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second-order cone programming (SOCP), or semidefinite programming (SDP) can

be applied to the minisum location problems with uncertainty sets according to

the problems in them. A suitable iterative method can be applied to the minisum

location problems with random variables according to the problems in them.

In this paper, we deal with the uncertainty as uncertainty sets. It is suitable

when probability distributions can not be determined, for example, because of lack

of data. We consider the demand points and weights as parameters, and represent

uncertainty of the demand points and weights as bounded and interval uncertainty

sets, respectively.

First, we consider minimax and maximin problems to minimize and maximize

with respect to the variable location of the facility and the parameters, respectively.

Then, a relationship between them is derived. The minimax problem is a robust

optimization problem [2], and the maximin problem is a problem to find the worst

case of the optimal value in the variable location of the facility with respect to the

parameters.

Jamalian and Salahi [9] considered the minisum location problem in R2 with block

norm in which uncertainty of the weights was represented as the interval uncertainty

sets, and the minisum location problem in R2 with Euclidean norm in which un-

certainty of the demand points and weights were represented as the bounded and

interval uncertainty sets, respectively (see also [18]). Juel [11] considered the max-

imin problem in which uncertainty of the demand points was represented as the

bounded uncertainty sets (see also [4, 5, 10]). In other words, [9, 18] take a robust

optimization approach, and [11, 4, 5, 10] take another approach which analyzes the

range of optimal value and solution of the minisum location problem with respect

to the parameters.

Next, we propose an interval-valued approach as a new approach, in which the un-

certainty sets themselves are considered as the demand points and weights, and the

derived minimization problem with an interval-valued objective function is consid-

ered. Furthermore, we also present a procedure to find all (weak) efficient solutions

of the one-dimensional interval-valued minisum location problem derived by the

interval-valued approach.

The remainder of the present paper is organized as follows. In Section 2, some

notations and terminologies are presented. In Section 3, we present a relationship

between the minimax problem and the maximin problem. In Section 4, we present

an example such that optimal values of the minimax and maximin problems do

not coincide when some condition is not satisfied. In Section 5, we propose an

interval-valued approach as a new approach handling uncertainty. In Section 6,

we present a procedure to find all (weak) efficient solutions of the one-dimensional

interval-valued minisum location problem derived by the interval-valued approach.

In Section 7, we present a numerical example to illustrate the procedure of Section

6. Finally, conclusions are presented in Section 8.
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2. Preliminaries

We consider the minisum location problem (P) with the demand points and

weights involving uncertainty. We set w = (w1, w2, . . . , wm) ∈ Rm and w =

(w1, w2, . . . , wm) ∈ Rm, and assume that 0 < wi ≤ w0
i ≤ wi, i = 1, 2, . . . ,m.

Then

(2.1) [w,w] = {w ∈ Rm : w ≤ w ≤ w}

is called an interval uncertainty set for the weights. For each i ∈ {1, 2, . . ., m} and

ri ≥ 0,

(2.2) Ui = {a0
i + ai : ai ∈ Rn, ∥ai∥ ≤ ri} = {bi ∈ Rn : ∥bi − a0

i ∥ ≤ ri}

is called a bounded uncertainty set for the demand point a0
i .

We define f : Rn × Rm × Rn × · · · × Rn︸ ︷︷ ︸
m times

→ R as

(2.3) f(x;w, b1, b2, . . . , bm) =

m∑
i=1

wi∥x− bi∥

for each x ∈ Rn, w = (w1, w2, . . . , wm) ∈ Rm, and bi ∈ Rn, i = 1, 2, . . . ,m. Then,

the problem

(2.4) min
x∈Rn

max
w∈[w,w],bi∈Ui,i=1,...,m

f(x;w, b1, b2, . . . , bm)

is called the minimax problem. Let x∗ ∈ Rn be its optimal solution, and let fminmax

be its optimal value. The problem

(2.5) max
w∈[w,w],bi∈Ui,i=1,...,m

min
x∈Rn

f(x;w, b1, b2, . . . , bm)

is called the maximin problem. Let w∗ ∈ [w,w] and b∗i ∈ Ui, i = 1, 2, . . . ,m be its

optimal solution, and let fmaxmin be its optimal value.

