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Definition 1.2. Let (X, d) be a metric space. A continuous mapping W : X×X×
[0, 1] → X is said to be a convex structure on X if for all x, y ∈ X and λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y),

holds for all u ∈ X. The metric space (X, d) together with a convex structure W ,
that is (X, d,W ), is called a convex metric space (see [9]).

Definition 1.3. A nonempty subset A of a convex metric space (X, d,W ) is said
to be a convex set [9] if W (x, y, λ) ∈ A for all x, y ∈ A and λ ∈ [0, 1].

A normed linear space and each of its convex subset are simple examples of
convex metric spaces with W given by W (x, y, λ) = λx + (1 − λ)y for x, y ∈ X
and 0 ≤ λ ≤ 1. There are many convex metric spaces which are not normed linear
spaces (see [9]).

The following result present some fundamental properties of a convex metric
space in the sense of Definition 1.2 (see [2, 9] for more details).

Lemma 1.4. Let (X, d,W ) be a convex metric space. For each x, y ∈ X and
λ, λ1, λ2 ∈ [0, 1], we have the following:

(i) W (x, x, λ) = x, W (x, y, 0) = y and W (x, y, 1) = x.
(ii) d(x,W (x, y, λ)) = (1− λ)d(x, y) and d(y,W (x, y, λ)) = λd(x, y).
(iii) d(x, y) = d(x,W (x, y, λ)) + d(W (x, y, λ), y).
(iv) |λ1 − λ2|d(x, y) ≤ d(W (x, y, λ1),W (x, y, λ2)).

Definition 1.5. Let (X, d,W ) be a convex metric space and T : X → X be a self
mapping. Define the mapping Tλ : X → X as Tλx = W (x, Tx;λ), for all x ∈ X. T
is said to be an enriched contraction (see [5]) if there exist c ∈ [0, 1) and λ ∈ [0, 1)
such that

d(Tλx, Tλy) = d(W (x, Tx;λ),W (y, Ty;λ)) ≤ c d(x, y),

for all x, y ∈ X.

Definition 1.6. Let A and B be nonempty subsets of a metric space X. A map
T : A ∪B → A ∪B is a cyclic contraction map if it satisfies:

(i) T (A) ⊆ B and T (B) ⊆ A;
(ii) for some k ∈ (0, 1) we have

d(Tx, Ty) ≤ k d(x, y) + (1− k)dist(A,B),

for all x ∈ A, y ∈ B.

2. Main results

2.1. Cyclic enriched contraction map. To start with, we give the following
definition.

Definition 2.1. Let A and B be nonempty subsets of a convex metric space
(X, d,W ). A map T : A ∪ B → A ∪ B is a cyclic enriched contraction map if
it satisfies:

(i) T (A) ⊆ B and T (B) ⊆ A.
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(ii) there exist c ∈ [0, 1) and λ ∈ [0, 1) such that

d(Tλx, Tλy) = d(W (x, Tx;λ),W (y, Ty;λ)) ≤ c d(x, y) + (1− c) dist(A,B),

for all x ∈ A, y ∈ B.

Here, it is to note that (ii) implies that T satisfies

d(W (x, Tx;λ),W (y, Ty;λ)) ≤ d(x, y),

for all x ∈ A, y ∈ B.
Also (ii) can be rewritten as

(d(W (x, Tx;λ),W (y, Ty;λ))− dist(A,B)) ≤ k (d(x, y)− dist(A,B)),

for all x ∈ A, y ∈ B.

Notice that if F (T ) is the set of fixed points of a cyclic enriched contraction map
T : A ∪B → A ∪B, then F (T ) ⊆ A ∩B. Also F (T ) is convex.

The following approximation result will be needed in what follows.

Theorem 2.2. Let A and B be nonempty subsets of a convex metric space (X, d,W ).
Suppose that T : A ∪ B → A ∪ B is a cyclic enriched contraction map. Then
starting with any x0 in A ∪ B we have d(xn, Tλxn) → dist(A,B), where xn+1 =
W (xn, Txn;λ) = Tλxn, n ≥ 0.

