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y. In general, we have

lim inf
n→∞

Cn ⊂ s-lim inf
n→∞

Cn ⊂ w-lim sup
n→∞

Cn ⊂ lim sup
n→∞

Cn :

see [20, 23]. Using these definitions, we define the Mosco convergence [4, 20, 23] of

{Cn}. If C satisfies

s-lim inf
n→∞

Cn = C = w-lim sup
n→∞

Cn,

we say that {Cn} Mosco converges to C and denote by

C = M-lim
n→∞

Cn.

In this case, C is a closed convex subset of E.

In 1984, Tsukada proved the following theorem for the metric projections in a

Banach spaces.

Theorem 1.1 ([23]). Let E be a Banach space whose dual space E∗ has a Frechét

differentiable norm and let {Cn} be a sequence of nonempty closed convex subsets

of E. The following assertions are equivalent:

(i) {Cn} Mosco converges to a nonempty subset of E;

(ii) there exists a nonempty closed convex subset C of E such that d(x,Cn) tends

to d(x,C) as n → ∞ for every x ∈ E;

(iii) {PCnx} norm converges for any x ∈ E,

where d(x,C) = infy∈C ∥x− y∥ and PCn is the metric projections of E onto Cn. In

this case, we have C = M-limn→∞Cn, and {PCnx} norm converges to PCx for any

x ∈ E.

In 1999, Kimura and Takahashi proved the following theorem for the sunny non-

expansive retracts.

Theorem 1.2 ([17]). Let E be a reflexive Banach space with a uniformly Gâteaux

differentiable norm. Suppose that every weak compact subset of E has the fixed point

property for nonexpansive mappings. Let {Cn} be a sequence of sunny nonexpansive

retracts of E. If C = M-limn→∞Cn exists and nonempty, then C is also a sunny

nonexpansive retract. In addition, if the duality mapping J is weakly sequentially

continuous, then, for each x ∈ E, QCnx converges strongly to QCx, where QCn , QC

are sunny nonexpansive retractions of E onto Cn, C, respectively.

In 2007, Ibaraki and Takahashi proved the following theorem for the sunny gen-

eralized nonexpansive retracts.

Theorem 1.3 ([15]). Let E be a uniformly convex Banach space with a Fréchet

differentiable norm and let {Cn} be a sequence of sunny generalized nonexpansive

retracts of E. Suppose that the normalized duality mapping J : E → E∗ is weakly

sequentially continuous. If C = M-limn→∞Cn exists and is nonempty, then C

is a sunny generalized nonexpansive retract of E. Moreover, for each x ∈ E, the

sequence {RJCnx} converges strongly to RJCx.
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In 2009, Honda and Takahashi showed the following characterization of a linear

contractive projection in a Banach space by using the orthogonal decomposition of

a Banach space.

Theorem 1.4 ([8]). Let E be a strictly convex, reflexive and smooth Banach space,

let Y ∗ be a closed linear subspace of the dual space E∗ of E and let J : E → E∗ be the

normalized duality mapping. If the sunny generalized nonexpansive retraction RY ∗

is a quasi-nonexpansive projection of E onto J−1Y ∗, then it is a norm one linear

projection and J−1Y ∗ is a closed linear subspace in E. Conversely, any norm one

linear projection of E is a quasi-nonexpansive and sunny generalized nonexpansive

retraction whose retract is J−1Y ∗, where Y ∗ is a closed linear subspace of E∗.

There are many applications of the orthogonal decomposition of a Banach space:

see [2, 3, 7, 8, 9, 10, 11, 12, 13, 14]. In this paper, we show weak and strong

convergence theorems for linear contractive projections in a Banach space by using

Tsukada’s theorem (Theorem 1.1) and this theorem.

2. Preliminaries

Throughout this paper, we assume that E is a real Banach space with the dual

space E∗. We write xn ⇀ x to indicate that the sequence {xn} converges weakly

to x. Similarly, xn → x will symbolize strong convergence. We denote by N and R
the sets of all positive integers and all real numbers, respectively. We also denote

by ⟨x, x∗⟩ the dual pair of x ∈ E and x∗ ∈ E∗.