The following two lemmas are very useful for our analysis hereafter.

Lemma 2.1. (Juel [11, Lemma 1]) For fixed x,a ∈ Rn and r ≥ 0, consider the

problem

(2.6)

∣∣∣∣ max ∥x− y∥,
s.t. ∥y − a∥ ≤ r.

Then, its optimal value is ∥x − a∥ + r. In addition, its optimal solution is y =

a+ r
∥x−a∥(a− x) if x ̸= a, and is any y ∈ Rn with ∥y − a∥ = r if x = a.

Lemma 2.2. (Juel [11, Lemma 2]) For fixed x,a ∈ Rn and r ≥ 0, consider the

problem

(2.7)

∣∣∣∣ min ∥x− y∥,
s.t. ∥y − a∥ ≤ r.

Then, its optimal value is max{∥x− a∥ − r, 0}. In addition, its optimal solution is

y = a− r
∥x−a∥(a− x) if ∥x− a∥ > r, and is y = x if ∥x− a∥ ≤ r.
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3. Minimax and maximin problems

This section derives a relationship between the minimax problem (2.4) and the

maximin problem (2.5).

The following theorem provides an optimal solution and value of the minimax

problem (2.4).

Theorem 3.1. Consider the minisum location problem

(P) min
x∈Rn

f(x;w,a0
1,a

0
2, . . . ,a

0
m).

Let x ∈ Rn be its optimal solution, and let f be its optimal value. Then, x∗ = x

and fminmax = f +
∑m

i=1wiri.

Proof. From Lemma 2.1, it follows that, for each x ∈ Rn,

max
w∈[w,w],bi∈Ui,i=1,...,m

f(x;w, b1, b2, . . . , bm)

= max
w∈[w,w],bi∈Ui,i=1,...,m

m∑
i=1

wi∥x− bi∥

=

m∑
i=1

wi(∥x− a0
i ∥+ ri)

=

m∑
i=1

wi∥x− a0
i ∥+

m∑
i=1

wiri

= f(x;w,a0
1,a

0
2, . . . ,a

0
m) +

m∑
i=1

wiri.

Therefore, we have the conclusions. □

Theorem 3.2. (Juel [11, Theorem 2]) Fix any w = (w1, w2, . . . , wm) ∈ [w, w],

and consider the minisum location problem

(Pw) min
x∈Rn

f(x;w,a0
1,a

0
2, . . . ,a

0
m).

Let xw ∈ Rn be its optimal solution, and let fw be its optimal value. In addition,

consider the problem

max
bi∈Ui,i=1,...,m

min
x∈Rn

f(x;w, b1, b2, . . . , bm).

Let bwi ∈ Ui, i = 1, 2, . . . ,m be its optimal solution, and let fwmaxmin be its optimal

value. If xw ̸= a0
i , i = 1, 2, . . . ,m, then bwi = a0

i + ri
∥xw−a0

i ∥
(a0

i − xw), i =

1, 2, . . . ,m and fwmaxmin = fw +
∑m

i=1wiri.

The following theorem provides a relationship between optimal values of the

minimax problem (2.4) and the maximin problem (2.5), and presents an optimal

solution of the maximin problem (2.5).
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Theorem 3.3. Let xw ∈ Rn be an optimal solution of (Pw) (or (P)). If xw ̸= a0
i ,

i = 1, 2, . . . ,m, then fmaxmin = fminmax, w
∗ = w, and b∗i = a0

i + ri

∥xw−a0
i ∥
(a0

i −

xw), i = 1, 2, . . . ,m.

Proof. Setting w = w in Theorem 3.2, we use the same notations as in Theorems

3.1 and 3.2. Since xw ̸= a0
i , i = 1, 2, . . . ,m, it follows from Theorems 3.1 and 3.2

that

fmaxmin = max
w∈[w,w],bi∈Ui,i=1,...,m

min
x∈Rn

f(x;w, b1, b2, . . . , bm)

≥ max
bi∈Ui,i=1,...,m

min
x∈Rn

f(x;w, b1, b2, . . . , bm)

= fwmaxmin

= fw +
m∑
i=1

wiri

= min
x∈Rn

f(x;w,a0
1,a

0
2, . . . ,a

0
m) +

m∑
i=1

wiri

= f +
m∑
i=1

wiri

= fminmax.