Proof. Now, using definition of cyclic enriched contraction map, we have

d(xn+1, xn) = d(Tλxn, Tλxn−1)

≤ c d(xn, xn−1) + (1− c) dist(A,B)

≤ c (c d(xn−1, xn−2) + (1− c) dist(A,B)) + (1− c)dist(A,B)

= c2 d(xn−1, xn−2) + (1− c2) dist(A,B).

Inductively, we have d(xn+1, xn) ≤ cn d(xn−1, xn−2)+(1−cn) dist(A,B). Therefore,
d(xn, Tλxn) → dist(A,B). □

Proposition 3.1 of [3] and Theorem 3 of [1] are special cases of the above theorem.
Next, we give an existence result for a best proximity point.

Theorem 2.3. Let A and B be nonempty subsets of a convex metric space (X, d,W ).
Suppose that T : A∪B → A∪B is a cyclic enriched contraction map, x0 in A and
xn+1 = W (xn, Txn;λ) = Tλxn, n ≥ 0. If {x2n} has a convergent subsequence in A,
then there exists x ∈ A such that d(x, Tλx) = dist(A,B).

Proof. Let {x2n(k)} be a subsequence of {x2n} converging to x in A. Since T is a
cyclic enriched contraction, it follows that dist(A,B) ≤ d(x2n(k), Tλx) ≤
d(x2n(k)−1, x) ≤ d(x2n(k)−1, x2n(k)) + d(x2n(k), x). Thus d(x2n(k)−1, x) → d(A,B)
and d(x, Tλx) = d(A,B). □

Proposition 3.2 of [3] and Theorem 4 of [1] are special cases of the above result.
The following result ascertains the boundedness of the Krasnoselskij ’s iterates

for a cyclic enriched contraction.
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Theorem 2.4. Let A and B be nonempty subsets of a convex metric space (X, d,W ).
Suppose that T : A ∪B → A ∪B is a cyclic enriched contraction map, x0 in A ∪B
and xn+1 = W (xn, Txn;λ) = Tλxn, n ≥ 0. Then the sequence {xn} is bounded.

Proof. Since T is a cyclic enriched contraction, {d(x2n, x2n+1)} is a decreasing se-
quence of non-negative terms. Therefore, {d(x2n, x2n+1)} is bounded. Further,
because T is a cyclic enriched contraction, we have

d(x2n+1, x2) = d(Tλx2n, Tλx1)

≤ c d(x2n, x1) + (1− c) dist(A,B)

≤ c [d(x2n, x2n+1) + d(x2n+1, x2) + d(x2, x1)] + (1− c) dist(A,B).

Therefore, it can be concluded that

d(x2n+1, x2) ≤
c

1− c
[d(x2n, x2n+1) + d(x2, x1)] + dist(A,B).

Thus, it follows that the sequence {x2n+1} is bounded. Similarly, it can be shown
that the sequence {x2n} is also bounded. Therefore, the sequence {xn} is bounded.
This completes the proof of the proposition. □

The following result furnishes some sufficient conditions under which a cyclic
enriched contraction has a best approximation.

Theorem 2.5. Let A and B be nonempty subsets of a convex metric space (X, d,W ).
Suppose that T : A∪B → A∪B is a cyclic enriched contraction map. If either A or
B is boundedly compact, then there exists x in A ∪B with d(x, Tλx) = dist(A,B).

Proof. The result follows directly from Theorems 2.3 and 2.4. □

Lemma 2.6. Let A be a nonempty convex subset and B be a nonempty subset of a
uniformly convex Banach space X. Suppose that T : A∪B → A∪B is a map such
that T (A) ⊆ B and T (B) ⊆ A. For x0 ∈ A, define xn+1 = Tλxn = (1−λ)xn+λTxn
for each n ≥ 0. Then ||x2n+2 − x2n|| → 0 and ||x2n+3 − x2n+1|| → 0 as n → ∞.

