



AN APPLICATION OF BORSUK-ULAM'S THEOREM TO PARAMETRIC OPTIMIZATION

HIDEFUMI KAWASAKI

ABSTRACT. Borsuk-Ulam's theorem is a useful tool of algebraic topology. It states that for any continuous mapping f from the *n*-sphere  $S^n$  to  $\mathbb{R}^n$ , there exists a pair of antipodal points such that f(x) = f(-x). As for its applications, hamsandwich theorem, necklace theorem and coloring of Kneser graph by Lovász [3] are well-known. Recently [2] applied Borsuk-Ulam's theorem to an *n*-tuple of parametric optimization problems with parameter  $u \in S^n$ . This paper sharpens the results of [2].

### 1. INTRODUCTION

Borsuk-Ulam's theorem [1] is an important theorem of algebraic topology. It states that for any continuous mapping f from the *n*-sphere  $S^n$  to the Euclidean space  $\mathbb{R}^n$ , there exists a point  $x \in S^n$  such that f(x) = f(-x). It has several equivalent statements: Tucker's lemma is a combinatorial version and LSB theorem is a set-cover version, see e.g. Matoušek [4]. This is reminiscent of Brouwer's fixed point theorem, which also has many equivalent statements: Sperner's lemma is a combinatorial version and KKM lemma is a set-cover version. Borsuk-Ulam's theorem implies Brouwer's fixed point theorem. However, the converse is unknown for 100 years. In this sense, Borsuk-Ulam's theorem seems stronger than Brouwer's fixed point theorem.

Ham-sandwich theorem is one of the most famous applications of Borsuk-Ulam's theorem. Let  $A_1, \ldots, A_n \subset \mathbb{R}^n$  be compact sets with positive Lebesgue measure  $\mu$ . Then ham-sandwich theorem states that there is a hyperplane H which divides each  $A_i$  in half, that is,  $\mu(A_i \cap H^+) = \mu(A_i \cap H^-)$  for any  $i = 1, \ldots, n$ , where  $H^+$  and  $H^-$  denote closed half spaces determined by H.

Recently in [2] we applied Borsuk-Ulam's theorem to an *n*-tuple of parametric optimization problems with parameter  $u \in S^n$  by using a technique of ham-sandwich theorem, and presented Theorems 1.1 and 1.2 below.

Before quoting them, we explain our notations. For any  $\boldsymbol{u} = (u_1, \ldots, u_{n+1}) \in S^n$ , we write  $\boldsymbol{u} = (u_1, \ldots, u_n) \in \mathbb{R}^n$  and  $\boldsymbol{u} = (u, u_{n+1})$ . We assign to  $\boldsymbol{u} \in S^n$  a

<sup>2020</sup> Mathematics Subject Classification. 90C31, 54C05.

Key words and phrases. Borsuk-Ulam's theorem, parametric optimization, ham-sandwich theorem.

This research is supported by JSPS KAKENHI Grant Number 20K03751 and the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

### HIDEFUMI KAWASAKI

hyperplane  $H_{u} = \{x \in \mathbb{R}^{n} \mid \langle u, x \rangle = u_{n+1}\}$  and two closed half-spaces:

$$H_{\boldsymbol{u}}^+ = \{ x \in \mathbb{R}^n \mid \langle u, x \rangle \ge u_{n+1} \}, \ H_{\boldsymbol{u}}^- = \{ x \in \mathbb{R}^n \mid \langle u, x \rangle \le u_{n+1} \},$$

where  $\langle u, x \rangle$  denotes the inner product  $u_1 x_1 + \cdots + u_n x_n$ . It is clear that  $H^+_{-u} = H^-_u$ . In the case of  $u \neq \mathbf{0}$ , both  $H^+_u$  and  $H^-_u$  are non-empty. In the case of  $u = \mathbf{0}$ , one of  $H^+_u$  and  $H^-_u$  is  $\mathbb{R}^n$ , and the other is empty.