Since fmaxmin ≤ fminmax by elementary calculus, we have fmaxmin = fminmax. The

last part of the theorem is derived from Theorem 3.2. □

4. Examples

We consider examples given by Juel [11] in our settings. Set n = 1 and m = 2,

and let ∥ · ∥ = | · |. In addition, let xw ∈ R and fw be an optimal solution and

value of (Pw) (or (P)), respectively.

Example 4.1. Let a01 = 0, a02 = 4, r1 = 1, r2 = 2, and let w0
1 = w0

2 = 1, w1

= w1 = w2 = w2 = 1. Then, an optimal solution of (Pw) (or (P)) is any xw ∈
[0, 4], and the optimal value is fw = 4. From Theorem 3.1, an optimal solution

x∗ ∈ R of the minimax problem (2.4) is any x∗ = xw ∈ [0, 4], and the optimal value

fminmax is fminmax = fw+w1r1+w2r2 = 7. From Theorem 3.3, an optimal solution

w∗ ∈ [w,w] and b∗1, b
∗
2 ∈ R of the maximin problem (2.5) is w∗ = w = (1, 1) and

b∗1 = −1, b∗2 = 6 (also b∗1 = 1 when xw = a01 = 0, and also b∗2 = 2 when xw = a02 = 4),

and the optimal value fmaxmin is fmaxmin = fminmax = 7.

Example 4.2. Let a01 = 0, a02 = 4, r1 = r2 = 1, and let w0
1 = 1, w0

2 = 2,

w1 = w1 = 1, w2 = w2 = 2. Then, an optimal solution of (Pw) (or (P)) is

xw = a02 = 4, and the optimal value is fw = 4. From Theorem 3.1, an optimal

solution x∗ ∈ R of the minimax problem (2.4) is x∗ = xw = 4, and the optimal

value fminmax is fminmax = fw + w1r1 + w2r2 = 7. On the other hand, an optimal
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solutionw∗ ∈ [w,w] and b∗1, b
∗
2 ∈ R of the maximin problem (2.5) is w∗ = w = (1, 2)

and b∗1 = −1, b∗2 = 5, and the optimal value fmaxmin is fmaxmin = 6. Therefore, we

have fmaxmin = 6 < 7 = fminmax.

5. Interval-valued approach

This section proposes an interval-valued approach as a new approach handling

uncertainty.

We define fR : Rn → R as

(5.1) fR(x) = max
w∈[w,w],bi∈Ui,i=1,...,m

f(x;w, b1, b2, . . . , bm)

for each x ∈ Rn. From Lemma 2.1, it follows that, for each x ∈ Rn,

fR(x) = max
w∈[w,w],bi∈Ui,i=1,...,m

f(x;w, b1, b2, . . . , bm)

= max
w∈[w,w],bi∈Ui,i=1,...,m

m∑
i=1

wi∥x− bi∥

=

m∑
i=1

wi(∥x− a0
i ∥+ ri)

=
m∑
i=1

wi∥x− a0
i ∥+

m∑
i=1

wiri

= f(x;w,a0
1,a

0
2, . . . ,a

0
m) +

m∑
i=1

wiri.

It also can be seen that fR is a convex function. In addition, we define fL : Rn → R
as

(5.2) fL(x) = min
w∈[w,w],bi∈Ui,i=1,...,m

f(x;w, b1, b2, . . . , bm)

for each x ∈ Rn. From Lemma 2.2, it follows that, for each x ∈ Rn,

fL(x) = min
w∈[w,w],bi∈Ui,i=1,...,m

f(x;w, b1, b2, . . . , bm)

= min
w∈[w,w],bi∈Ui,i=1,...,m

m∑
i=1

wi∥x− bi∥

=

m∑
i=1

wimax{∥x− a0
i ∥ − ri, 0}.