Proof. To show that ||x2n+2 − x2n|| → 0 as n → ∞, assume the contrary. Then
there exists ε0 > 0 such that for each n ≥ 1, there exists n(k) > n so that

||x2n(k)+2 − x2n(k)|| ≥ ε0.(2.1)

Choose 0 < γ < 1 such that
ε0
γ

> dist(A,B).

Take ε such that 0 < ε < min{ε0
γ

− dist(A,B),
dist(A,B) δ(γ)

1− δ(γ)
}.

By Theorem 2.2, there exists N1 such that

||x2n(k)+2 − x2n(k)+1|| ≤ dist(A,B) + ε,(2.2)

for all n(k) ≥ N1. Also, there exists N2 such that

||x2n(k) − x2n(k)+1|| ≤ dist(A,B) + ε,(2.3)
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for all n(k) ≥ N2. Let N = max{N1, N2}. It follows from the uniform convexity of
X and (2.1)-(2.3) that

||(x2n(k)+2 + x2n(k))/2− x2n(k)+1|| ≤
(
1− δ

(
ε0

dist(A,B) + ε

))
(dist(A,B) + ε),

for all n(k) ≥ N . As (x2n(k)+2 + x2n(k))/2 ∈ A, the choice of ε and the fact that δ
is strictly increasing implies that

||(x2n(k)+2 + x2n(k))/2− x2n(k)+1|| < dist(A,B),

for all n(k) ≥ N , a contradiction.
A similar argument will show that ||x2n+3 − x2n+1|| → 0. □

2.2. Cyclic (b, θ)-enriched contraction. Now, we introduce the following cyclic
(b, θ)-enriched contraction map for our next results.

Definition 2.7. Let A and B be nonempty subsets of a uniformly convex Banach
space X. A map T : A∪B → A∪B is a cyclic (b, θ)-enriched contraction map if it
satisfies:

(1) T (A) ⊆ B and T (B) ⊆ A.
(2) If there exist b ∈ [0,+∞) and θ ∈ [0, b+1) such that ||b(x−y)+Tx−Ty|| ≤

θ ||x− y||+ (1− θ) dist(A,B), for all x ∈ A, y ∈ B.

Here, it is to note that (2) implies that T is cyclic enriched contraction for λ =
1

b+ 1
, and choosing c =

θ

b+ 1
= λθ.

For b = 0, if we take λ = 1, and c = θ, then for all x ∈ A, y ∈ B, we have
||Tx− Ty|| ≤ c ||x− y||+ (1− c) dist(A,B).

For b > 0, if we take λ =
1

b+ 1
, and c = λθ, then for all x ∈ A, y ∈ B,

we have ||( 1
λ
− 1)(x − y) + Tx − Ty|| ≤ θ ||x − y|| + (1 − θ) dist(A,B). Hence

||Tλx− Tλy|| ≤ c ||x− y||+ (λ− c) dist(A,B) < c ||x− y||+ (1− c) dist(A,B).

Theorem 2.8. Let A and B be nonempty subsets of a uniformly convex Banach
space X. Suppose that A is convex and T : A∪B → A∪B is a cyclic (b, θ)-enriched
contraction map. Further, if x0 ∈ A and xn+1 = (1 − λ)xn + λTxn = Tλxn with

λ =
1

b+ 1
, for each n ≥ 0. Then for each ε > 0, there exists a positive integer N0

such that for all m > n ≥ N0,

||x2m − x2n+1|| < dist(A,B) + ε.

Proof. Suppose the contrary. Then there exists ε0 > 0, such that for each k ≥ 1,
there is m(k) > n(k) ≥ k, satisfying

||x2m(k) − x2n(k)+1|| ≥ dist(A,B) + ε0(2.4)

||x2m(k)−2 − x2n(k)+1|| < dist(A,B) + ε0.(2.5)

It follows that

dist(A,B) + ε0 ≤ ||x2m(k) − x2n(k)+1||
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≤ ||x2m(k) − x2m(k)−2||+ ||x2m(k)−2 − x2n(k)+1||
< ||x2m(k) − x2m(k)−2||+ dist(A,B) + ε0.

