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CONVERGENCE THEOREMS OF CONDITIONAL
EXPECTATIONS BY USING CONTRACTIVE PROJECTIONS ON
BANACH SPACES

TAKASHI HONDA

ABSTRACT. For a given filter {G,} of sub-algebras, the sequence of conditional
expectations {E[X|G,]} converges strongly for any X € LP(£2). We call it Lévy’s
theorem. In this paper, we show the more general condition of sub-algebras {G, }
such that the sequence of conditional expectations {E[X|G,]} converges strongly.
It is an application of linear contractive projection theory on a Banach space by
using nonlinear analytic methods.

1. INTRODUCTION

Let (Q, F, P) be a probability space and let X be a random variable in L'. Let
{G,} be any filtration of F, and define G, to be the minimal o-algebra generated
by {Gn}. Then

E[X[Gn] = E[X|Go]

as n — oo, both P-almost surely and in L'. If X be a random variable in
LP, 1 < p < o0, {E[X|G,]} converges in LP. This result is usually called Lévy’s
upwards theorem. Similarly we have the Lévy’s downwards theorem: Let {G,}
be any decreasing sequence of sub-sigma algebras of F, and define G, to be the
intersection. Then

E[X|Gn] = E[X|Go]

as n — oo, both P-almost surely and in L'. If X be a random variable in
LP, 1 < p < oo, {E[X]G,]} converges in LP. Both Lévy’s theorems are shown
by using Doob’s martingale convergence theorems: see [24]. In this paper, we show
these theorems by using linear contractive projection theory on a Banach space
without using martingale theory and we obtain more general condition such that
the sequence of conditional expectations {E[X|G,]} converges in LP.

Let E be a Banach space and let {C,,} be a sequence of nonempty closed convex
subsets of E. We denote by s-liminf,,_,., C), the set of limit points of {C},}, that is,
z € s-liminf,_, C, if and only if there exists {z,,} C E such that z,, € C,, for each
n € N and {x,} converges strongly to z. Similarly, we denote by w-limsup,,_,., Cy
the set of cluster points of {C),}, that is, y € w-limsup,,_,. Cy, if and only if there
exists {yn,} C E such that y,, € Cy, for each i € N and {y,,} converges weakly to
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y. In general, we have

liminf C,, C s-liminf C,, C w-limsup C,, C limsup C,, :

n—=00 n—0o n—o00 n—o00

see [20, 23]. Using these definitions, we define the Mosco convergence [4, 20, 23] of
{C,}. If C satisfies

s-liminf C,, = C = w-limsup C,,
n—00 n—o0

we say that {C,,} Mosco converges to C' and denote by
C' = M-lim C,,.
n—oo

In this case, C' is a closed convex subset of F.
In 1984, Tsukada proved the following theorem for the metric projections in a
Banach spaces.

Theorem 1.1 ([23]). Let E be a Banach space whose dual space E* has a Frechét
differentiable norm and let {Cy} be a sequence of nonempty closed convex subsets
of E. The following assertions are equivalent:

(i) {Cn} Mosco converges to a nonempty subset of E;
(ii) there ezists a nonempty closed convex subset C of E such that d(z, Cy,) tends
to d(z,C) as n — oo for every x € E;
(iii) {Pc,z} norm converges for any x € E,
where d(x,C) = infycc ||z — y|| and Pc, is the metric projections of E onto C,,. In
this case, we have C' = M-lim,,_o Cy, and {Pc, x} norm converges to Pox for any
rec k.

In 1999, Kimura and Takahashi proved the following theorem for the sunny non-
expansive retracts.

Theorem 1.2 ([17]). Let E be a reflexive Banach space with a uniformly Gateaux
differentiable norm. Suppose that every weak compact subset of E has the fixed point
property for nonexpansive mappings. Let {Cy,} be a sequence of sunny nonexpansive
retracts of E. If C = M-lim, o C,, exists and nonempty, then C is also a sunny
nonexpansive retract. In addition, if the duality mapping J is weakly sequentially
continuous, then, for each x € E, Qc, x converges strongly to Qcz, where Qc, , Qc
are sunny nonexpansive retractions of E onto C,, C, respectively.

In 2007, Ibaraki and Takahashi proved the following theorem for the sunny gen-
eralized nonexpansive retracts.