We assume the following strict convexity of  $A_i$  in Theorem 1.1 and Sections 2.

(SC)  $A_i \cap H = \{x\}$  for any boundary point x of  $A_i$  and for any supporting hyperplane H of  $A_i$  at x.

**Theorem 1.1** ([2]). Let  $A_i \subset \mathbb{R}^n$  be a compact convex set whose interior is nonempty, and  $Q_i$  be a non-singular matrix of order n for any i = 1, ..., n. Assume (SC) for any i = 1, ..., n. Then there exists some  $u \in S^n$  such that both  $A_i \cap H_u^+$ and  $A_i \cap H_u^-$  are non-empty, and

(1.1) 
$$\max_{x \in A_i \cap H_{\boldsymbol{u}}^+} \langle u, Q_i x \rangle - \min_{x \in A_i \cap H_{\boldsymbol{u}}^+} \langle u, Q_i x \rangle = \max_{x \in A_i \cap H_{\boldsymbol{u}}^-} \langle u, Q_i x \rangle - \min_{x \in A_i \cap H_{\boldsymbol{u}}^-} \langle u, Q_i x \rangle.$$

**Theorem 1.2** ([2]). Let  $A_i \subset \mathbb{R}^n$  be a compact set whose convex hull has a nonempty interior for any i = 1, ..., n. Then there exists some  $\mathbf{u} \in S^n$  such that both  $A_i \cap H_{\mathbf{u}}^+$  and  $A_i \cap H_{\mathbf{u}}^-$  are non-empty and

(1.2) 
$$\delta^*(u \mid \operatorname{co} A_i \cap H_{\boldsymbol{u}}^+) - \delta_*(u \mid \operatorname{co} A_i \cap H_{\boldsymbol{u}}^+) = \delta^*(u \mid \operatorname{co} A_i \cap H_{\boldsymbol{u}}^-) - \delta_*(u \mid \operatorname{co} A_i \cap H_{\boldsymbol{u}}^-)$$

for all i = 1, ..., n, where  $coA_i$  denotes the convex hull of  $A_i$ , and

$$\delta^*(u \mid X) := \max_{x \in X} \langle u, x \rangle, \ \delta_*(u \mid X) := \min_{x \in X} \langle u, x \rangle.$$

In this paper, we extend Theorem 1.1 to any antipodal function  $f_i(x, \boldsymbol{u})$  w.r.t.  $\boldsymbol{u}$ , that is,  $f_i(x, -\boldsymbol{u}) = -f_i(x, \boldsymbol{u})$  for any  $(x, \boldsymbol{u}) \in \mathbb{R}^n \times S^n$ . Further we remove some assumptions on the interior of  $A_i$  from Theorems 1.1 and 1.2.

In Section 2, we introduce *n*-tuple of parametric optimization problems with parameter  $u \in S^n$ , and show the continuity of its optimal-value function w.r.t. u. By applying Borsuk-Ulam's theorem to the optimal-value functions, we obtain the main theorem (Theorem 2.3).

### 2. PARAMETRIC OPTIMAL-VALUE FUNCTIONS

In this section, we consider a family of parametric optimization problems, and show the continuity of optimal-value functions.

Let  $A_i$  be a non-empty compact convex subset of  $\mathbb{R}^n$  and  $f_i : \mathbb{R}^n \times S^n \to \mathbb{R}$  be a continuous function for any  $i = 1, \ldots, n$ . We consider *n*-tuple of optimal-value functions  $\varphi = (\varphi_1, \ldots, \varphi_n) : S^n \to \mathbb{R}^n$ :

