i=1 λiRe

[
g(ξ, ηi)− (αHBα)1/2

]
where K(ξ) is the set of points (k, λ̃, η̃) (where λ̃ = (λ1, . . . , λk) and η̃ = (η1, . . . , ηk)) which
are satisfying to the optimality conditions of (P) for any given feasible solution ξ = (α, α) ∈
Q, and X2(k, λ̃, η̃) denotes the set of all (ξ, µ, w1, w2) ∈ C2n × Cp × Cn × Cn to satisfy the
following conditions:{ k∑

i=1

λi

[
∇zf(ξ, ηi) +∇zf(ξ, ηi)

]
+Aw1

}
×
( k∑

i=1

λi Re [g(ξ, ηi)− (αHBα)1/2]
)

−
( k∑

i=1

λiRe [f(ξ, ηi) + (αHAα)1/2]
)
×
{ k∑

i=1

λi

[
∇zg(ξ, ηi) +∇zg(ξ, ηi)

]
−Bw2

}
+ µT ∇zh(ξ) + µH∇zh(ξ) = 0, (4.7)

Re⟨h(ξ), µ⟩ ≥ 0, (4.8)

wH
1 Aw1 ≤ 1, wH

2 Bw2 ≤ 1, (4.9)

(αHAα)1/2 = Re(αHAw1), (αHBα)1/2 = Re(αHBw2), (4.10)

0 ̸= µ ∈ S∗. (4.11)

The main purpose of this paper is to construct a new duality model w.r.t. (P) which in-
clude dual problems (WD) and (MWD). In order to construct this new dual problem, we take
some notations as follows. The constraint function in (P) is h(ζ) =

(
h1(ζ), h2(ζ), . . . , hp(ζ)

)
∈

(−S) ⊂ Cp, and the multiplier µ = (µ1, . . . , µp) ∈ S∗ ⊂ Cp. Now, we partition the index set
P = {1, . . . , p} of the constraint function h(ζ) to be P = P0 ∪ P1 ∪ · · · ∪ Pt such that

Re ⟨ hPr (ζ), µPr ⟩ ≤ 0 for r = 0, 1, . . . , t,

where hPr (ζ) ≡
(
hi(ζ)

)
i∈Pr

and µPr ≡
(
µi

)
i∈Pr

.

Thus, Re ⟨h(ζ), µ ⟩ = Re ⟨ hP0(ζ), µP0 ⟩+
∑t

r=1 Re ⟨ hPr (ζ), µPr ⟩ ≤ 0.
And for r = 0, 1, . . . , t,

⟨hPr , µPr ⟩ =
∑
i∈Pr

µihi(ζ),

Re⟨h′
Pr
(ζ0)(ζ − ζ0), µPr ⟩ = Re

⟨
z − z0 , µT

Pr
∇zhPr (ζ0) + µH

Pr
∇zhPr (ζ0)

⟩
, (4.12)

where µT
Pr

stands for transpose of µPr
and µH

Pr
= µT

Pr
is the Hermitian of µPr

.
For equality (4.12), the following is an easy explanation. Suppose that Pr =

{1, 2, 3, 4} ⊂ P for some r, and ζ = (z, z) = (z1, . . . , zn, z1, . . . , zn) ∈ C2n, ζ0 = (z0, z0) =
(z0;1, . . . , z0;n, z0;1, . . . , z0;n) ∈ C2n. Thus,

hPr = (h1(ζ), h2(ζ), h3(ζ), h4(ζ)), µPr = (µ1, µ2, µ3, µ4)

and
⟨hPr , µPr ⟩ = µ1h1(ζ) + µ2h2(ζ) + µ3h3(ζ) + µ4h4(ζ).
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⟨h′
Pr
(ζ0)(ζ − ζ0), µPr ⟩ =

⟨(
∇zhPr (ζ0),∇ZhPr (ζ0)

)( z − z0
z − z0

)
, µPr

⟩

=

⟨
∇zh1(ζ0),∇Zh1(ζ0)
∇zh2(ζ0),∇Zh2(ζ0)
∇zh3(ζ0),∇Zh3(ζ0)
∇zh4(ζ0),∇Zh4(ζ0)





z1 − z0;1
...