Theorem 1.3 ([15]). Let E be a uniformly conver Banach space with a Fréchet
differentiable norm and let {C,} be a sequence of sunny generalized nonexpansive
retracts of . Suppose that the normalized duality mapping J : E — E* is weakly
sequentially continuous. If C' = M-lim, o Cp exists and is nonempty, then C
is a sunny generalized nonexpansive retract of E. Moreover, for each x € E, the
sequence {Rjc,x} converges strongly to Rjcx.
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In 2009, Honda and Takahashi showed the following characterization of a linear
contractive projection in a Banach space by using the orthogonal decomposition of
a Banach space.

Theorem 1.4 ([8]). Let E be a strictly convez, reflexive and smooth Banach space,
let Y* be a closed linear subspace of the dual space E* of E and let J : E — E* be the
normalized duality mapping. If the sunny generalized nonexpansive retraction Ry~
is a quasi-nonexpansive projection of E onto J~YY*, then it is a norm one linear
projection and J'Y* is a closed linear subspace in E. Conversely, any norm one
linear projection of E is a quasi-nonexpansive and sunny generalized nonexpansive
retraction whose retract is J'Y*, where Y* is a closed linear subspace of E*.

There are many applications of the orthogonal decomposition of a Banach space:
see [2, 3,7, 8,9, 10, 11, 12, 13, 14]. In this paper, we show weak and strong
convergence theorems for linear contractive projections in a Banach space by using
Tsukada’s theorem (Theorem 1.1) and this theorem.

2. PRELIMINARIES

Throughout this paper, we assume that E is a real Banach space with the dual
space E*. We write x,, — z to indicate that the sequence {z,} converges weakly
to x. Similarly, x,, — x will symbolize strong convergence. We denote by N and R
the sets of all positive integers and all real numbers, respectively. We also denote
by (x,z*) the dual pair of z € E and z* € E*.

A Banach space F is said to be strictly convex if

r+y
2

for z,y € E with ||z|| = |ly]| = 1 and = # y. Also, F is said to be uniformly convex
if for each € € (0, 2], there exists § > 0 such that

r+y

<1

<1-9¢

for x,y € E with ||z|| = ||y|| = 1 and ||z —y|| > e. If a Banach space E is uniformly
convex, F is strictly convex.

A Banach space F is said to be smooth provided
(2.1) tigg 12+ tyll — |l

t—0 t

exists for each x,y € E with ||z]| = |ly|| = 1. Let E be a reflexive Banach space.
FE is strictly convex if and only if E* is smooth. F is smooth if and only if E* is
strictly convex.

The space F is said to have a uniformly Gateaux differentiable norm if for each
y € S(E), the limit (2.1) is attained uniformly for z € S(E), where S(E) = {z €
E :||z|| = 1}. The norm of FE is said to be Fréchet differentiable if the limit (2.1)
is attained if for each x € S(F), the limit (2.1) is attained uniformly for y € S(F).
A Banach space F is said to have the Kadec-Klee property if a sequence {z,} of
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E satisfying x,, — = € E and ||z,|| — ||z|| converges strongly to . We know that
a Banach space F is reflexive, strictly convex and has the Kadec-Klee property if
and only if E* has a Fréchet differentiable norm.

Let E be a Banach space. With each x € F, we associate the set

J(@) = {a" € B": (x,27) = |la]|* = [la"||*}.

The multivalued operator J : E — E* is called the (normalized) duality mapping
of E. From the Hahn-Banach theorem, Jz # () for each x € E. We know that E is
smooth if and only if J is single-valued. If F is strictly convex, then J is one-to-one,
ie, x#y= J(x)NJ(y) =0. If E is reflexive, then J is a mapping of E onto E*.
So, if F is reflexive, strictly convex and smooth, then J is single-valued, one-to-one
and onto. In this case, the normalized duality mapping J, from E* into F is the
inverse of .J, that is, J, = J~!. If E has a Fréchet differentiable norm, J is norm
to norm continuous: see [22] for more details.

