A NOTE ON RELATIONS BETWEEN SKEWNESS AND GEOMETRICAL CONSTANTS OF BANACH SPACES

KEN-ICHI MITANI* AND KICHI-SUKE SAITO

Abstract

We study some relations between the skewness $s(X)$ and geometrical constants of Banach spaces X, especially the modulus of smoothness $\rho_{X}(1)$ and the characteristic of convexity $\varepsilon_{0}(X)$. A sufficient condition for the inequality $s(X)<2 \rho_{X}(1)$ is given in terms of $\varepsilon_{0}(X)$, and an estimate of $s(X)$ from below by $\varepsilon_{0}(X)$ is also given.

1. Introduction and preliminaries

Let X be a real Banach space with $\operatorname{dim} X \geq 2$, and $S_{X}=\{x \in X:\|x\|=1\}$. The skewness $s(X)$ of X was introduced by Fitzpatrick and Reznick [3], as follows:

$$
s(X)=\sup \left\{\lim _{t \rightarrow+0} \frac{\|x+t y\|-\|y+t x\|}{t}: x, y \in S_{X}\right\} .
$$

An equivalent definition of $s(X)$ can be found in [3] as the following form:

$$
s(X)=\sup \left\{\langle x, y\rangle-\langle y, x\rangle: x, y \in S_{X}\right\},
$$

where $\langle\cdot, \cdot\rangle$ is the "generalized inner product" of Ritt [12]:

$$
\langle x, y\rangle=\|x\| \lim _{t \rightarrow+0} \frac{\|x+t y\|-\|x\|}{t} \quad(x, y \in X)
$$

(cf.[1]). It is obvious that $0 \leq s(X) \leq 2$ for any Banach space X. They showed that X is a Hilbert space if and only if $s(X)=0$, and X is uniformly non-square if and only if $s(X)<2$. Moreover, the $s(X)$-constants were calculated for L_{p} spaces. A modified version of $s(X)$ was investigated by Baronti and Papini [2].

In this paper, we study relations between $s(X)$ and some geometrical constants. We first discuss relations between $s(X)$ and the modulus of smoothness $\rho_{X}(1)$. It is known that $s(X) \leq 2 \rho_{X}(1)$ for any Banach space $X([2])$. A sufficient condition for strict inequality in above is given in terms of the characteristic of convexity $\varepsilon_{0}(X)$. This is an improvement of a result in [9]. Moreover, we give an estimate of $s(X)$ from below by $\varepsilon_{0}(X)$, which directly gives that $s(X)<2$ implies $\varepsilon_{0}(X)<2$.

We recall some definitions and notations (cf. [4, 7]). A Banach space X is called uniformly non-square if there exists $\delta>0$ such that for any $x, y \in S_{X}$, either

[^0]$\|x+y\| \leq 2(1-\delta)$ or $\|x-y\| \leq 2(1-\delta)$. The James constant $J(X)$ of X is defined by
$$
J(X)=\sup \left\{\min \{\|x+y\|,\|x-y\|\}: x, y \in S_{X}\right\} .
$$

It is obvious that X is uniformly non-square if and only if $J(X)<2$. The modulus of convexity of X is defined by

$$
\delta_{X}(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in S_{X},\|x-y\| \geq \varepsilon\right\}, \quad 0 \leq \varepsilon \leq 2 .
$$

The characteristic of convexity of X is defined by

$$
\varepsilon_{0}(X)=\sup \left\{\varepsilon \in[0,2]: \delta_{X}(\varepsilon)=0\right\} .
$$

X is uniformly convex if $\delta_{X}(\varepsilon)>0$ for all $0<\varepsilon \leq 2$, i.e., $\varepsilon_{0}(X)=0$. The modulus of smoothness of X is defined by

$$
\rho_{X}(\tau)=\sup \left\{\frac{\|x+\tau y\|+\|x-\tau y\|}{2}-1: x, y \in S_{X}\right\}, \quad \tau \geq 0 .
$$

The uniform non-squareness is characterized as follows:
Proposition 1.1 ([5]). Let X be a Banach space. The following are equivalent.
(i) X is uniformly non-square.
(ii) $\delta_{X}(\varepsilon)>0$ for some $0<\varepsilon<2$.
(iii) $\varepsilon_{0}(X)<2$.
(iv) $\rho_{X}(1)<1$.