zn − z0;n
z1 − z0;1

...
zn − z0;n


,


µ1

µ2

µ3

µ4


⟩

=

⟨
∂

∂z1
h1(ζ0), . . . ,

∂
∂zn

h1(ζ0),
∂

∂z1
h1(ζ0), . . . ,

∂
∂zn

h1(ζ0)
∂

∂z1
h2(ζ0), . . . ,

∂
∂zn

h2(ζ0),
∂

∂z1
h2(ζ0), . . . ,

∂
∂zn

h2(ζ0)
∂

∂z1
h3(ζ0), . . . ,

∂
∂zn

h3(ζ0),
∂

∂z1
h3(ζ0), . . . ,

∂
∂zn

h3(ζ0)
∂

∂z1
h4(ζ0), . . . ,

∂
∂zn

h4(ζ0),
∂

∂z1
h4(ζ0), . . . ,

∂
∂zn

h4(ζ0)





z1 − z0;1
...

zn − z0;n
z1 − z0;1

...
zn − z0;n


,


µ1

µ2

µ3

µ4


⟩

=

⟨
∑n

i=1
∂

∂zi
h1(ζ0)(zi − z0;i) +

∑n
i=1

∂
∂zi

h1(ζ0)(zi − z0;i)∑n
i=1

∂
∂zi

h2(ζ0)(zi − z0;i) +
∑n

i=1
∂
∂zi

h2(ζ0)(zi − z0;i)∑n
i=1

∂
∂zi

h3(ζ0)(zi − z0;i) +
∑n

i=1
∂
∂zi

h3(ζ0)(zi − z0;i)∑n
i=1

∂
∂zi

h4(ζ0)(zi − z0;i) +
∑n

i=1
∂
∂zi

h4(ζ0)(zi − z0;i)

 ,


µ1

µ2

µ3

µ4


⟩

Hence,

⟨h′
Pr
(ζ0)(ζ − ζ0), µPr ⟩ =

∑4
i=1 µi

[
∇zhi(ζ0)(z − z0) +∇zhi(ζ0)(z − z0)

]
= ⟨∇zhPr

(ζ0)(z − z0) +∇zhPr
(ζ0)(z − z0), µPr

⟩.

By Lemma 2.4, we have

Re⟨h′
Pr
(ζ0)(ζ − ζ0), µPr ⟩ = Re

⟨
z − z0 , µT

Pr
∇zhPr (ζ0) + µH

Pr
∇zhPr (ζ0)

⟩
.

Now, we can construct a mixed type dual (MD) to fractional programming problem (P)
by considering the objective of fractional functional added a part of the constraints of (P)
with a part of multiplier µ ∈ S∗ into the numerator of the fractional functional in (P), it
means that

(MD) max
(k,λ̃,η̃)∈K(ξ)

max
(ξ,µ,w1,w2)∈X3(k,λ̃,η̃)

k∑
i=1

λiRe
[
f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩

]
k∑

i=1

λiRe
[
g(ξ, ηi)− (αHBα)1/2

] ,

(
≡ max

(k,λ̃,η̃)∈K(ξ)
φMD(ξ̃)

)

where ξ̃ = (ξ, µ, w1, w2) ∈ X3(k, λ̃, η̃) is the feasible solution of (MD).
Here,
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(i) K(ξ) stands for a set of points (k, λ̃, η̃) (where λ̃ = (λ1, . . . , λk) and η̃ = (η1, . . . , ηk))
satisfying the necessary optimality conditions of problem (P) for any given feasible so-
lution ξ = (α, α) ∈ Q. Then there exists a nonzero vector multiplier µ ≡ (µ1, . . . , µp) ∈
S∗(⊂ Cp), the dual cone of the polyhedral cone S in Cp, such that Re⟨v, µ⟩ ≥ 0 for
v ∈ S. Thus the constraint function h(ξ) ≡

(
h1(ξ), . . . hp(ξ)

)
satisfies Re⟨h(ξ), µ⟩ ≤ 0

as −h(ξ) ∈ S ⊂ Cp and µ ∈ S∗.

(ii) The new constraint set X3(k, λ̃, η̃) is the set of all feasible solutions (ξ, µ, w1, w2) of
(MD) satisfying the following expressions (4.13) ∼ (4.16).