Let E be a smooth Banach space and let J be the normalized duality mapping
of E. We define the function ¢ : £ x E — R by

¢z, y) = llz|* — 2(z, Jy) + |y

for all z,y € E. It is easy to see that (||lz] — |ly[)? < ¢(z,y) < (||=|| + [|y]|)? for
all z,y € E. Thus, in particular, ¢(z,y) > 0 for all z,y € E. If E is additionally
assumed to be strictly convex, then

o(z,y) =0 ==y

Let C' be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point x of E, the set

{zeC:¢(z,2) = min oy, )}

is always a singleton. Let us define the mapping Ilo of E onto C by z = gz for
every x € F, ie.,

$(llca. ) = min o(y,2)

for every © € E. Such Il is called the generalized projection of F onto C: see
Alber [1], Kamimura and Takahashi [16].

Let D be a nonempty closed subset of a smooth Banach space E, let T be a
mapping from D into itself and let F'(T") be the set of fixed points of T". Then, T is
said to be generalized nonexpansive [15] if F/(T') is nonempty and

d(Tx,u) < ¢(z,u)

for all z € D and w € F(T). Let C be a nonempty subset of E and let P be
a mapping from F onto C. Then P is said to be a retraction, or a projection if
Pz =z for all x € C. It is known that if a mapping T of F into F satisfies T? = T,
then T is a projection of E onto {Tx € E : x € E}. A mapping T of FE onto a
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nonempty subset M of E with F(T) # ) is a retraction if and only if F(T) = M.
The mapping T : F — FE is also said to be sunny if

T(Tr+tx—Tz)) =Tx

whenever z € E and t > 0. A nonempty subset C of a smooth Banach space E is
said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive
retract) of E if there exists a generalized nonexpansive retraction (resp. sunny
generalized nonexpansive retraction) R from E onto C. The following lemmas were
proved by Ibaraki and Takahashi.

Lemma 2.1 ([15]). Let C be a nonempty closed subset of a smooth, strictly convex
and reflexisve Banach space E and let R be a retraction from E onto C. Then, the
following are equivalent:

(a) R is sunny and generalized nonexpansive;

(b) (x — Rz, Jy — JRx) <0 for all (x,y) € E x C.

Lemma 2.2 ([15]). Let C be a nonempty closed sunny and generalized nonexpansive
retract of a smooth and strictly convexr Banach space E. Then, the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.3 ([15]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (x,z) € E x C. Then, the following hold:

(a) z= Rx if and only if (x — z,Jy — Jz) <0 for ally € C;
(b) B(Rz, ) + dlz, Rr) < B(, 2)

The following theorems were proved by Kohsaka and Takahashi.

Theorem 2.4 ([18]). Let E be a smooth, strictly convex and reflexive Banach space,
let C* be a monempty closed convex subset of E* and let Ilg~ be the generalized
projection of E* onto C*. Then the mapping R defined by R = J 'Ilg+J is a
sunny generalized nonexpansive retraction of E onto J 1C*.

Theorem 2.5 ([18]). Let E be a smooth, strictly convex and reflexive Banach space
and let D be a nonempty subset of E. Then, the following are equivalent.

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.
Let E be a smooth, strictly convex and reflexive Banach space, let J be the
normalized duality mapping from E onto E* and let C* be a nonempty closed

convex subset of E*. From these theorems, we can define a unique sunny generalized
nonexpansive retraction Rco+ of E onto J'C* as follows:

Rew = J MIes
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where IIg« is the generalized projection from E* onto C*. If Y* is a closed linear
subspace of E*, we also call Ry~ a generalized conditional expectation and for any
z, 2 = Ry«x if and only if z € J~'Y* and

(x —z,y") =0
for any y* € Y*: see [10].

Let C' be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point x of E, the set

eC:l|lz— = min ||y —
{z |z — | yGIC’Hy x|}

is always nonempty and a singleton. Let us define the mapping Po of E onto C by
z = Pox for every xz € FE, i.e.,

|[Pex — z|| = min ||y — ]
yeC

for every x € E. Such Pg is called the metric projection of E onto C: see [21, 22].
The following lemma is in [21, 22].

Lemma 2.6 (21, 22]). Let C be a nonempty closed convexr subset of a smooth,
strictly convezr and reflexive Banach space E and let (z,z) € ExC. Then, z = Pox
if and only if (y — z,J(x — 2)) <0 for ally € C.