(2.1) 
$$\varphi_i(\boldsymbol{u}) := \begin{cases} \max_{x \in A_i \cap H_{\boldsymbol{u}}^+} f_i(x, \boldsymbol{u}) - \min_{x \in A_i \cap H_{\boldsymbol{u}}^+} f_i(x, \boldsymbol{u}) & (A_i \cap H_{\boldsymbol{u}}^+ \neq \emptyset), \\ \delta^*(u \mid A_i) - u_{n+1} & (A_i \cap H_{\boldsymbol{u}}^+ = \emptyset). \end{cases}$$

The essential part of (2.1) is the first case. The second case comes from the fact that  $A_i \cap H^+_u = \emptyset$  if and only if  $\delta^*(u \mid A_i) - u_{n+1} < 0$ , see Lemma 2.1 below. We

246

note that we defined  $\varphi_i(\boldsymbol{u}) = 0$  for  $A_i \cap H_{\boldsymbol{u}}^+ = \emptyset$  in [2]. The present  $\varphi_i$  works better than the old one.

Set  $U_i^-$ ,  $U_i^+$  and  $U_i^0$  as follows.

- (2.2)  $U_i^- := \{ u \in \mathbb{R}^{n+1} \mid \delta^*(u \mid A_i) < u_{n+1} \},\$
- (2.3)  $U_i^+ := \{ \boldsymbol{u} \in \mathbb{R}^{n+1} \mid \delta^*(\boldsymbol{u} \mid A_i) > u_{n+1} \},\$
- (2.4)  $U_i^0 := \{ \boldsymbol{u} \in \mathbb{R}^{n+1} \mid \delta^*(\boldsymbol{u} \mid A_i) = u_{n+1} \}.$

Since  $A_i$  is a compact convex set,  $\delta^*(u \mid A_i) - u_{n+1}$  is a continuous convex function of  $u = (u, u_{n+1})$ . Hence  $U_i^-$  is open and convex,  $U_i^+$  is open, and  $U_i^0$  is closed.

### Lemma 2.1.

- (1)  $\varphi_i(\mathbf{u}^*) = -1$  at the north pole  $\mathbf{u}^* := (0, \dots, 0, 1) \in S^n$ .
- (2)  $A_i \cap H^+_{\boldsymbol{u}}$  is empty if and only if  $\boldsymbol{u} \in U^-_i$ .

Further, under the assumption (SC), it holds that

- (3) If  $\delta^*(u \mid A_i) = u_{n+1}$ , then  $A_i \cap H^+_{\boldsymbol{u}}$  is a singleton and  $\varphi_i(\boldsymbol{u}) = 0$ . For any converging sequence  $\boldsymbol{u}^k$  to  $\boldsymbol{u}$ , the diameter of  $A_i \cap H^+_{\boldsymbol{u}^k}$  converges to 0.
- (4)  $\varphi_i$  is continuous on  $S^n$ .

Proof. Since  $A_i \cap H_{u^*}^+ = \{x \in A_i \mid \langle 0, x \rangle \ge 1\} = \emptyset$  at the north pole  $u^* = (0, 1)$ , and since  $\delta^*(0 \mid A_i) - 1 = -1$ , (1) is apparent from the second case of (2.1).

(2) Since  $A_i$  is a compact convex set, it holds that

$$A_i \cap H_{\boldsymbol{u}}^+ = \emptyset \iff \max\{\langle u, x \rangle \mid x \in A_i\} < u_{n+1} \iff \boldsymbol{u} \in U_i^-.$$

(3) If  $\delta^*(u \mid A_i) = u_{n+1}$ , then it follows from (2) that  $A_i \cap H_u^+$  is non-empty. Since  $A_i$  is compact, there exists  $x^* \in A_i$  such that  $\langle u, x^* \rangle = \delta^*(u \mid A_i) = u_{n+1}$ . Hence  $H := \{x \in \mathbb{R}^n \mid \langle u, x \rangle = u_{n+1}\}$  is a supporting hyperplane of  $A_i$  at  $x^*$ . By (SC),  $A_i \cap H$  is a singleton. Since  $A_i \cap H_u^+ = A_i \cap H = \{x^*\}$ , we have

$$\varphi_i(\boldsymbol{u}) = \max_{x \in A_i \cap H_{\boldsymbol{u}}^+} f_i(x, \boldsymbol{u}) - \min_{x \in A_i \cap H_{\boldsymbol{u}}^+} f_i(x, \boldsymbol{u}) = 0.$$