That is, the constraints of (MD) are as the following expressions:
For ξ = (α, α) ∈ Q ⊂ C2n,{ k∑

i=1

λi

[
∇zf(ξ, ηi) +∇zf(ξ, ηi)

]
+Aw1 + µT

P0
∇zhP0(ξ) + µH

P0
∇zhP0(ξ)

}
×

( k∑
i=1

λi [g(ξ, ηi)− (αHBα)1/2]
)
−
( k∑

i=1

λi [f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩]
)
×

{ k∑
i=1

λi

[
∇zg(ξ, ηi) +∇zg(ξ, ηi)

]
−Bw2

}
+

t∑
r=1

(
µT
Pr

∇zhPr (ξ) + µH
Pr
∇zhPr (ξ)

)
= 0,

(4.13)

Re⟨hPr (ξ), µPr ⟩ ≥ 0, r = 1, . . . , t, (4.14)

wH
1 Aw1 ≤ 1, (αHAα)1/2 = Re(αHAw1), (4.15)

wH
2 Bw2 ≤ 1, (αHBα)1/2 = Re(αHBw2). (4.16)

In problem (MD), if the index set P of the constraints in (P) is separated by two parts P0

and P1, that is, P = P0 ∪ P1, (Pr = ∅ for r = 2, . . . , t), then
(MD ≡ (WD), when P0 = P and P1 = ∅ and
(MD) ≡ (MWD), when P0 = ∅ and P1 = P.

This shows that the Wolfe type dual (WD) and the Mond-Weir type dual (MWD) are
the special cases of the mixed type dual (MD).

5 Duality Theorems

For convenient to establish the duality theorems of (MD), we define a function

ΦMD(•) =

( k∑
i=1

λiRe
[
f(•, ηi) + (·)HAw1 + ⟨hP0(•), µP0⟩

])
×
(∑k

i=1 λiRe
[
g(ξ, ηi)− αHBw2

])
−
( k∑

i=1

λiRe
[
f(ξ, ηi) + αHAw1 + ⟨hP0(ξ), µP0⟩

])
×
(∑k

i=1 λiRe
[
g(•, ηi)− (·)HBw2

])
where • = (·, ·) ∈ C2n.
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If we get the weak, strong and strict converse duality theorems, then we can know that
there are no duality gaps between problems (P) and (MD).

The weak duality theorem means that: under some conditions, the objective value of the
primary problem (P) is not less than the objective value of its dual problem (D), we state
the theorem as in the following.

Theorem 5.1 (Weak Duality Theorem). Let ζ = (z, z) be (P)-feasible, and (k, λ̃, η̃, ξ, µ, w1, w2)
be (MD)-feasible. Suppose that any one of the following conditions (i) and (ii) holds:

(i) ΦMD(•) is pseudoconvex at ξ ∈ Q, and ⟨hPr (•), µPr ⟩ for r = 1, . . . , t are quasiconvex
at ξ ∈ Q,

(ii) ΦMD(•) is quasiconvex at ξ ∈ Q, and ⟨hPr
(•), µPr

⟩ for r = 1, . . . , t are strictly pseu-
doconvex at ξ ∈ Q.

Then
(minimal) objective value (P) ≥ (maximal) objective value (MD).

That is,

φ(ζ) = max
η∈Y

Re
[
f(ζ, η) + (zHAz)1/2

]
Re
[
g(ζ, η)− (zHBz)1/2

] ≥ φMD(ξ̃).

Proof. Suppose on the contrary that there is a ξ̃ = (ξ, µ, w1, w2) such that

max
η∈Y

Re
[
f(ζ, η) + (zHAz)1/2

]
Re
[
g(ζ, η)− (zHBz)1/2

] < φMD(ξ̃) =

k∑
i=1

λiRe
[
f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩

]
k∑

i=1

λiRe
[
g(ξ, ηi)− (αHBα)1/2

] .

Then for any η ∈ Y ,

Re
[
f(ζ, η) + (zHAz)1/2

]
×

k∑
i=1

λiRe
[
g(ξ, ηi)− (αHBα)1/2

]
−

k∑
i=1

λiRe
[
f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩

]
×Re

[
g(ζ, η)− (zHBz)1/2

]
< 0.