It also can be seen that fL is a convex function. Since f is continuous, we have

(5.3) f(x; [w,w],U1,U2, . . . ,Um) =
[
fL(x), fR(x)

]
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for each x ∈ Rn. Then, we consider the folloing interval-valued minisum location

problem:

(IP) min
x∈Rn

[
fL(x), fR(x)

]
.

Now, for a, b, c, d ∈ R with a ≤ b and c ≤ d, we define orderings of [a, b] and [c, d]

as follows:

[a, b] ≤ [c, d]
def⇔ a ≤ c, b ≤ d,

[a, b] < [c, d]
def⇔ a < c, b < d.

Then, it follows that, for x,y ∈ Rn,[
fL(x), fR(x)

]
≤

[
fL(y), fR(y)

] iff⇔
(
fL(x), fR(x)

)
≤

(
fL(y), fR(y)

)
,[

fL(x), fR(x)
]
̸=

[
fL(y), fR(y)

] iff⇔
(
fL(x), fR(x)

)
̸=

(
fL(y), fR(y)

)
,[

fL(x), fR(x)
]
<

[
fL(y), fR(y)

] iff⇔
(
fL(x), fR(x)

)
<

(
fL(y), fR(y)

)
.

Thus, the interval-valued minisum location problem (IP) is equivalent to the fol-

lowing bicriteria programming problem:

(MP) min
x∈Rn

(
fL(x), fR(x)

)
.

Definition 5.1. Let x ∈ Rn.

(i) x is said to be an efficient solution or globally efficient solution of (IP) and

(MP) if there is no x ∈ Rn such that (fL(x), fR(x)) ≤ (fL(x), fR(x)) and

(fL(x), fR(x)) ̸= (fL(x), fR(x)).

(ii) x is said to be a locally efficient solution of (IP) and (MP) if for some

neighborhood W of x, there is no x ∈ W such that (fL(x), fR(x)) ≤
(fL(x), fR(x)) and (fL(x), fR(x)) ̸= (fL(x), fR(x)).

(iii) x is said to be a weak efficient solution or globally weak efficient solu-

tion of (IP) and (MP) if there is no x ∈ Rn such that (fL(x), fR(x)) <

(fL(x), fR(x)).

(iv) x is said to be a locally weak efficient solution of (IP) and (MP) if for

some neighborhood W of x, there is no x ∈ W such that (fL(x), fR(x)) <

(fL(x), fR(x)).

Let x ∈ Rn. By the convexity of fR and fL, if x is a locally (weak) efficient

solution of (IP) and (MP), then x is a globally (weak) efficient solution of (IP) and

(MP). Let E and WE be the sets of all efficient solutions and all weak efficient

solutions of (IP) and (MP), respectively.

The scalarization method [7] can be applied to the bicriteria programming prob-

lem (MP). However, it is not trivial whether all (weak) efficient solutions can be

determined even if the scalarized problems can be solved.
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6. One-dimensional interval-valued minisum location problem

This section presents a procedure to find all (weak) efficient solutions of the

one-dimensional interval-valued minisum location problem (IP).

Throughout this and next sections, we set n = 1, and let ∥ · ∥ = | · |. In addition,

we represent a0
i and x as a0i and x, respectively. In this case,

(P) min
x∈R

m∑
i=1

w0
i |x− a0i |,

(IP) min
x∈R

[
fL(x), fR(x)

]
,

(MP) min
x∈R

(
fL(x), fR(x)

)
,

and

fR(x) =

m∑
i=1

wi|x− a0i |+
m∑
i=1

wiri,

fL(x) =
m∑
i=1

wimax{|x− a0i | − ri, 0}.

Let cR(1), c
R
(2), . . . , c

R
(p) (p ≤ m) be all distinct values among a01, a

0
2, . . . , a

0
m sorted

in ascending order, namely, cR(1) < cR(2) < · · · < cR(p)(p ≤ m), and let cL(1), c
L
(2), . . . , c

L
(q)

(q ≤ 3m) be all distinct values among a01, a
0
2, . . . , a

0
m, a01−r1, a

0
2−r2, . . . , a

0
m−rm, a01+

r1, a
0
2 + r2, . . . , a

0
m + rm sorted in ascending order, namely, cL(1) < cL(2) < · · · < cL(q).