A Banach space E is said to be strictly convex if∥∥∥∥x+ y

2

∥∥∥∥ < 1

for x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. Also, E is said to be uniformly convex

if for each ε ∈ (0, 2], there exists δ > 0 such that∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ

for x, y ∈ E with ∥x∥ = ∥y∥ = 1 and ∥x− y∥ > ε. If a Banach space E is uniformly

convex, E is strictly convex.

A Banach space E is said to be smooth provided

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ E with ∥x∥ = ∥y∥ = 1. Let E be a reflexive Banach space.

E is strictly convex if and only if E∗ is smooth. E is smooth if and only if E∗ is

strictly convex.

The space E is said to have a uniformly Gâteaux differentiable norm if for each

y ∈ S(E), the limit (2.1) is attained uniformly for x ∈ S(E), where S(E) = {z ∈
E : ∥z∥ = 1}. The norm of E is said to be Fréchet differentiable if the limit (2.1)

is attained if for each x ∈ S(E), the limit (2.1) is attained uniformly for y ∈ S(E).

A Banach space E is said to have the Kadec-Klee property if a sequence {xn} of
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E satisfying xn ⇀ x ∈ E and ∥xn∥ → ∥x∥ converges strongly to x. We know that

a Banach space E is reflexive, strictly convex and has the Kadec-Klee property if

and only if E∗ has a Fréchet differentiable norm.

Let E be a Banach space. With each x ∈ E, we associate the set

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

The multivalued operator J : E → E∗ is called the (normalized) duality mapping

of E. From the Hahn-Banach theorem, Jx ̸= ∅ for each x ∈ E. We know that E is

smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-one,

i.e., x ̸= y ⇒ J(x) ∩ J(y) = ∅. If E is reflexive, then J is a mapping of E onto E∗.

So, if E is reflexive, strictly convex and smooth, then J is single-valued, one-to-one

and onto. In this case, the normalized duality mapping J∗ from E∗ into E is the

inverse of J , that is, J∗ = J−1. If E has a Fréchet differentiable norm, J is norm

to norm continuous: see [22] for more details.

Let E be a smooth Banach space and let J be the normalized duality mapping

of E. We define the function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all x, y ∈ E. It is easy to see that (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥ + ∥y∥)2 for

all x, y ∈ E. Thus, in particular, ϕ(x, y) ≥ 0 for all x, y ∈ E. If E is additionally

assumed to be strictly convex, then

ϕ(x, y) = 0 ⇔ x = y.

Let C be a nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ϕ(z, x) = min
y∈C

ϕ(y, x)}

is always a singleton. Let us define the mapping ΠC of E onto C by z = ΠCx for

every x ∈ E, i.e.,

ϕ(ΠCx, x) = min
y∈C

ϕ(y, x)

for every x ∈ E. Such ΠC is called the generalized projection of E onto C: see

Alber [1], Kamimura and Takahashi [16].

Let D be a nonempty closed subset of a smooth Banach space E, let T be a

mapping from D into itself and let F (T ) be the set of fixed points of T . Then, T is

said to be generalized nonexpansive [15] if F (T ) is nonempty and

ϕ(Tx, u) ≤ ϕ(x, u)

for all x ∈ D and u ∈ F (T ). Let C be a nonempty subset of E and let P be

a mapping from E onto C. Then P is said to be a retraction, or a projection if

Px = x for all x ∈ C. It is known that if a mapping T of E into E satisfies T 2 = T ,

then T is a projection of E onto {Tx ∈ E : x ∈ E}. A mapping T of E onto a
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nonempty subset M of E with F (T ) ̸= ∅ is a retraction if and only if F (T ) = M .

The mapping T : E → E is also said to be sunny if

T (Tx+ t(x− Tx)) = Tx

whenever x ∈ E and t ≥ 0. A nonempty subset C of a smooth Banach space E is

said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive

retract) of E if there exists a generalized nonexpansive retraction (resp. sunny

generalized nonexpansive retraction) R from E onto C. The following lemmas were

proved by Ibaraki and Takahashi.