Taking k → ∞, using Lemma 2.6, we have

lim
k→∞

||x2m(k) − x2n(k)+1|| = dist(A,B) + ε0.

As T is cyclic (b, θ)-enriched contraction map, we obtain

||x2m(k) − x2n(k)+1|| ≤ ||x2m(k) − x2m(k)+2||+ ||x2m(k)+2 − x2n(k)+3||
+ ||x2n(k)+3 − x2n(k)+1||

≤ ||x2m(k) − x2m(k)+2||+ c2||x2m(k) − x2n(k)+1||
+ (1− c2)dist(A,B) + ||x2n(k)+3 − x2n(k)+1||.

Letting k → ∞, we have dist(A,B)+ε0 ≤ c2(dist(A,B)+ε0)+(1−c2)dist(A,B) =
dist(A,B) + c2ε0, a contradiction. This completes the proof. □

Theorem 2.9. Let A and B be nonempty subsets of a uniformly convex Banach
space X. Suppose that A is closed and T : A∪B → A∪B is a cyclic (b, θ)-enriched
contraction map. Further, if x0 ∈ A and xn+1 = (1 − λ)xn + λTxn = Tλxn with

λ =
1

b+ 1
, for each n ≥ 0. If dist(A,B) = 0, then T has a fixed point x ∈ A ∩B.

Proof. Let ε > 0 be given. By Theorem 2.2, there exists N1 such that ||x2n −
x2n+1|| < ε, for all n ≥ N1. By Theorem 2.8, there exists N2 such that ||x2m −
x2n+1|| < ε, for all m > n ≥ N2. Take N = max{N1, N2}. It follows that

||x2m − x2n|| ≤ ||x2m − x2n+1||+ ||x2n+1 − x2n|| < 2ε,

for all m > n ≥ N . Thus {x2n} is a Cauchy sequence in A. Now, the completeness
of X and closedness of A imply that x2n → x ∈ A. It follows from Theorem 2.3
that ||x− Tx|| = dist(A,B) = 0. So X is a fixed point of T and hence x ∈ F (T ) ⊆
A ∩B. □

The following results of Eldred and Veeramani [3] will be required in the sequel.

Lemma 2.10. Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn} and {zn} be sequences
in A and {yn} be a sequence in B satisfying:

(i) ||zn − yn|| → dist(A,B),
(ii) For every ε > 0 there exists N0 such that for all m > n ≥ N0, ||xm − yn|| ≤

dist(A,B) + ε.

Then, for every ε > 0 there exists N1 such that for all m > n ≥ N1, ||xm− zn|| ≤ ε.

Lemma 2.11. Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn} and {zn} be sequences
in A and {yn} be a sequence in B satisfying:

(i) ||xn − yn|| → dist(A,B),
(ii) ||zn − yn|| → dist(A,B).
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Then ||xm − zn|| → 0.

Theorem 2.12. Let A and B be nonempty closed and convex subsets of a uniformly
convex Banach space. Suppose that T : A ∪ B → A ∪ B is a cyclic (b, θ)-enriched
contraction map, then there exists a unique best proximity point x in A (that is with
||x− Tλx|| = dist(A,B)). Further, if x0 ∈ A and xn+1 = (1− λ)xn + λTxn = Tλxn

with λ =
1

b+ 1
, then {x2n} converges to the best proximity point.

Proof. As T is a cyclic (b, θ)-enriched contraction map, there exists b ∈ [0,+∞) and
θ ∈ [0, b+ 1) such that ||b(x− y) + Tx− Ty|| ≤ θ ||x− y||+ (1− θ) dist(A,B), for
all x ∈ A, y ∈ B.

For b = 0, if we take λ = 1, and c = θ, then for all x ∈ A, y ∈ B, we have
||Tx− Ty|| ≤ θ ||x− y||+ (1− θ) dist(A,B). The result follows from Theorem 3.10
of Eldred and Veeramani.