For convenience, we set cR(0) = cL(0) = −∞ and cR(p+1) = cL(q+1) = ∞. For each

k ∈ {1, 2, . . . , p + 1}, we set KR
k =

[
cR(k−1), c

R
(k)

]
= {x ∈ R : cR(k−1) ≤ x ≤ cR(k)},

and fix any xRk ∈ int(KR
k ), where int(KR

k ) is the interior of KR
k . For each k ∈

{1, 2, . . . , q + 1}, we set KL
k =

[
cL(k−1), c

L
(k)

]
= {x ∈ R : cL(k−1) ≤ x ≤ cL(k)}, and fix

any xLk ∈ int(KL
k ).

It can be seen that fR is a piecewise linear convex function, and is linear on each

KR
k , k ∈ {1, 2, . . . , p+ 1}. In addition, it follows that

(6.1) (fR)′(xRk ) =
∑

i∈{j∈{1,2,...,m}:a0j<xR
k }

wi −
∑

i∈{j∈{1,2,...,m}:a0j>xR
k }

wi

for each k ∈ {1, 2, . . . , p+ 1}, especially,

(6.2) (fR)′(xR1 ) = −
m∑
i=1

wi < 0, (fR)′(xRp+1) =
m∑
i=1

wi > 0.

Moreover, it follows that

(6.3) (fR)′(xR1 ) < (fR)′(xR2 ) < · · · < (fR)′(xRp+1).
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Similarly, it can be seen that fL is a piecewise linear convex function, and is linear

on each KL
k , k ∈ {1, 2, . . . , q + 1}. In addition, it follows that

(6.4) (fL)′(xLk ) =
∑

i∈{j∈{1,2,...,m}:a0j+rj<xL
k }

wi −
∑

i∈{j∈{1,2,...,m}:a0j−rj>xL
k }

wi

for each k ∈ {1, 2, . . . , q + 1}, especially,

(6.5) (fL)′(xL1 ) = −
m∑
i=1

wi < 0, (fL)′(xLq+1) =
m∑
i=1

wi > 0.

Moreover, it follows that

(6.6) (fL)′(xL1 ) < (fL)′(xL2 ) < · · · < (fL)′(xLq+1).

Let SR be the set of all optimal solutions of the problem

(6.7) min
x∈R

fR(x),

and let SL be the set of all optimal solutions of the problem

(6.8) min
x∈R

fL(x).

We set

(6.9) kR = min
{
k ∈ {2, . . . , p+ 1} : (fR)′(xRk ) ≥ 0

}
,

(6.10) kL = min
{
k ∈ {2, . . . , q + 1} : (fL)′(xLk ) ≥ 0

}
.

Then, we have

(6.11) SR =


{
cR
(kR−1)

}
if (fR)′(xR

kR
) > 0,

KR
kR

=
[
cR
(kR−1)

, cR
(kR)

]
if (fR)′(xR

kR
) = 0,

(6.12) SL =


{
cL
(kL−1)

}
if (fL)′(xL

kL
) > 0,

KL
kL

=
[
cL
(kL−1)

, cL
(kL)

]
if (fL)′(xL

kL
) = 0,

and E and WE can be obtained as follows:

(i) Assume that SR =
{
cR
(kR−1)

}
and SL =

{
cL
(kL−1)

}
. Then

E = WE =
[
min

{
cR(kR−1), c

L
(kL−1)

}
,max

{
cR(kR−1), c

L
(kL−1)

}]
.

(ii) Assume that SR =
{
cR
(kR−1)

}
and SL = KL

kL
=

[
cL
(kL−1)

, cL
(kL)

]
.

(ii-1) If SR ⊂ SL, then

E = SR =
{
cR(kR−1)

}
, WE = SL = KL

kL =
[
cL(kL−1), c

L
(kL)

]
.