Let E be a Banach space and let C' be a nonempty closed convex subset of E.
We call a mapping T : C — C' nonexpansive if for any x,y € C, we have

[Tz — Tyl < [l -yl

A Banach space F is said to have the fixed point property for nonexpansive map-
pings, if any nonexpansive mapping T : C' — C have a fixed point for an arbitrary
nonempty weakly compact convex subset C' C FE. Let C' be a nonempty closed
convex subset of a Banach space F, let T' be a mapping from C into itself and let
F(T) be the set of fixed points of T. Then, T is said to be quasi-nonexpansive if
F(T) is nonempty and
[Tz —ul| < [l —ul

for all x € C and u € F(T).

Let Y be a nonempty subset of a Banach space E and let Y* be a nonempty
subset of the dual space £*. Then, we define the annihilator Y} of Y* and the
annihilator Y1 of Y as follows:

Yi={zeFE:f(x)=0foral feY"}
and

Yi={feE :f(z)=0forallzecY}.
In a reflexive Banach space E, we have Y| = Y ' for an arbitrary nonempty subset
Y CE.

By using a sunny generalized retraction and a metric projection, we introduced
the orthogonal decomposition to a Banach space as follows.
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Theorem 2.7 ([3, 10]). Let E be a reflexive, strictly convex and smooth Banach
space, let I be the identity operator of E onto itself and let J : E — E* be the
normalized duality mapping. Let Y™ be a closed linear subspace of the dual space E*
and let Ry~ be the sunny generalized nonexpansive retraction onto J~'Y*. Then,
the mapping I — Ry~ is the metric projection of E onto Y. Conversely, let Y
be a closed linear subspace of E and let Py be the metric projection of E onto Y.
Then, the mapping I — Py is the sunny generalized nonexpansive retraction Ry 1
onto JYY L, de., I — Py = Ry..

From this theorem, we obtain that, when FE is a reflexive, strictly convex and
smooth Banach space, any linear contractive projections P : E — E: ie. |P| =1,
are sunny generalized nonexpansive retractions (Theorem 1.4). If a closed linear
subspace Y of a Banach space E is the range of a linear contractive projection of
E, we call Y a 1-complemented subspace of E.

3. STRONG CONVEREGNCE THEOREMS

By using this orthogonal decomposition of a Banach space (Theorem 2.7), we
obtain the following theorem.

Theorem 3.1. Let E be a reflexive and strictly convexr Banach space with a Frechét
differentiable norm and let {M,} be a sequence of closed linear subspaces of E. If
{M,} converges to a closed linear subspace M of E in the sense of Mosco (M =
M-lim,, 00 My, ) and Py, x converges to Pyrx strongly for any x € E, then the
sequence of annihilators {M:} converges to a closed linear subspace M~ in the
sense of Mosco (M+ = M-lim,, oo M;-).

Proof. First, We shall show
w-limsup M- ¢ M.

Let {}, } be a sequence such that z}, € M. and {x}, } convereges to an element
of E* weakly as k goes to infinity, i.e.

T, — "€ E"
Since s-liminf M,, = M, for any x € M, there exists a sequence {z,}, =, € M,

which converges to x strongly as n goes to infinity. We have for any k£ € N,
<x:l,k7 x”k) =0

and

lim (x5, , 7n,) = (2", 2) =
k—o0

Then we obtain x* € M*.
Next, We shall show
s-liminf M- > M*.
Let 2* € M+ and let J~!(2*) = x € E. From Theorem 2.7, there exists an element
y in E such that
x =1y — Pyy.
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Let z, =y — Py, y. We have that J(x,) = J(y — Pa,,y) € M;- and
lim J(zn) = lim J(y — Par,y) = J(y — Puy) = J(z) = 2°
n—oo n—oo
by the continuity of J. This means z* € s-liminf M. d
By using Theorem 1.1, we obtain the following strong convergence theorem.

Theorem 3.2. Let E be a Banach space and let {M;} be a sequence of closed linear
subspaces of E*. We assume that E and E* have Frechét differentiable norms.

If {M}} converges to a closed linear subspace M* of E* in the sense of Mosco
(M* = M-lim, 00 M};) , then for each x € E, the sequence {Rarxx} converges to
Ry strongly.