For b > 0, if we take λ =
1

b+ 1
, and c = λθ, then for all x ∈ A, y ∈ B, we have

||( 1
λ
− 1)(x− y) + Tx− Ty|| ≤ θ ||x− y||+ (1− θ) dist(A,B).

Hence ||Tλx−Tλy|| ≤ c ||x−y||+(λ−c) dist(A,B) < c ||x−y||+(1−c) dist(A,B).
Assume dist(A,B) ̸= 0. Since ||x2n−Tλx2n|| → dist(A,B) and ||T 2

λx2n−Tλx2n|| →
dist(A,B). By Lemma 2.11, ||x2n − x2(n+1)|| → 0.

Similarly, we can show that ||Tλx2n − Tλx2(n+1)|| → 0.
Now, we have to show that for every ε > 0 there exists N0 such that for all

m > n ≥ N0,

||x2m − Tλx2n|| < dist(A,B) + ε.

Suppose, to the contrary, that there exists ε > 0 such that for all k ∈ N there
exists mk > nk ≥ k for which

||x2m − Tλx2n|| ≥ dist(A,B) + ε,

this mk can be chosen such that it is the least integer greater than nk to satisfy the
above inequality. Now,

dist(A,B) + ε ≤ ||x2m(k) − Tλx2n(k)||
≤ ||x2m(k) − x2m(k)−2||+ ||x2m(k)−2 − Tλx2n(k)||.

Hence lim
k→∞

||x2m(k) − Tλx2n(k)|| = dist(A,B) + ε. Consequently, we get

||x2m(k) − Tλx2n(k)|| ≤ ||x2m(k) − x2m(k)+2||+ ||x2m(k)+2 − Tλx2n(k)+2||
+ ||Tλx2n(k)+2 − Tλx2n(k)||

≤ ||x2m(k) − x2m(k)+2||+ c2||x2m(k) − Tλx2n(k)||
+ (1− c2)dist(A,B) + ||Tλx2n(k)+2 − Tλx2n(k)||.

Hence by taking k → ∞, we have dist(A,B) + ε ≤ c2(dist(A,B) + ε) + (1 −
c2)dist(A,B) = dist(A, b) + c2ε, which is a contradiction. Hence by Lemma 2.10,
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{x2n} is a Cauchy sequence and converges to some x ∈ A. From Proposition 2.3, it
follows that ||x− Tλx|| = dist(A,B).

Suppose that x, y ∈ A and x ̸= y such that ||x − Tλx|| = dist(A,B) and ||y −
Tλy|| = dist(A,B). Therefore

||Tλx− y|| = ||Tλx− T 2
λy|| ≤ ||x− Tλy||

||Tλy − x|| = ||Tλy − T 2
λx|| ≤ ||y − Tλx||,

which implies that ||Tλy − x|| = ||y − Tλx||. But since ||y − Tλx|| > dist(A,B), it
follows that ||Tλy − x|| < ||y − Tλx||, a contradiction. Therefore x = y. Hence the
result. □

Remark 2.13. Theorem 3.10 of Eldred et al. [3] and Theorem 8 of Al-Thagafi et
al. [1] are special cases of Theorem 2.12.
If the convexity assumption is dropped from Theorem 2.12, then the convergence
and uniqueness is not guaranteed even in finite dimensional spaces.

If A = B in Theorem 2.12, then the existence of a fixed point for self-mapping
can be obtained under weaker conditions.

Theorem 2.14. Let A be a nonempty closed subset of a convex metric space
(X, d,W ) and T : A → A be an enriched contraction map. Then

(i) F (T ) = {p}, for some p ∈ A,
(ii) the sequence {xn} obtained from Krasnoselskij iterative process

xn+1 = W (xn, Txn, λ) = Tλxn, n ≥ 0,(2.6)

converges to p, for any x0 ∈ X.