The following lemmas will be useful later.
Lemma 1.2 ([6]). Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences in a Banach space X such that $\left\{\left\|x_{n}\right\|\right\}_{n=1}^{\infty}$ and $\left\{\left\|y_{n}\right\|\right\}_{n=1}^{\infty}$ are convergent to non-zero limits, respectively. The following are equivalent.
(i) $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=\lim _{n \rightarrow \infty}\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)$.
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{x_{n}}{\left\|x_{n}\right\|}+\frac{y_{n}}{\left\|y_{n}\right\|}\right\|=2$.

Lemma 1.3 ([8]). Let X be a Banach space and $x \in X$ with $x \neq 0$. Then for each y in X, the function

$$
t \mapsto \frac{\|x+t y\|-\|x\|}{t}
$$

from $\mathbb{R} \backslash\{0\}$ into \mathbb{R} is non-decreasing.
Lemma 1.4. Let X be a Banach space. Whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in S_{X} with $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=0$, it follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=2$.
Proof. It is clear from the triangle inequality.
Lemma 1.5. Let X be a Banach space. Whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in S_{X} with $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2$, it follows that $\varlimsup_{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\| \leq \varepsilon_{0}(X)$.

Proof. Since $\left\{\left\|x_{n}-y_{n}\right\|\right\}$ is bounded, we may assume without loss of generality that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|$ exists. Put $a=\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|$. If $a=2$, then X is not uniformly non-square and hence $a=\varepsilon_{0}(X)=2$. Let $a<2$. Put $u_{n}=\left\|x_{n}-y_{n}\right\|$. Since

$$
\delta_{X}\left(u_{n}\right) \leq 1-\left\|\frac{x_{n}+y_{n}}{2}\right\|
$$

it follows that $\delta_{X}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Noting that δ_{X} is continuous on $[0,2)$ we have $\delta_{X}(a)=0$ and so $a \leq \varepsilon_{0}(X)$. This completes the proof.

2. Results

The following result is due to Baronti and Papini [2].
Proposition 2.1 ([2]). Let X be a Banach space. Then

$$
\begin{equation*}
s(X) \leq 2 \rho_{X}(1) \tag{2.1}
\end{equation*}
$$

If X is not uniformly non-square, then $s(X)=2 \rho_{X}(1)=2$. In [9], the first, second authors and Takahashi showed that if X is uniformly convex, then we have strict inequality in (2.1). Note here that there exists some non-uniformly convex (uniformly non-square) space X that we have equality in (2.1). In fact, let X be $\ell_{\infty}-\ell_{1}$ space, that is, the space \mathbb{R}^{2} with the norm defined by

$$
\|x\|= \begin{cases}\|x\|_{\infty} & x_{1} x_{2} \geq 0 \\ \|x\|_{1} & x_{1} x_{2} \leq 0\end{cases}
$$

for $x=\left(x_{1}, x_{2}\right)$ (cf. [5]). Note that X is not uniformly convex and is uniformly non-square. As in [9], we have $s(X)=2 \rho_{X}(1)=1$. The following shows that there exist many non-uniformly convex (uniformly non-square) Banach spaces X that we have strict inequality in (2.1).