Lemma 2.1 ([15]). Let C be a nonempty closed subset of a smooth, strictly convex

and reflexisve Banach space E and let R be a retraction from E onto C. Then, the

following are equivalent:

(a) R is sunny and generalized nonexpansive;

(b) ⟨x−Rx, Jy − JRx⟩ ≤ 0 for all (x, y) ∈ E × C.

Lemma 2.2 ([15]). Let C be a nonempty closed sunny and generalized nonexpansive

retract of a smooth and strictly convex Banach space E. Then, the sunny generalized

nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.3 ([15]). Let C be a nonempty closed subset of a smooth and strictly

convex Banach space E such that there exists a sunny generalized nonexpansive

retraction R from E onto C and let (x, z) ∈ E × C. Then, the following hold:

(a) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;

(b) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

The following theorems were proved by Kohsaka and Takahashi.

Theorem 2.4 ([18]). Let E be a smooth, strictly convex and reflexive Banach space,

let C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be the generalized

projection of E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a

sunny generalized nonexpansive retraction of E onto J−1C∗.

Theorem 2.5 ([18]). Let E be a smooth, strictly convex and reflexive Banach space

and let D be a nonempty subset of E. Then, the following are equivalent.

(1) D is a sunny generalized nonexpansive retract of E;

(2) D is a generalized nonexpansive retract of E;

(3) JD is closed and convex.

In this case, D is closed.

Let E be a smooth, strictly convex and reflexive Banach space, let J be the

normalized duality mapping from E onto E∗ and let C∗ be a nonempty closed

convex subset of E∗. From these theorems, we can define a unique sunny generalized

nonexpansive retraction RC∗ of E onto J−1C∗ as follows:

RC∗ = J−1ΠC∗J,
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where ΠC∗ is the generalized projection from E∗ onto C∗. If Y ∗ is a closed linear

subspace of E∗, we also call RY ∗ a generalized conditional expectation and for any

x, z = RY ∗x if and only if z ∈ J−1Y ∗ and

⟨x− z, y∗⟩ = 0

for any y∗ ∈ Y ∗: see [10].

Let C be a nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ∥z − x∥ = min
y∈C

∥y − x∥}

is always nonempty and a singleton. Let us define the mapping PC of E onto C by

z = PCx for every x ∈ E, i.e.,

∥PCx− x∥ = min
y∈C

∥y − x∥

for every x ∈ E. Such PC is called the metric projection of E onto C: see [21, 22].

The following lemma is in [21, 22].

Lemma 2.6 ([21, 22]). Let C be a nonempty closed convex subset of a smooth,

strictly convex and reflexive Banach space E and let (x, z) ∈ E×C. Then, z = PCx

if and only if ⟨y − z, J(x− z)⟩ ≤ 0 for all y ∈ C.

Let E be a Banach space and let C be a nonempty closed convex subset of E.

We call a mapping T : C → C nonexpansive if for any x, y ∈ C, we have

∥Tx− Ty∥ ≤ ∥x− y∥.

A Banach space E is said to have the fixed point property for nonexpansive map-

pings, if any nonexpansive mapping T : C → C have a fixed point for an arbitrary

nonempty weakly compact convex subset C ⊂ E. Let C be a nonempty closed

convex subset of a Banach space E, let T be a mapping from C into itself and let

F (T ) be the set of fixed points of T . Then, T is said to be quasi-nonexpansive if

F (T ) is nonempty and

∥Tx− u∥ ≤ ∥x− u∥
for all x ∈ C and u ∈ F (T ).

Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty

subset of the dual space E∗. Then, we define the annihilator Y ∗
⊥ of Y ∗ and the

annihilator Y ⊥ of Y as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and

Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.
In a reflexive Banach space E, we have Y⊥ = Y ⊥ for an arbitrary nonempty subset

Y ⊂ E.

By using a sunny generalized retraction and a metric projection, we introduced

the orthogonal decomposition to a Banach space as follows.
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Theorem 2.7 ([3, 10]). Let E be a reflexive, strictly convex and smooth Banach

space, let I be the identity operator of E onto itself and let J : E → E∗ be the

normalized duality mapping. Let Y ∗ be a closed linear subspace of the dual space E∗

and let RY ∗ be the sunny generalized nonexpansive retraction onto J−1Y ∗. Then,

the mapping I − RY ∗ is the metric projection of E onto Y ∗
⊥. Conversely, let Y

be a closed linear subspace of E and let PY be the metric projection of E onto Y .