Deny the latter half assertion, then there exist a sequence  $\boldsymbol{u}^k$  converging to  $\boldsymbol{u}$  and  $\delta > 0$  such that diam $(A_i \cap H_{\boldsymbol{u}^k}^+) \geq \delta$ . That is, there exist  $y^k, z^k \in A_i$  such that

(2.5) 
$$\| y^k - z^k \| \ge \delta, \quad \langle u^k, y^k \rangle \ge u_{n+1}^k, \quad \langle u^k, z^k \rangle \ge u_{n+1}^k.$$

By compactness of  $A_i$ , we may assume that  $y^k$  and  $z^k$  converge to some  $y, z \in A_i$ , respectively. Taking  $k \to \infty$  in (2.5), we have

 $|| y - z || \ge \delta, \quad \langle u, y \rangle \ge u_{n+1}, \quad \langle u, z \rangle \ge u_{n+1}.$ 

Therefore,  $A_i \cap H_u^+$  includes distinct points y and z, which contradicts the first assertion.

(4) Since  $\max\{f_i(x, \boldsymbol{u}) \mid x \in A_i \cap H_{\boldsymbol{u}}^+\} - \min\{f_i(x, \boldsymbol{u}) \mid x \in A_i \cap H_{\boldsymbol{u}}^+\}$  is continuous on the open set  $U_i^+$ , and since  $\delta^*(u \mid A_i) - u_{n+1}$  is continuous on the open set  $U_i^-$ , it suffices to prove that  $\varphi_i$  is continuous at any  $\boldsymbol{u} \in U_i^0$ . Assume that  $\boldsymbol{u}^k = (u^k, u_{n+1}^k)$ converges to  $\boldsymbol{u}$ . Since  $\varphi_i(\boldsymbol{u}) = 0$ , we may assume that  $\varphi_i(\boldsymbol{u}^k) \neq 0$  for all k. (i) If  $\varphi_i(\boldsymbol{u}^k) < 0$ , then

$$\varphi_i(\boldsymbol{u}^k) = \delta^*(\boldsymbol{u}^k \mid A_i) - \boldsymbol{u}_{n+1}^k \to \delta^*(\boldsymbol{u} \mid A_i) - \boldsymbol{u}_{n+1} = 0 = \varphi_i(\boldsymbol{u}).$$

(ii) If  $\varphi_i(\boldsymbol{u}^k) > 0$ , then

$$\varphi_i(\boldsymbol{u}^k) = \max_{x \in A_i \cap H_{\boldsymbol{u}^k}^+} f_i(x, \boldsymbol{u}^k) - \min_{x \in A_i \cap H_{\boldsymbol{u}^k}^+} f_i(x, \boldsymbol{u}^k).$$

Since  $f_i$  is uniformly continuous on the compact set  $A_i \times S^n$ , and since the diameter of  $A_i \cap H^+_{u^k}$  tends to 0, we see for any  $\varepsilon > 0$ 

$$|f_i(y, \boldsymbol{u}^k) - f_i(z, \boldsymbol{u}^k)| < \varepsilon \quad (y, \ z \in A_i \cap H_{\boldsymbol{u}^k}^+)$$

for all sufficiently large k. Therefore

$$0 \leq \max_{x \in A_i \cap H_{\boldsymbol{u}^k}^+} f_i(x, \boldsymbol{u}^k) - \min_{x \in A_i \cap H_{\boldsymbol{u}^k}^+} f_i(x, \boldsymbol{u}^k) < \varepsilon,$$

that is,  $|\varphi_i(\boldsymbol{u}^k) - \varphi_i(\boldsymbol{u})| = |\varphi_i(\boldsymbol{u}^k)| < \varepsilon.$ 