Conwersely, if for each x € E the sequence { Ryxx} converges to some element of
E strongly, then { M)} converges to a closed linear subspace M* of E* in the sense
of Mosco (M* = M-lim,, o M;;) and the limit of { Rz} is Ry

Proof. Since FE and E* have Frechét differentiable norms, F is a reflexive and strictly
convex Banach space with a Frechét differentiable norm. If {M} converges to a
closed linear subspace M* of E* in the sense of Mosco, from Theorem 1.1, { Py 2"}
norm converges to Pys~x* for any x* € E*. Hence, from Theorem 3.1, the sequence
{(M}),} convereges to (M*), in the sense of Mosco. From Theorem 1.1, for any
x € FE, we have the sequence {P(M;) Lz} convereges strongly to P+, z. Since
Ryzx = & — Pypx), @ from Theorem 2.7, the sequence {Rys:x} converges strongly
to Rys«x.

Conversely, if {Ry:7} converges to an element y € E strongly, P M), T =T —
Rysxx converges strongly. From Theorem 1.1, {(M;)1} convereges to a nonempty
closed convex subset M of E in the sense of Mosco and { P, #} converges to
Pyx = x — y strongly. Since M = s-liminf, oo (M), M is a closed linear
subspace of E. From Theorem 2.7, {((M?).)"} converges to M~ in the sense of
Mosco. Since M are closed linear subspaces of E*, we have (M) )" = M* and
M+t = M*: see [19]. In this case, we have y = 2 — Pz = z — Pyrx = Ry O

By using Theorem 1.4, we obtain the following corollary, immediately.

Corollary 3.3. Let E be a Banach space and let P,, n € N be linear contractive
projections of E whose retracts are M,,. We assume that E and E* have Frechét
differentiable norms.

If {IM,} converges to a closed linear subspace JM of E* in the sense of Mosco
(JM = M-lim,,_,oo JM,, ) , then M is a 1-complemented subspace of E and for each
x € E, the sequence { P,x} converges strongly to Pz, where P is a linear contractive
projection of E whose retract is M.

Conversely, if for each x € E the sequence {P,x} converges to some element
of E strongly, then {JM,} converges to a closed linear subspace JM of E* in the
sense of Mosco (JM = M-lim,, oo JM,,) and the limit of { P,x} is Px, where P is
a linear contractive projection of E whose retract is M.
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4. APPLICATIONS

Let (2, F, P) be a probability space and let E be the real LP(Q2), 1 < p < oo.
We can see that I¥ and E* are real Banach spaces which have Frechét differentiable
norms: see [6]. The normalized duality mapping J : E — E* is defined as for
z(w) € E

B p—15ign z(w)
Taw) = e P ST
see [5]. If x € E is a measurable function with respect to a sub-algebra G of F,
Jxr € E* is also a G measurable function. Let MP be a closed linear subspace
of E which consists of all G measurable functions in £ and let M9? be a closed
linear subspace of E* which consists of all G measurable functions in £*. We have
JMP = M49. The conditional expectation E[z|G] of z € E with respect to a sub-
algebra G is a linear contractive projection of £ onto MP. From Corollary 3.3, we
obtain the following theorem.

Theorem 4.1. Let (Q, F, P) be a probability space, G, n € N be sub-algebras of
F,l<p<oo, 1<qg< oo, %—4—% =1 and M} be a closed linear subspace of real
L1(Q) which consists of all G, measurable functions in real L1(Q).

If {M}l} converges to a closed linear subspace MY of real LI(S)) in the sense
of Mosco (M7 = M-lim,,_,o, M), then for each real valued random variable X €
LP(Q), the sequence of conditional expectations {E[X|G,]} converges to some ran-
dom variable in real LP(Q) in the LP-norm.

Conversely, if the sequence of conditional expectations {E[X|G,]|} converges to
some random variable in real LP(SY) in the LP-norm, {Ml} converges to a closed
linear subspace M? of real L4(Q) in the sense of Mosco (M4 = M-lim,,_, M) .

If {G,} is a filtration, then {M}} is a monotone sequence and converges to a
closed linear subspace of L1(f2) in the sense of Mosco: see [20]. While the sequence
{E[X|G,]} is a LP bounded martingale: see [24], {E[X|G,|} converges to some
random variable in LP(Q) in the LP-norm: see [24]. From this Theorem, if {G,} is
a decreasing sequence of sub-sigma algebras, {E[X|G,]} converges to some random
variable in LP(€2) in the LP-norm.
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