Then, the mapping I − PY is the sunny generalized nonexpansive retraction RY ⊥

onto J−1Y ⊥, i.e., I − PY = RY ⊥ .

From this theorem, we obtain that, when E is a reflexive, strictly convex and

smooth Banach space, any linear contractive projections P : E → E: i.e. ∥P∥ = 1,

are sunny generalized nonexpansive retractions (Theorem 1.4). If a closed linear

subspace Y of a Banach space E is the range of a linear contractive projection of

E, we call Y a 1-complemented subspace of E.

3. Strong converegnce theorems

By using this orthogonal decomposition of a Banach space (Theorem 2.7), we

obtain the following theorem.

Theorem 3.1. Let E be a reflexive and strictly convex Banach space with a Frechét

differentiable norm and let {Mn} be a sequence of closed linear subspaces of E. If

{Mn} converges to a closed linear subspace M of E in the sense of Mosco (M =

M-limn→∞Mn) and PMnx converges to PMx strongly for any x ∈ E, then the

sequence of annihilators {M⊥
n } converges to a closed linear subspace M⊥ in the

sense of Mosco (M⊥ = M-limn→∞M⊥
n ).

Proof. First, We shall show

w-lim supM⊥
n ⊂ M⊥.

Let {x∗nk
} be a sequence such that x∗nk

∈ M⊥
nk

and {x∗nk
} convereges to an element

of E∗ weakly as k goes to infinity, i.e.

x∗nk
⇀ x∗ ∈ E∗.

Since s-lim inf Mn = M , for any x ∈ M , there exists a sequence {xn}, xn ∈ Mn

which converges to x strongly as n goes to infinity. We have for any k ∈ N,

⟨x∗nk
, xnk

⟩ = 0

and

lim
k→∞

⟨x∗nk
, xnk

⟩ = ⟨x∗, x⟩ = 0.

Then we obtain x∗ ∈ M⊥.

Next, We shall show

s-lim infM⊥
n ⊃ M⊥.

Let x∗ ∈ M⊥ and let J−1(x∗) = x ∈ E. From Theorem 2.7, there exists an element

y in E such that

x = y − PMy.
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Let xn = y − PMny. We have that J(xn) = J(y − PMny) ∈ M⊥
n and

lim
n→∞

J(xn) = lim
n→∞

J(y − PMny) = J(y − PMy) = J(x) = x∗

by the continuity of J . This means x∗ ∈ s-lim infM⊥
n . □

By using Theorem 1.1, we obtain the following strong convergence theorem.

Theorem 3.2. Let E be a Banach space and let {M∗
n} be a sequence of closed linear

subspaces of E∗. We assume that E and E∗ have Frechét differentiable norms.

If {M∗
n} converges to a closed linear subspace M∗ of E∗ in the sense of Mosco

(M∗ = M-limn→∞M∗
n) , then for each x ∈ E, the sequence {RM∗

n
x} converges to

RM∗x strongly.

Conversely, if for each x ∈ E the sequence {RM∗
n
x} converges to some element of

E strongly, then {M∗
n} converges to a closed linear subspace M∗ of E∗ in the sense

of Mosco (M∗ = M-limn→∞M∗
n) and the limit of {RM∗

n
x} is RM∗x

Proof. Since E and E∗ have Frechét differentiable norms, E is a reflexive and strictly

convex Banach space with a Frechét differentiable norm. If {M∗
n} converges to a

closed linear subspace M∗ of E∗ in the sense of Mosco, from Theorem 1.1, {PM∗
n
x∗}

norm converges to PM∗x∗ for any x∗ ∈ E∗. Hence, from Theorem 3.1, the sequence

{(M∗
n)⊥} convereges to (M∗)⊥ in the sense of Mosco. From Theorem 1.1, for any

x ∈ E, we have the sequence {P(M∗
n)⊥

x} convereges strongly to P(M∗)⊥x. Since

RM∗
n
x = x− P(M∗

n)⊥
x from Theorem 2.7, the sequence {RM∗

n
x} converges strongly

to RM∗x.