**Lemma 2.2.** Assume that  $f_i(x, u)$  is antipodal w.r.t. u for any  $x \in \mathbb{R}^n$ . Then

(2.6) 
$$\varphi_i(-\boldsymbol{u}) = \begin{cases} \max_{x \in A_i \cap H_{\boldsymbol{u}}} f_i(x, \boldsymbol{u}) - \min_{x \in A_i \cap H_{\boldsymbol{u}}} f_i(x, \boldsymbol{u}) & (A_i \cap H_{\boldsymbol{u}}^- \neq \emptyset), \\ u_{n+1} - \delta_*(u \mid A_i) & (A_i \cap H_{\boldsymbol{u}}^- = \emptyset). \end{cases}$$

*Proof.* Since  $H_{-u}^+ = H_u^-$ ,  $A_i \cap H_u^-$  is non-empty if and only if  $A_i \cap H_{-u}^+$  is non-empty. Then it follows from definition of  $\varphi_i$  that

$$\varphi_i(-\boldsymbol{u}) = \max_{x \in A_i \cap H^+_{-\boldsymbol{u}}} f_i(x, -\boldsymbol{u}) - \min_{x \in A_i \cap H^+_{-\boldsymbol{u}}} f_i(x, -\boldsymbol{u})$$
  
$$= \max_{x \in A_i \cap H^-_{\boldsymbol{u}}} (-f_i(x, \boldsymbol{u})) - \min_{x \in A_i \cap H^-_{\boldsymbol{u}}} (-f_i(x, \boldsymbol{u}))$$
  
$$= \max_{x \in A_i \cap H^-_{\boldsymbol{u}}} f_i(x, \boldsymbol{u}) - \min_{x \in A_i \cap H^-_{\boldsymbol{u}}} f_i(x, \boldsymbol{u}).$$

If  $A_i \cap H_u^-$  is empty, then  $A_i \cap H_{-u}^+$  is empty. Hence, by definition of  $\varphi_i$ , we have

$$\varphi_i(-u) = \delta^*(-u \mid A_i) + u_{n+1} = u_{n+1} - \delta_*(u \mid A_i).$$

By applying Borsuk-Ulam's theorem to  $\varphi : S^n \to \mathbb{R}^n$ , we obtain the following, which is an extension of Theorem 1.1.

**Theorem 2.3.** Assume that  $f_i(x, \mathbf{u})$  is antipodal w.r.t.  $\mathbf{u}$  and (SC) is satisfied for any i = 1, ..., n. Then there exists some  $\mathbf{u} \in S^n$  such that both  $A_i \cap H_{\mathbf{u}}^+$  and  $A_i \cap H_{\mathbf{u}}^-$  are non-empty, and

(2.7) 
$$\max_{x \in A_i \cap H_{\boldsymbol{u}}^+} f_i(x, \boldsymbol{u}) - \min_{x \in A_i \cap H_{\boldsymbol{u}}^+} f_i(x, \boldsymbol{u}) = \max_{x \in A_i \cap H_{\boldsymbol{u}}^-} f_i(x, \boldsymbol{u}) - \min_{x \in A_i \cap H_{\boldsymbol{u}}^-} f_i(x, \boldsymbol{u})$$

for any i = 1, ..., n.

248

Proof. By Borsuk-Ulam's theorem, there exists  $\boldsymbol{u} \in S^n$  such that  $\varphi(\boldsymbol{u}) = \varphi(-\boldsymbol{u})$ . Suppose that  $A_i \cap H_{\boldsymbol{u}}^+$  is empty for some *i*. Then Lemma 2.1 (2) implies  $\varphi_i(\boldsymbol{u}) < 0$ . On the other hand, Since  $A_i \cap H_{\boldsymbol{u}}^- = A_i \neq \emptyset$ , we see from (2.6) that  $\varphi_i(-\boldsymbol{u}) \ge 0$ , which contradicts  $\varphi_i(\boldsymbol{u}) = \varphi_i(-\boldsymbol{u})$ . Hence  $A_i \cap H_{\boldsymbol{u}}^+$  is non-empty. Similarly,  $A_i \cap H_{\boldsymbol{u}}^$ is non-empty. Therefore (2.7) is a direct consequence of (2.1) and (2.6).