(ii-2) If cR
(kR−1)

< cL
(kL−1)

, then

E =
[
cR(kR−1), c

L
(kL−1)

]
, WE =

[
cR(kR−1), c

L
(kL)

]
.
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(ii-3) If cL
(kL)

< cR
(kR−1)

, then

E =
[
cL(kL), c

R
(kR−1)

]
, WE =

[
cL(kL−1), c

R
(kR−1)

]
.

(iii) Assume that SR = KR
kR

=
[
cR
(kR−1)

, cR
(kR)

]
and SL =

{
cL
(kL−1)

}
.

(iii-1) If SL ⊂ SR, then

E = SL =
{
cL(kL−1)

}
, WE = SR = KR

kR =
[
cR(kR−1), c

R
(kR)

]
.

(iii-2) If cL
(kL−1)

< cR
(kR−1)

, then

E =
[
cL(kL−1), c

R
(kR−1)

]
, WE =

[
cL(kL−1), c

R
(kR)

]
.

(iii-3) If cR
(kR)

< cL
(kL−1)

, then

E =
[
cR(kR), c

L
(kL−1)

]
, WE =

[
cR(kR−1), c

L
(kL−1)

]
.

(iv) Assume that SR = KR
kR

=
[
cR
(kR−1)

, cR
(kR)

]
and SL = KL

kL
=

[
cL
(kL−1)

, cL
(kL)

]
.

(iv-1) If SR ∩ SL ̸= ∅, then

E = SR ∩ SL =
[
max

{
cR(kR−1), c

L
(kL−1)

}
,min

{
cR(kR), c

L
(kL)

}]
,

WE = SR ∪ SL =
[
min

{
cR(kR−1), c

L
(kL−1)

}
,max

{
cR(kR), c

L
(kL)

}]
.

(iv-2) If cR
(kR)

< cL
(kL−1)

, then

E =
[
cR(kR), c

L
(kL−1)

]
, WE =

[
cR(kR−1), c

L
(kL)

]
.

(iv-3) If cL
(kL)

< cR
(kR−1)

, then

E =
[
cL(kL), c

R
(kR−1)

]
, WE =

[
cL(kL−1), c

R
(kR)

]
.

7. Numerical example

Using the similar settings as in the previous section, we set m = 3, and set a01 = 3,

a02 = 5, a03 = 8, r1 = r2 = r3 = 1, w0
1 = w0

2 = 3, w0
3 = 4, w1 = 2, w2 = w3 = 1,

w1 = w2 = 4, w3 = 8. Then, it follows that (Figures 1 and 2)

fR(x) =
m∑
i=1

wi|x− a0i |+
m∑
i=1

wiri

= 4|x− 3|+ 4|x− 5|+ 8|x− 8|+ 16,

fL(x) =

m∑
i=1

wimax{|x− a0i | − ri, 0}

= 2max{|x− 3| − 1, 0}+max{|x− 5| − 1, 0}
+max{|x− 8| − 1, 0}.
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From Figures 1 and 2, it follows that SR = [5, 8] and SL = {4}. Therefore, we have
E = [4, 5] and WE = [4, 8] from (iii-2) in the previous section.
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Figure 1 fR. Figure 2 fL.

8. Conclusion

In this paper, we considered a single facility location problem, where demand

points and associated weights were given. The single facility location problem was

a problem to minimize the total sum of weighted distances from the variable loca-

tion of the facility to the demand points. Then, the demand points and weights

were considered as parameters, and the demand points and weights with uncertainty

were represented as bounded and interval uncertainty sets, respectively. First, we

considered minimax and maximin problems to minimize and maximize with respect

to the variable location of the facility and the parameters, respectively. Theorem

3.1 provided an optimal solution and value of the minimax problem. Theorem 3.3

provided the condition of coincidence between optimal values of the maximin and

minimax problems, and presented an optimal solution of the maximin problem.

Furthermore, we gave an example such that optimal values of the minimax and

maximin problems did not coincide when the condition of Theorem 3.3 was not sat-

isfied. Next, we proposed an interval-valued approach as a new approach handling

uncertainty. Moreover, we also presented a procedure to find all (weak) efficient

solutions of the one-dimensional interval-valued minisum location problem derived

by the interval-valued approach.
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