Proposition 2.2. Let X be a Banach space. If $\varepsilon_{0}(X) \leq 1 / 2$, then $s(X)<2 \rho_{X}(1)$.
Proof. Assume that $s(X)=2 \rho_{X}(1)$. Take sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in S_{X} with

$$
s(X)-\frac{1}{n}<\left\langle x_{n}, y_{n}\right\rangle-\left\langle y_{n}, x_{n}\right\rangle .
$$

Let s and t be any numbers in $(0,1)$. Since $|\langle x, y\rangle| \leq\|x\|\|y\|$ for all $x, y \in X([3])$, sequence $\left\{\left\langle y_{n}, x_{n}\right\rangle\right\}$ is bounded and hence we may assume without loss of generality that $\lim _{n \rightarrow \infty}\left\langle y_{n}, x_{n}\right\rangle$ exists. Then, by Lemma 1.3,

$$
\begin{aligned}
\left\langle x_{n}, y_{n}\right\rangle-\left\langle y_{n}, x_{n}\right\rangle & \leq \frac{\left\|x_{n}+s y_{n}\right\|-\left\|x_{n}\right\|}{s}-\left\langle y_{n}, x_{n}\right\rangle \\
& \leq \frac{\left\|x_{n}+y_{n}\right\|-\left\|x_{n}\right\|}{1}-\left\langle y_{n}, x_{n}\right\rangle \\
& \leq\left\|x_{n}+y_{n}\right\|-1-\frac{\left\|y_{n}-t x_{n}\right\|-\left\|y_{n}\right\|}{-t} \\
& \leq\left\|x_{n}+y_{n}\right\|-1-\frac{\left\|y_{n}-x_{n}\right\|-\left\|y_{n}\right\|}{-1}
\end{aligned}
$$

$$
=\left\|x_{n}+y_{n}\right\|+\left\|x_{n}-y_{n}\right\|-2 \leq 2 \rho_{X}(1)=s(X)
$$

As $n \rightarrow \infty$, it follows that

$$
\begin{align*}
& \frac{c-1}{s}=a-1, \tag{2.2}\\
& \frac{d-1}{t}=b-1 \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
s(X)=a+b-2=2 \rho_{X}(1) \tag{2.4}
\end{equation*}
$$

where $a=\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|, b=\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|, c=\lim _{n \rightarrow \infty}\left\|x_{n}+s y_{n}\right\|$ and $d=\lim _{n \rightarrow \infty}\left\|y_{n}-t x_{n}\right\|$. If $a=0$, then $b=2$ by Lemma 1.4. Hence it follows from (2.4) that $\rho_{X}(1)=0$. This is a contradiction to the fact that $\rho_{X}(1) \geq \sqrt{2}-1$ (cf.
[5]). Hence $a>0$. Similarly, $b>0$. From (2.2) and (2.3), it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|s\left(x_{n}+y_{n}\right)+(1-s) x_{n}\right\|=\lim _{n \rightarrow \infty}\left(\left\|s\left(x_{n}+y_{n}\right)\right\|+\left\|(1-s) x_{n}\right\|\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t\left(y_{n}-x_{n}\right)+(1-t) y_{n}\right\|=\lim _{n \rightarrow \infty}\left(\left\|t\left(y_{n}-x_{n}\right)\right\|+\left\|(1-t) y_{n}\right\|\right) \tag{2.6}
\end{equation*}
$$

for all s, t in $(0,1)$. By Lemma 1.2,

$$
\lim _{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{\left\|x_{n}+y_{n}\right\|}+x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\frac{y_{n}-x_{n}}{\left\|y_{n}-x_{n}\right\|}+y_{n}\right\|=2
$$

As Lemma 1.5 we have

$$
\varlimsup_{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{\left\|x_{n}+y_{n}\right\|}-x_{n}\right\| \leq \varepsilon_{0}(X) \text { and } \varlimsup_{n \rightarrow \infty}\left\|\frac{y_{n}-x_{n}}{\left\|y_{n}-x_{n}\right\|}-y_{n}\right\| \leq \varepsilon_{0}(X) .
$$