# 3. Special case of $f_i(x, \boldsymbol{u})$

In Section 2, we required the strict convexity (SC) for  $A_i$  to guarantee the continuity of  $\varphi_i$ . When we take  $f_i(x, \mathbf{u}) = \langle u, x \rangle$ , we do not need (SC).

**Lemma 3.1.** When we take  $f_i(x, u) = \langle u, x \rangle$  for any i = 1, ..., n,  $\varphi_i$  is continuous on the whole  $S^n$  without assuming (SC).

*Proof.* It suffices to prove that  $\varphi_i$  is continuous at any  $\boldsymbol{u} = (u, u_{n+1})$  such that  $\varphi_i(\boldsymbol{u}) = 0$ . Then, it follows from Lemma 2.1 (2) that  $A_i \cap H_{\boldsymbol{u}}^+$  is non-empty. So, by definition of  $\varphi_i$ , we have

$$\max_{x \in A_i \cap H_{\boldsymbol{u}}^+} \langle u, x \rangle - \min_{x \in A_i \cap H_{\boldsymbol{u}}^+} \langle u, x \rangle = \varphi_i(\boldsymbol{u}) = 0,$$

which implies that  $\langle u, x \rangle$  is constant on  $A_i \cap H_u^+ = \{x \in A_i \mid \langle u, x \rangle \ge u_{n+1}\}.$ 

Now, assume that  $\boldsymbol{u}^k = (u^k, u^k_{n+1})$  converges to  $\boldsymbol{u}$ . Since  $\varphi_i(\boldsymbol{u}) = 0$ , it's enough to consider k such that  $\varphi_i(\boldsymbol{u}^k) \neq 0$ .

(i) If there are infinitely many k such that  $\varphi_i(\boldsymbol{u}^k) > 0$ , then it holds that

(3.1) 
$$\varphi_i(\boldsymbol{u}^k) = \max_{x \in A_i \cap H_{\boldsymbol{u}^k}^+} \langle u^k, x \rangle - \min_{x \in A_i \cap H_{\boldsymbol{u}^k}^+} \langle u^k, x \rangle = \langle u^k, x^k \rangle - \langle u^k, y^k \rangle$$

for some  $x^k$ ,  $y^k \in A_i \cap H_{u^k}$ . By taking subsequences, we may assume that  $x^k$  and  $y^k$  converge to some  $x^* \in A_i$  and  $y^* \in A_i$ , respectively. Taking  $k \to \infty$  in (3.1), we have

(3.2) 
$$\lim_{k \to \infty} \varphi_i(\boldsymbol{u}^k) = \langle u, x^* \rangle - \langle u, y^* \rangle.$$

Also, since  $\langle u^k, x^k \rangle \geq u_{n+1}^k$ , we have  $\langle u, x^* \rangle \geq u_{n+1}$ , that is,  $x^* \in A_i \cap H_u^+$ . Similarly we have  $y^* \in A_i \cap H_u^+$ . Since  $\langle u, x \rangle$  is constant on  $A_i \cap H_u^+$ , it follows from (3.2) that  $\varphi_i(\boldsymbol{u}^k) \to 0 = \varphi_i(\boldsymbol{u})$ .