Proof. As T is an enriched contraction, we have the mapping Tλ : A → A defined
by Tλx = W (x, Tx, λ) satisfies

d(Tλx, Tλy) ≤ cd(x, y),(2.7)

for all x, y ∈ X. Hence by taking x = xn and y = xn−1 in (2.7) and using Kras-
noselskij iterative process xn+1 = W (xn, Txn, λ) = Tλxn, n ≥ 0, we get

d(xn+1, xn) ≤ cnd(x1, x0), n ≥ 1.

As c ∈ [0, 1), we get d(xn+1, xn) → 0 as n → ∞. For m > n, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm)

≤ (cn + cn+1 + . . .+ cm−1)d(x0, x1)

≤ cn(1− cm−n)

1− c
d(x0, x1).

Therefore, d(xm, xn) → 0, when m,n → ∞. Thus {xn} is a Cauchy sequence in A.
Hence {xn} is convergent and denote

p = lim
n→∞

xn.
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Further, we get

d(xn+1, Tλp) = d(W (xn, Txn, λ),W (p, Tp, λ))

≤ cd(xn, p).

Taking n → ∞, we have Tλp = p. Therefore, 0 = d(p, Tλp) = d(p,W (p, Tp, λ)) =
(1− λ)d(p, Tp) and d(p, Tp) = 0. This completes the proof. □

Corollary 2.15. Let A be a nonempty closed subset of a convex Banach space X
and T : A → A be a (b, θ)-enriched contraction map. Then

(i) F (T ) = {p}, for some p ∈ A,
(ii) there exists λ ∈ (0, 1] such that the sequence {xn} obtained from Krasnoselskij

iterative process

xn+1 = (1− λ)xn + λTxn = Tλxn, n ≥ 0,

converges to p, for any x0 ∈ X.

Proof. By taking λ =
1

b+ 1
and using Theorem 2.14, we get the result. □

2.3. Illustrations. In this section, we provide some examples for the validity of
our results.

Example 1. Consider A = B = [0, 1] ⊂ X = R with the usual metric wherein

W (x, y,
1

2
) =

1

2
x+

1

2
y. Define T : A ∪B → A ∪B by

Tx =


2− x

3
, 0 ≤ x ≤ 1

2
1

2
,

1

2
≤ x ≤ 1.

Here T 1
2
x = W (x, Tx,

1

2
) =

1

2
x+

1

2
Tx.

If 0 ≤ x ≤ 1

2
, Tx =

2− x

3
. So, we have

d(T 1
2
x, T 1

2
y) = d(W (x, Tx,

1

2
),W (y, Ty,

1

2
))

= |1
2
(x− y) +

1

2
(Tx− Ty)|

= |1
2
(x− y) +

1

2

y − x

3
|

=
1

2
|x− y||(1− 1

3
)|

≤ 1

2
|x− y|.

Also, if
1

2
≤ x ≤ 1, Tx =

1

2
. So, we have

d(T 1
2
x, T 1

2
y) = d(W (x, Tx,

1

2
),W (y, Ty,

1

2
))
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= |1
2
(x− y) +

1

2
(Tx− Ty)|

= |1
2
(x− y)|.

Thus all the conditions of Theorem 2.14 are satisfied.

Example 2. Consider A = B = [1, 2] ⊂ X = R with the usual metric wherein

W (x, y,
1

2
) =

1

2
x+

1

2
y. Define T : A ∪B → A ∪B by

Tx =
1

x
, x ∈ [1, 2].

Here T 1
2
x = W (x, Tx,

1

2
) =

1

2
x+

1

2
Tx. So, we have

d(T 1
2
x, T 1

2
y) = d(W (x, Tx,

1

2
),W (y, Ty,

1

2
))

= |1
2
(x− y) +

1

2
(Tx− Ty)|

= |1
2
(x− y) +

1

2

y − x

xy
|

=
1

2
|x− y||(1− 1

xy
)|

≤ 1

2
|x− y|.

Thus all the conditions of Theorem 2.14 are satisfied.

Conclusions. This article focuses on best proximity point theorems for en-
riched contractions, which serve as non-self mapping analogues of contraction self-
mappings. Also, some sufficient conditions are established for a non-self enriched
contraction mapping to have a best proximity point.
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