We replace η by ηi and multiply λi (with
∑k

i=1 λi = 1). Then the above inequality deduces
to

{ k∑
i=1

λiRe
[
f(ζ, ηi) + (zHAz)1/2

]}
×
{ k∑

i=1

λiRe
[
g(ξ, ηi)− (αHBα)1/2

]}
−
{ k∑

i=1

λiRe
[
f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩

]}
×
{ k∑

i=1

λiRe
[
g(ζ, ηi)− (zHBz)1/2

]}
< 0. (5.1)

From inequalities (4.15), (4.16) and generalized Schwarz inequality, we obtain

Re(zHAw1) ≤ (zHAz)1/2(wH
1 Aw1)

1/2 ≤ (zHAz)1/2 and (5.2)

Re(zHBw2) ≤ (zHBz)1/2(wH
2 Bw2)

1/2 ≤ (zHBz)1/2, (5.3)
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since wH
1 Aw1 ≤ 1 and wH

2 Bw2 ≤ 1.
By (4.15), (4.16), (5.2), (5.3) and (5.1), we have

ΦMD(ζ)

=
( k∑

i=1

λiRe
[
f(ζ, ηi) + zHAw1 + ⟨hP0(ζ), µP0⟩

])
×
( k∑

i=1

λiRe
[
g(ξ, ηi)− αHBw2

])
−
( k∑

i=1

λiRe
[
f(ξ, ηi) + αHAw1 + ⟨hP0(ξ), µP0⟩

])
×
( k∑

i=1

λiRe
[
g(ζ, ηi)− zHBw2

])
≤
( k∑

i=1

λiRe
[
f(ζ, ηi) + (zHAz)1/2 + ⟨hP0(ζ), µP0⟩

])
×
( k∑

i=1

λiRe
[
g(ξ, ηi)− αHBw2

])
−
( k∑

i=1

λiRe
[
f(ξ, ηi) + αHAw1 + ⟨hP0(ξ), µP0⟩

])
×
( k∑

i=1

λiRe
[
g(ζ, ηi)− (zHBz)1/2

])
=
( k∑

i=1

λiRe
[
f(ζ, ηi) + (zHAz)1/2 + ⟨hP0(ζ), µP0⟩

])
×
( k∑

i=1

λiRe
[
g(ξ, ηi)− αHBw2

])
−
( k∑

i=1

λiRe
[
f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩

])
×
( k∑

i=1

λiRe
[
g(ζ, ηi)− (zHBz)1/2

])
< 0 + ⟨hP0(ζ), µP0⟩ ×

( k∑
i=1

λiRe
[
g(ξ, ηi)− αHBw2

])
. (5.4)

Since Re ⟨hP0(ζ), µP0⟩ ≤ 0 and
(∑k

i=1 λiRe
[
g(ξ, ηi)− αHBw2

])
> 0, from (5.4), we get

ΦMD(ζ) < 0 = ΦMD(ξ). (5.5)

Since ζ = (z, z) and ξ = (α, α) are feasible solutions of (P) and (MD), we have

Re ⟨hPr (ζ), µPr ⟩ ≤ 0 ≤ Re ⟨hPr (ξ), µPr ⟩ r = 1, . . . , t. (5.6)

If hypothesis (i) holds, ΦMD(•) is pseudoconvex at ξ and ⟨hPr (•), µPr ⟩ for r = 1, . . . , t are
quasiconvex at ξ, then by (5.5) and (5.6), we get

Re[Φ′
MD(ξ)(ζ − ξ)] < 0 and Re⟨h′

Pr
(ξ)(ξ − ζ), µPr ⟩ ≤ 0, r = 1, . . . , t.

Thus,

{ k∑
i=1

λi

[
∇zf(ξ, ηi) +∇zf(ξ, ηi)

]
+Aw1 + µT

P0
∇zhP0(ξ) + µH

P0
∇zhP0(ξ)

}
×

( k∑
i=1

λi [g(ξ, ηi)− (αHBα)1/2]
)
−
( k∑

i=1

λi [f(ξ, ηi) + (αHAα)1/2 + ⟨hP0(ξ), µP0⟩]
)
×

{ k∑
i=1

λi

[
∇zg(ξ, ηi) +∇zg(ξ, ηi)

]
−Bw2

}
+

t∑
r=1

(
µT
Pr

∇zhPr (ξ) + µH
Pr
∇zhPr (ξ)

)
< 0. (5.7)
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This contradicts the equality of (4.13).
If hypothesis (ii) holds, from quasiconvexity of ΦMD(•) at ξ and (5.5), we have

Re[Φ′
MD(ξ)(ζ − ξ)] ≤ 0.

From ⟨hP1(•), µP1⟩ for r = 1, . . . , t are srtictly pseudoconvex at ξ and (5.6), we get

Re⟨h′
Pr
(ξ)(ξ − ζ), µPr ⟩ < 0, r = 1, . . . , t.