(ii) If there are infinitely many k such that  $\varphi_i(\boldsymbol{u}^k) < 0$ , then by definition of  $\varphi_i$ , it holds that

(3.3) 
$$\varphi_i(\boldsymbol{u}^k) = \delta^*(\boldsymbol{u}^k \mid A_i) - u_{n+1}^k \to \delta^*(\boldsymbol{u} \mid A_i) - u_{n+1}$$

Hence  $\delta^*(\boldsymbol{u} \mid A_i) - u_{n+1} \leq 0$ . On the other hand, taking  $x^0 \in A_i \cap H^+_{\boldsymbol{u}} \subset A_i$ , we have  $\delta^*(\boldsymbol{u} \mid A_i) - u_{n+1} \geq \langle u, x^0 \rangle - u_{n+1} \geq 0$ . Therefore

$$\varphi_i(\boldsymbol{u}^k) \to \delta^*(\boldsymbol{u} \mid A_i) - u_{n+1} = 0 = \varphi_i(\boldsymbol{u}).$$

#### HIDEFUMI KAWASAKI

**Theorem 3.2.** Let  $A_i \subset \mathbb{R}^n$  (i = 1, ..., n) be non-empty compact convex sets. Then there exists some  $u \in S^n$  such that both  $A_i \cap H^+_u$  and  $A_i \cap H^-_u$  are non-empty and (3.4)  $\delta^*(u \mid A_i \cap H^+_u) - \delta_*(u \mid A_i \cap H^+_u) = \delta^*(u \mid A_i \cap H^-_u) - \delta_*(u \mid A_i \cap H^-_u)$ for all i = 1, ..., n.

*Proof.* Take  $f_i(x, \boldsymbol{u}) = \langle u, x \rangle$  for any i = 1, ..., n. Since  $\varphi_i$  is continuous by Lemma 3.1, we obtain (2.7) as well as Theorem 2.3. Then LHS of (2.7) turns into

$$\varphi_i(\boldsymbol{u}) = \max_{x \in A_i \cap H_{\boldsymbol{u}}^+} \langle \boldsymbol{u}, \boldsymbol{x} \rangle - \min_{x \in A_i \cap H_{\boldsymbol{u}}^+} \langle \boldsymbol{u}, \boldsymbol{x} \rangle = \delta^*(\boldsymbol{u} \mid A_i \cap H_{\boldsymbol{u}}^+) - \delta_*(\boldsymbol{u} \mid A_i \cap H_{\boldsymbol{u}}^+)$$

and RHS of (2.7) turns into

$$\varphi_i(-\boldsymbol{u}) = \max_{x \in A_i \cap H_{\boldsymbol{u}}^-} \langle u, x \rangle - \min_{x \in A_i \cap H_{\boldsymbol{u}}^-} \langle u, x \rangle = \delta^*(u \mid A_i \cap H_{\boldsymbol{u}}^-) - \delta_*(u \mid A_i \cap H_{\boldsymbol{u}}^-).$$

Therefore, we obtain (3.4).

**Example 3.3.** n = 1. Take  $f_1(x_1, \boldsymbol{u}) = u_1 x_1$  and  $A_1 = [-1, 1]$ . Representing  $\boldsymbol{u} \in S^1$  in polar coordinates as  $\boldsymbol{u} = (\cos \theta, \sin \theta) (-\pi/4 \le \theta \le 7\pi/4)$ , we have

$$A_{1} \cap H_{u}^{+} = \{x_{1} \in [-1,1] \mid x_{1} \cos \theta \geq \sin \theta\} = \begin{cases} [\tan \theta,1] & (-\pi/4 \leq \theta \leq \pi/4) \\ \emptyset & (\pi/4 < \theta < 3\pi/4) \\ [-1,\tan \theta] & (3\pi/4 \leq \theta \leq 5\pi/4) \\ [-1,1] & (5\pi/4 \leq \theta \leq 7\pi/4). \end{cases}$$

$$\delta^*(u_1 \mid A_1) - u_2 = \begin{cases} |u_1| - u_2 & (u_1 \neq 0) \\ -u_2 & (u_1 = 0) \end{cases} = |u_1| - u_2 = |\cos\theta| - \sin\theta.$$
  
$$\delta^*(u_1 \mid A_1) - \delta_*(u_1 \mid A_1) = \begin{cases} \cos(\theta) - \sin(\theta) & (-\pi/4 \le \theta \le \pi/4) \\ \sin(\theta) - \cos(\theta) & (3\pi/4 \le \theta \le 5\pi/4) \\ 2|\cos(\theta)| & (5\pi/4, 7\pi/4). \end{cases}$$