Since $\left\|x_{n}+y_{n}\right\| \rightarrow a$ as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{a}-x_{n}\right\| \leq \varepsilon_{0}(X) \tag{2.7}
\end{equation*}
$$

by using the triangle inequality. Similarly,

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\|\frac{y_{n}-x_{n}}{b}-y_{n}\right\| \leq \varepsilon_{0}(X) . \tag{2.8}
\end{equation*}
$$

If $a \leq 1$, then it follows from (2.7) that

$$
\varepsilon_{0}(X) \geq \frac{1}{a} \varlimsup_{n \rightarrow \infty}\left\|y_{n}+(1-a) x_{n}\right\| \geq \frac{1}{a}(1-(1-a))=1 .
$$

If $b \leq 1$, then it follows from (2.8) that

$$
\varepsilon_{0}(X) \geq \frac{1}{b} \varlimsup_{n \rightarrow \infty}\left\|x_{n}-(1-b) y_{n}\right\| \geq \frac{1}{b}(1-(1-b))=1 .
$$

Let $a>1$ and $b>1$. By (2.3) we have $d>1$ and hence $\lim _{n \rightarrow \infty}\left\|y_{n}-t x_{n}\right\|>1$ for all $t \in(0,1]$. Thus it follows that

$$
\varepsilon_{0}(X) \geq \frac{1}{a} \varlimsup_{n \rightarrow \infty}\left\|y_{n}-(a-1) x_{n}\right\|>\frac{1}{a} \geq \frac{1}{2}
$$

by (2.7). This completes the proof.

As an immediate consequence of this proposition we have the following.
Corollary 2.3 ([9]). Let X be a Banach space. If X is uniformly convex, then $s(X)<2 \rho_{X}(1)$.
In [11], Takahashi and Kato gave an estimate $\rho_{X}(1)$ from above by the James constant $J(X)$.
Proposition 2.4 ([11]). Let X be a Banach space. Then

$$
\rho_{X}(1) \leq 2\left\{1-\frac{1}{J(X)}\right\} .
$$

Combining the preceding proposition with Proposition 2.1, we obtain the following.
Proposition 2.5 ([9]). Let X be a Banach space. Then

$$
\begin{equation*}
s(X) \leq 4\left\{1-\frac{1}{J(X)}\right\} . \tag{2.9}
\end{equation*}
$$

Combining Proposition 2.2 with Proposition 2.4, we have the strict inequality in (2.9).

Proposition 2.6. Let X be a Banach space. If $\varepsilon_{0}(X) \leq 1 / 2$, then

$$
s(X)<4\left\{1-\frac{1}{J(X)}\right\} .
$$

In the following, we consider an estimate the constant $s(X)$ from below by $\varepsilon_{0}(X)$.
Lemma 2.7. Let X be a Banach space with $1 \leq \varepsilon_{0}(X) \leq 2$ and $0<t<1$. Then

$$
s(X) \geq \frac{4 t-2+\varepsilon_{0}(X)}{t^{2}+t}-2 .
$$

Proof. Let $0<t_{0}<1$. Take sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$ in S_{X} such that $\left\|u_{n}-v_{n}\right\| \rightarrow$ $\varepsilon_{0}(X)$ and $\left\|u_{n}+v_{n}\right\| \rightarrow 2$. Put $w_{n}=u_{n}+t_{0} v_{n}, z_{n}=v_{n}-t_{0} u_{n}, x_{n}=w_{n} /\left\|w_{n}\right\|$ and $y_{n}=z_{n} /\left\|z_{n}\right\|$ for each n. Since $\left\|w_{n}\right\| \leq 1+t_{0}$ and $\left\|w_{n}\right\|=\| u_{n}+v_{n}-(1-$ $\left.t_{0}\right) v_{n}\|\geq\| u_{n}+v_{n} \|-\left(1-t_{0}\right)$, we have $\left\|w_{n}\right\| \rightarrow 1+t_{0}$. Since sequences $\left\{\left\|z_{n}\right\|\right\}$, $\left\{\left\langle x_{n}, y_{n}\right\rangle\right\},\left\{\left\langle y_{n}, x_{n}\right\rangle\right\}$ are bounded, we may without loss of generality assume that $\left\|z_{n}\right\| \rightarrow a,\left\langle x_{n}, y_{n}\right\rangle \rightarrow b$ and $\left\langle y_{n}, x_{n}\right\rangle \rightarrow c$ for some a, b, c. Since $\left\|z_{n}\right\| \leq 1+t_{0}$ and $\left\|z_{n}\right\|=\left\|v_{n}-u_{n}+\left(1-t_{0}\right) u_{n}\right\| \geq\left\|u_{n}-v_{n}\right\|-\left(1-t_{0}\right)$, we have