Conversely, if {RM∗
n
x} converges to an element y ∈ E strongly, P(M∗

n)⊥
x = x −

RM∗
n
x converges strongly. From Theorem 1.1, {(M∗

n)⊥} convereges to a nonempty

closed convex subset M of E in the sense of Mosco and {P(M∗
n)⊥

x} converges to

PMx = x − y strongly. Since M = s-lim infn→∞(M∗
n)⊥, M is a closed linear

subspace of E. From Theorem 2.7, {((M∗
n)⊥)

⊥} converges to M⊥ in the sense of

Mosco. Since M∗
n are closed linear subspaces of E∗, we have ((M∗

n)⊥)
⊥ = M∗

n and

M⊥ = M∗: see [19]. In this case, we have y = x− PMx = x− PM∗
⊥
x = RM∗x. □

By using Theorem 1.4, we obtain the following corollary, immediately.

Corollary 3.3. Let E be a Banach space and let Pn, n ∈ N be linear contractive

projections of E whose retracts are Mn. We assume that E and E∗ have Frechét

differentiable norms.

If {JMn} converges to a closed linear subspace JM of E∗ in the sense of Mosco

(JM = M-limn→∞ JMn) , then M is a 1-complemented subspace of E and for each

x ∈ E, the sequence {Pnx} converges strongly to Px, where P is a linear contractive

projection of E whose retract is M .

Conversely, if for each x ∈ E the sequence {Pnx} converges to some element

of E strongly, then {JMn} converges to a closed linear subspace JM of E∗ in the

sense of Mosco (JM = M-limn→∞ JMn) and the limit of {Pnx} is Px, where P is

a linear contractive projection of E whose retract is M .
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4. Applications

Let (Ω,F , P ) be a probability space and let E be the real Lp(Ω), 1 < p < ∞.

We can see that E and E∗ are real Banach spaces which have Frechét differentiable

norms: see [6]. The normalized duality mapping J : E → E∗ is defined as for

x(ω) ∈ E

Jx(ω) = |x(ω)|p−1 sign x(ω)

∥x∥p−2
:

see [5]. If x ∈ E is a measurable function with respect to a sub-algebra G of F ,

Jx ∈ E∗ is also a G measurable function. Let Mp be a closed linear subspace

of E which consists of all G measurable functions in E and let M q be a closed

linear subspace of E∗ which consists of all G measurable functions in E∗. We have

JMp = M q. The conditional expectation E[x|G] of x ∈ E with respect to a sub-

algebra G is a linear contractive projection of E onto Mp. From Corollary 3.3, we

obtain the following theorem.

Theorem 4.1. Let (Ω,F , P ) be a probability space, Gn, n ∈ N be sub-algebras of

F , 1 < p < ∞, 1 < q < ∞, 1
p + 1

q = 1 and M q
n be a closed linear subspace of real

Lq(Ω) which consists of all Gn measurable functions in real Lq(Ω).

If {M q
n} converges to a closed linear subspace M q of real Lq(Ω) in the sense

of Mosco (M q = M-limn→∞M q
n), then for each real valued random variable X ∈

Lp(Ω), the sequence of conditional expectations {E[X|Gn]} converges to some ran-

dom variable in real Lp(Ω) in the Lp-norm.

Conversely, if the sequence of conditional expectations {E[X|Gn]} converges to

some random variable in real Lp(Ω) in the Lp-norm, {M q
n} converges to a closed

linear subspace M q of real Lq(Ω) in the sense of Mosco (M q = M-limn→∞M q
n) .

If {Gn} is a filtration, then {M q
n} is a monotone sequence and converges to a

closed linear subspace of Lq(Ω) in the sense of Mosco: see [20]. While the sequence

{E[X|Gn]} is a Lp bounded martingale: see [24], {E[X|Gn]} converges to some

random variable in Lp(Ω) in the Lp-norm: see [24]. From this Theorem, if {Gn} is

a decreasing sequence of sub-sigma algebras, {E[X|Gn]} converges to some random

variable in Lp(Ω) in the Lp-norm.
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