Therefore, the optimal-value function (2.1) turns into

$$\varphi_1(\boldsymbol{u}) = \begin{cases} |\cos(\theta) - \sin(\theta)| & \text{on } [-\pi/4, \pi/4] \cup [3\pi/4, 5\pi/4] \\ |\cos\theta| - \sin\theta & \text{on } [\pi/4, 3\pi/4] \\ 2|\cos(\theta)| & \text{on } [5\pi/4, 7\pi/4]. \end{cases}$$

There is a pair of antipodal points where  $\varphi_1$  has the same value. For  $\boldsymbol{u} = (1,0)$  corresponding to  $\theta = 0, \pi$ , it holds that  $\varphi_1(\boldsymbol{u}) = \varphi_1(-\boldsymbol{u}) = 1$ .

We have just removed the assumption of the strict convexity of  $A_i$ . By taking its convex hull, we do not need to require convexity either. So  $A_i$  can be finite.

**Corollary 3.4.** Let  $A_i \subset \mathbb{R}^n$  (i = 1, ..., n) be non-empty compact sets. Then there exists some  $u \in S^n$  such that both  $A_i \cap H_u^+$  and  $A_i \cap H_u^-$  are non-empty and

$$(3.5) \quad \delta^*(u \mid A_i \cap H_u^+) - \delta_*(u \mid A_i \cap H_u^+) = \delta^*(u \mid A_i \cap H_u^-) - \delta_*(u \mid A_i \cap H_u^-)$$

for all i = 1, ..., n.

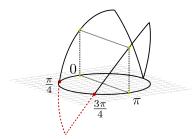


FIGURE 1. The graph of  $\varphi_1$  on  $S^1$ . The doted curve corresponds to the case  $A_1 \cap H^+_{\boldsymbol{u}} = \emptyset$ .

Proof. This is a combination of Theorem 3.2,

$$\delta^*(u \mid \mathrm{co}A_i \cap H_{\boldsymbol{u}}^{\pm}) = \delta^*(u \mid A_i \cap H_{\boldsymbol{u}}^{\pm})$$

and

$$\delta_*(u \mid \mathrm{co}A_i \cap H_u^{\pm}) = \delta_*(u \mid A_i \cap H_u^{\pm})$$

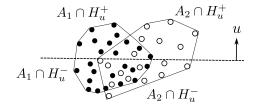


FIGURE 2. This figure represents the equal division of the widths of data  $A_1$  and  $A_2$ . The black points represent data from  $A_1$ , and the white points represent data from  $A_2$ .

#### References

- K. Borsuk, Drei Sätze üver die n-dimensionale euklidische Sphäre, Fundamenta Mathematicae, 20 (1933), 177–190.
- H. Kawasaki, An application of Borsuk-Ulam's theorem to nonlinear programming, https://doi.org/10.48550/arXiv.2308.13748 (2023).
- [3] L. Lovász, Kneser's conjecture, chromatic number and homotopy, Journal of Combinatorial Theorey, Ser. A, 25 (1978), 319-324.
- [4] J. Matoušek, Using the Borsuk-Ulam Theorem, Springer, Berlin Heidelberg, 2008.

Manuscript received 12 December 2023 revised 12 December 2023

## HIDEFUMI KAWASAKI

H. KAWASAKI

Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan *E-mail address:* kawasaki.hidefumi.245@m.kyushu-u.ac.jp

252