$$
\begin{equation*}
\varepsilon_{0}(X)-\left(1-t_{0}\right) \leq a \leq 1+t_{0} \tag{2.10}
\end{equation*}
$$

and hence it follows from our assumption that $a \geq t_{0}>0$. Also, $\left\|w_{n}-t_{0} z_{n}\right\|=1+t_{0}^{2}$ and $\left\|z_{n}+t_{0} w_{n}\right\|=1+t_{0}^{2}$. Thus we have for all t with $0<t<t_{0}$,

$$
\frac{\left\|w_{n}+t z_{n}\right\|-\left\|w_{n}\right\|}{t} \geq \frac{\left\|w_{n}-t_{0} z_{n}\right\|-\left\|w_{n}\right\|}{-t_{0}}=\frac{1+t_{0}^{2}-\left\|w_{n}\right\|}{-t_{0}},
$$

from which it follows that

$$
\left\langle x_{n}, y_{n}\right\rangle=\frac{1}{\left\|w_{n}\right\|\left\|z_{n}\right\|}\left\langle w_{n}, z_{n}\right\rangle
$$

$$
\begin{aligned}
& =\frac{1}{\left\|z_{n}\right\|} \lim _{t \rightarrow+0} \frac{\left\|w_{n}+t z_{n}\right\|-\left\|w_{n}\right\|}{t} \\
& \geq \frac{1}{\left\|z_{n}\right\|} \cdot \frac{1+t_{0}^{2}-\left\|w_{n}\right\|}{-t_{0}} .
\end{aligned}
$$

As $n \rightarrow \infty$, we have

$$
b \geq \frac{1}{a} \cdot \frac{1+t_{0}^{2}-\left(1+t_{0}\right)}{-t_{0}}=\frac{1-t_{0}}{a} .
$$

From (2.10),

$$
b \geq \frac{1-t_{0}}{1+t_{0}} .
$$

On the other hand, for all t with with $0<t<t_{0}$,

$$
\frac{\left\|z_{n}+t w_{n}\right\|-\left\|z_{n}\right\|}{t} \leq \frac{\left\|z_{n}+t_{0} w_{n}\right\|-\left\|z_{n}\right\|}{t_{0}}=\frac{1+t_{0}^{2}-\left\|z_{n}\right\|}{t_{0}}
$$

from which it follows that

$$
\begin{aligned}
\left\langle y_{n}, x_{n}\right\rangle & =\frac{1}{\left\|z_{n}\right\|\left\|w_{n}\right\|}\left\langle z_{n}, w_{n}\right\rangle=\frac{1}{\left\|w_{n}\right\|} \lim _{t \rightarrow+0} \frac{\left\|z_{n}+t w_{n}\right\|-\left\|z_{n}\right\|}{t} \\
& \leq \frac{1}{\left\|w_{n}\right\|} \cdot \frac{1+t_{0}^{2}-\left\|z_{n}\right\|}{t_{0}} .
\end{aligned}
$$