This contradicts the equality of (4.13), since we can get the inequality (5.7) again.
Hence the proof is complete. �

Suppose that ζ0 is an optimal solution of the primary problem (P). Using ζ0 and the
optimality conditions of (P), we can find a feasible solution for its dual problem (D). Fur-
thermore, if we assume that some suitable conditions are fulfilled, then problems (P) and
(D) have the same optimal vale ( min(P ) = max(D) ), and we have the following strong
duality theorem.

Theorem 5.2 (Strong Duality Theorem). Let ζ0 = (z0, z0) be an optimal solution of problem
(P) satisfying the hypothesis of Theorem 3.1 (Necessary Optimality Conditions). Then there

exist (k, λ̃, η̃) ∈ K(ζ0) and (ζ0, µ, w1, w2) ∈ X(k, λ̃, η̃) such that (k, λ̃, η̃, ζ0, µ, w1, w2) is a
feasible solution of the dual problem (MD). If the hypotheses of Theorem 5.1 are fulfilled,

then (k, λ̃, η̃, ζ0, µ, w1, w2) is an optimal solution of (MD), and the two problems (P) and
(MD) have the same optimal values.

Proof. If ζ0 = (z0, z0) ∈ Q is an optimal solution of problem (P) with optimal value

v∗ = φ(ζ0) =

∑k
i=1 λiRe[f(ζ0, ηi) + (zH0 Az0)

1/2]∑k
i=1 λiRe[g(ζ0, ηi)− (zH0 Bz0)1/2]

,

then by Theorem 3.1, there exist 0 ̸= µ ∈ S∗ ⊂ Cp, w1, w2 ∈ Cn and positive integer k to
satisfy the following equality:{ k∑

i=1

λi

[
∇zf(ζ0, ηi) +∇zf(ζ0, ηi)

]
+Aw1 + µT ∇zh(ζ0) + µH∇zh(ζ0)

}
×

( k∑
i=1

λi [g(ζ0, ηi)− (zH0 Bz0)
1/2]
)
−
( k∑

i=1

λi [f(ζ0, ηi) + (zH0 Az0)
1/2 + ⟨h(ζ0), µ⟩]

)
×

{ k∑
i=1

λi

[
∇zg(ζ0, ηi) +∇zg(ζ0, ηi)

]
−Bw2

}
= 0.

Now, let constant Cg =
(∑k

i=1 λi [g(ζ0, ηi)− (zH0 Bz0)
1/2]
)
, and replace µPr with µPr ×Cg

for r = 1, . . . , t. Thus

{ k∑
i=1

λi

[
∇zf(ζ0, ηi) +∇zf(ζ0, ηi)

]
+Aw1 + µT

P0
∇zhP0(ζ0) + µH

P0
∇zhP0(ζ0)

}
×

( k∑
i=1

λi [g(ζ0, ηi)− (zH0 Bz0)
1/2]
)
−
( k∑

i=1

λi [f(ζ0, ηi) + (zH0 Az0)
1/2 + ⟨hP0(ζ0), µP0⟩]

)
×

{ k∑
i=1

λi

[
∇zg(ζ0, ηi)+∇zg(ζ0, ηi)

]
−Bw2

}
+

t∑
r=1

(
µT
Pr

∇zhPr (ζ0)+µH
Pr
∇zhPr (ζ0)

)
= 0.
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It follows that (k, λ̃, η̃) ∈ K(ζ0) and (ζ0, µ, w1, w2) ∈ X(k, λ̃, η̃) such that (k, λ̃, η̃, ζ0, µ, w1, w2)
is a feasible solution of the dual problem (MD).

If the hypotheses of Theorem 5.1 are also fulfilled, then (k, λ̃, η̃, ζ0, µ, w1, w2) is an optimal
solution of the dual problem (MD). �

Next, we state the strict converse duality theorem.

Theorem 5.3 (Strict Converse Duality Theorem). Let ζ̂ and (k̂, λ̂, η̂, ξ̂, µ̂, ŵ1, , ŵ1) be op-
timal solutions of (P) and (MD), respectively, and assume that the assumptions of Theo-
rem 5.2 are fulfilled. If ΦMD(•) is strictly pseudoconvex at ξ ∈ Q and ⟨hPr (•), µPr ⟩ for

r = 1, . . . , t is quasiconvex at ξ ∈ Q, then ζ̂ = ξ̂; and the optimal values of (P) and (MD)
are equal.