As $n \rightarrow \infty$, we have

$$
c \leq \frac{1}{1+t_{0}} \cdot \frac{1+t_{0}^{2}-a}{t_{0}}
$$

From (2.10),

$$
c \leq \frac{1+t_{0}^{2}-\left(\varepsilon_{0}(X)-\left(1-t_{0}\right)\right)}{\left(1+t_{0}\right) t_{0}}=\frac{t_{0}^{2}-t_{0}+2-\varepsilon_{0}(X)}{\left(1+t_{0}\right) t_{0}} .
$$

Thus,

$$
\begin{aligned}
s(X) & \geq b-c \\
& \geq \frac{1-t_{0}}{1+t_{0}}-\frac{t_{0}^{2}-t_{0}+2-\varepsilon_{0}(X)}{\left(1+t_{0}\right) t_{0}} \\
& =\frac{-2 t_{0}^{2}+2 t_{0}-2+\varepsilon_{0}(X)}{\left(1+t_{0}\right) t_{0}} \\
& =\frac{4 t_{0}-2+\varepsilon_{0}(X)}{t_{0}^{2}+t_{0}}-2 .
\end{aligned}
$$

This completes the proof.
Lemma 2.8. Let X be a Banach space with $1 \leq \varepsilon_{0}(X) \leq 2$. We define a function f on $(0,1)$ as

$$
f(t)=\frac{4 t-2+\varepsilon_{0}(X)}{t^{2}+t}-2 .
$$

Then

$$
\begin{equation*}
\sup _{t \in(0,1)} f(t)=2+2\left(2-\varepsilon_{0}(X)\right)-2 \sqrt{\left(2-\varepsilon_{0}(X)\right)\left(6-\varepsilon_{0}(X)\right)} . \tag{2.11}
\end{equation*}
$$

Proof. Let $\varepsilon_{0}(X)=2$. Since f is decreasing on $(0,1)$, we have

$$
\sup _{t \in(0,1)} f(t)=2
$$

and so (2.11). Let $1 \leq \varepsilon_{0}(X)<2$. Put $d=2-\varepsilon_{0}(X) \in(0,1]$. Since the derivative of f is

$$
f^{\prime}(t)=\frac{4\left(t^{2}+t\right)-(4 t-d)(2 t+1)}{\left(t^{2}+t\right)^{2}}=\frac{-4 t^{2}+2 d t+d}{\left(t^{2}+t\right)^{2}}
$$

we have $f^{\prime}\left(t_{1}\right)=0$ and f has the maximum at $t=t_{1}$, where

$$
t_{1}=\frac{1}{4}(d+\sqrt{d(d+4)}) \in(0,1)
$$

We now calculate the value $f\left(t_{1}\right)$. By $f^{\prime}\left(t_{1}\right)=0$, we have

$$
4\left(t_{1}^{2}+t_{1}\right)=\left(4 t_{1}-d\right)\left(2 t_{1}+1\right)
$$

which implies

$$
\begin{aligned}
f\left(t_{1}\right) & =\frac{4 t_{1}-d}{t_{1}^{2}+t_{1}}-2=\frac{4}{2 t_{1}+1}-2=\frac{8}{d+\sqrt{d(d+4)}+2}-2 \\
& =2\{d+1-\sqrt{d(d+4)}\}
\end{aligned}
$$

Thus we obtain (2.11). This completes the proof.
Remark 2.9. Note that if $\varepsilon_{0}(X)<3 / 2$, then

$$
2+2\left(2-\varepsilon_{0}(X)\right)-2 \sqrt{\left(2-\varepsilon_{0}(X)\right)\left(6-\varepsilon_{0}(X)\right)}<0
$$

Combining Lemma 2.8 with Lemma 2.7, we obtain the main result.
Theorem 2.10. Let X be a Banach space. Then

$$
\begin{equation*}
s(X) \geq 2+2\left(2-\varepsilon_{0}(X)\right)-2 \sqrt{\left(2-\varepsilon_{0}(X)\right)\left(6-\varepsilon_{0}(X)\right)} \tag{2.12}
\end{equation*}
$$

Remark 2.11. The inequality (2.12) in the preceding theorem directly gives that $s(X)<2$ implies $\varepsilon_{0}(X)<2$.

Remark 2.12. In [9], the first, second authors and Takahashi estimated $s(X)$ from below by the James constant $J(X)$, as follows:

$$
s(X) \geq 2+4(2-J(X))-4 \sqrt{(2-J(X))(4-J(X))}
$$

for any Banach space X. We define a function f on $[0,2]$ as

$$
f(t)=2+4(2-t)-4 \sqrt{(2-t)(4-t)}
$$

It is easy to see that f is increasing. Also, Takahashi [10] showed that

$$
J(X) \geq \varepsilon_{0}(X)
$$

for any Banach space X. Hence we obtain

$$
s(X) \geq f(J(X)) \geq f\left(\varepsilon_{0}(X)\right)
$$

Namely,

$$
\begin{equation*}
s(X) \geq 2+4\left(2-\varepsilon_{0}(X)\right)-4 \sqrt{\left(2-\varepsilon_{0}(X)\right)\left(4-\varepsilon_{0}(X)\right)} \tag{2.13}
\end{equation*}
$$

We mention that the inequality (2.12) in Theorem 2.10 is sharper than the inequality (2.13). Indeed, we define a function g on $[0,2]$ as

$$
g(t)=2+2(2-t)-2 \sqrt{(2-t)(6-t)} .
$$

It is obvious that $g(t) \geq f(t)$ for all $0 \leq t \leq 2$. Therefore we obtain

$$
\begin{aligned}
& 2+2\left(2-\varepsilon_{0}(X)\right)-2 \sqrt{\left(2-\varepsilon_{0}(X)\right)\left(6-\varepsilon_{0}(X)\right)} \\
& =g\left(\varepsilon_{0}(X)\right) \geq f\left(\varepsilon_{0}(X)\right) \\
& =2+4\left(2-\varepsilon_{0}(X)\right)-4 \sqrt{\left(2-\varepsilon_{0}(X)\right)\left(4-\varepsilon_{0}(X)\right)} .
\end{aligned}
$$

References

[1] D. Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, vol. 20. Birkhäuser Verlag, Basel, 1986.
[2] M. Baronti and P. L. Papini, Projections, skewness and related constants in real normed spaces, Math. Pannonica 3 (1992), 31-47.
[3] S. Fitzpatrick and B. Reznick, Skewness in Banach spaces, Trans. Amer. Math. Soc. 275 (1983), 587-597.
[4] J. Gao and K.S. Lau, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. A 48 (1990), 101-112.
[5] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Stud. Math. 144 (2001), 275-295.
[6] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
[7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II : Function spaces, Springer, Berlin, 1979.
[8] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics. 183. New York, Springer, 1998.
[9] K.-I. Mitani, K.-S. Saito and Y. Takahashi, Skewness and James constant of Banach spaces, J. Nonlinear Convex Anal. 14 (2013), 115-122.
[10] Y. Takahashi, Some geometric constants of Banach spaces - a unified approach, in: Banach and function spaces II, Yokohama Publ., Yokohama, 2007, pp. 191-220.
[11] Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl. 359 (2009), 602-609.
[12] R. K. Ritt, A generalization of inner product, Michigan Math. J. 3 (1955), 23-26.

Manuscript received 21 December 2021 revised 30 December 2021

Ken-Ichi Mitani

Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail address: mitani@cse.oka-pu.ac.jp

Kichi-Suke Saito

Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan E-mail address: saito@math.sc.niigata-u.ac.jp

[^0]: 2020 Mathematics Subject Classification. 46B20.
 Key words and phrases. skewness, characteristic of convexity, James constant, uniformly nonsquare, modulus of smoothness.
 *Corresponding author.
 *The first author was supported in part by Grants-in-Aid for Scientific Research (No. 21K03275), Japan Society for the Promotion of Science.