Proof. Assume that (ẑ, ẑ) = ζ̂ ̸= ξ̂ = (α̂, α̂), and reach a contradiction.
By Theorem 5.2, we know that

max
η∈Y

Re[f(ζ̂, η) + (ẑHAẑ)1/2]

Re[g(ζ̂, η)− (ẑHBẑ)1/2]
=

k̂∑
i=1

λ̂iRe
[
f(ξ̂, η̂i) + (α̂HAα̂)1/2 + ⟨hP0(ξ̂), µ̂P0⟩

]
k̂∑

i=1

λ̂iRe
[
g(ξ̂, η̂i)− (α̂HBα̂)1/2

] .

Then for each η ∈ Y ,

Re[f(ζ̂, η) + (ẑHAẑ)1/2]

Re[g(ζ̂, η)− (ẑHBẑ)1/2]
≤

k̂∑
i=1

λ̂iRe
[
f(ξ̂, η̂i) + (α̂HAα̂)1/2 + ⟨hP0(ξ̂), µ̂P0⟩

]
k̂∑

i=1

λ̂iRe
[
g(ξ̂, η̂i)− (α̂HBα̂)1/2

] .

That is, for each η ∈ Y ,

(
Re[f(ζ̂, η) + (ẑHAẑ)1/2]

)
×
{ k̂∑

i=1

λ̂iRe
[
g(ξ̂, η̂i)− (α̂HBα̂)1/2

]}
(
Re[g(ζ̂, η)− (ẑHBẑ)1/2]

)
×
{ k̂∑

i=1

λ̂iRe
[
f(ξ̂, η̂i) + (α̂HAα̂)1/2 + ⟨hP0

(ξ̂), µ̂P0
⟩
]}

≤ 0.

It implies that

( k̂∑
i=1

λ̂iRe[f(ζ̂, η̂i) + (ẑHAẑ)1/2]
)
×
{ k̂∑

i=1

λ̂iRe
[
g(ξ̂, η̂i)− (α̂HBα̂)1/2

]}

−
( k̂∑

i=1

λ̂iRe[g(ζ̂, η̂i)− (ẑHBẑ)1/2]
)
×
{ k̂∑

i=1

λ̂iRe
[
f(ξ̂, η̂i) + (α̂HAα̂)1/2 + ⟨hP0(ξ̂), µ̂P0⟩

]}
≤ 0. (5.8)

From inequality (5.8), one can easily obtain

ΦMD(ζ̂) ≤ ΦMD(ξ̂)
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since we could used the same lines as the proof of Theorem 5.1.
Now, ζ = (z, z) and ξ = (α, α) are feasible solutions of (P) and (MD), respectively. We

then have
Re ⟨hPr (ζ), µPr ⟩ ≤ 0 ≤ Re ⟨hPr (ξ), µPr ⟩ , r = 1, . . . , t.

By hypothesis, ΦMD(•) is strictly pseudoconvex at ξ and ⟨hPr (•), µPr ⟩, r = 1, . . . , t is
quasiconvexat at ξ, it implies that

{ k̂∑
i=1

λ̂i

[
∇zf(ξ̂, η̂i) +∇zf(ξ̂, η̂i)

]
+Aŵ1 + µ̂P0

T ∇zhP0(ξ̂) + µ̂P0

H∇zhP0(ξ̂)
}
×

( k̂∑
i=1

λ̂i [g(ξ̂, η̂i)− (α̂HBα̂)1/2]
)
−
( k̂∑

i=1

λ̂i [f(ξ̂, η̂i) + (α̂HAα̂)1/2 + ⟨hP0(ξ̂), µ̂P0⟩]
)
×

{ k̂∑
i=1

λ̂i

[
∇zg(ξ̂, η̂i) +∇zg(ξ̂, η̂i)

]
−Bŵ2

}
+

t∑
r=1

(
µ̂Pr

T ∇zhPr (ξ̂) + µ̂Pr

H∇zhPr (ξ̂)
)
< 0

which contradicts the equality of (4.13). Hence the proof is complete. �

6 Conclusions

In this paper, we construct a mixed type dual problem (MD) for a nondifferentiable minimax
fractional complex problem (P). The merit of problem (MD) is that it can include the
wolfe type dual problem (WD) and Mond-Weir type dual problem (MWD) of problem (P).
Furthermore, we have proved the weak, strong and strict converse duality theorems of (MD).
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