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‖x+ y‖ ≤ 2(1− δ) or ‖x− y‖ ≤ 2(1− δ). The James constant J(X) of X is defined
by

J(X) = sup
{
min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX

}
.

It is obvious that X is uniformly non-square if and only if J(X) < 2. The modulus
of convexity of X is defined by

δX(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ SX , ‖x− y‖ ≥ ε

}
, 0 ≤ ε ≤ 2.

The characteristic of convexity of X is defined by

ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}.

X is uniformly convex if δX(ε) > 0 for all 0 < ε ≤ 2 , i.e., ε0(X) = 0. The modulus
of smoothness of X is defined by

ρX(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ SX

}
, τ ≥ 0.

The uniform non-squareness is characterized as follows:

Proposition 1.1 ([5]). Let X be a Banach space. The following are equivalent.
(i) X is uniformly non-square.
(ii) δX(ε) > 0 for some 0 < ε < 2.
(iii) ε0(X) < 2.
(iv) ρX(1) < 1.

The following lemmas will be useful later.

Lemma 1.2 ([6]). Let {xn}, {yn} be sequences in a Banach space X such that
{‖xn‖}∞n=1 and {‖yn‖}∞n=1 are convergent to non-zero limits, respectively. The fol-
lowing are equivalent.
(i) limn→∞ ‖xn + yn‖ = limn→∞(‖xn‖+ ‖yn‖).

(ii) limn→∞

∥∥∥ xn
∥xn∥ + yn

∥yn∥

∥∥∥ = 2.

Lemma 1.3 ([8]). Let X be a Banach space and x ∈ X with x 6= 0. Then for each
y in X, the function

t 7→ ‖x+ ty‖ − ‖x‖
t

from R\{0} into R is non-decreasing.

Lemma 1.4. Let X be a Banach space. Whenever {xn} and {yn} are sequences in
SX with limn→∞(xn + yn) = 0, it follows that limn→∞ ‖xn − yn‖ = 2.

Proof. It is clear from the triangle inequality. □

Lemma 1.5. Let X be a Banach space. Whenever {xn} and {yn} are sequences in
SX with limn→∞ ‖xn + yn‖ = 2, it follows that limn→∞ ‖xn − yn‖ ≤ ε0(X).
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Proof. Since {‖xn − yn‖} is bounded, we may assume without loss of generality
that limn→∞ ‖xn − yn‖ exists. Put a = limn→∞ ‖xn − yn‖. If a = 2, then X is not
uniformly non-square and hence a = ε0(X) = 2. Let a < 2. Put un = ‖xn − yn‖.
Since

δX(un) ≤ 1−
∥∥∥∥xn + yn

2

∥∥∥∥ ,
it follows that δX(un) → 0 as n → ∞. Noting that δX is continuous on [0, 2) we
have δX(a) = 0 and so a ≤ ε0(X). This completes the proof. □

2. Results

The following result is due to Baronti and Papini [2].

Proposition 2.1 ([2]). Let X be a Banach space. Then

s(X) ≤ 2ρX(1).(2.1)

If X is not uniformly non-square, then s(X) = 2ρX(1) = 2. In [9], the first,
second authors and Takahashi showed that if X is uniformly convex, then we have
strict inequality in (2.1). Note here that there exists some non-uniformly convex
(uniformly non-square) space X that we have equality in (2.1). In fact, let X be
ℓ∞-ℓ1 space, that is, the space R2 with the norm defined by

‖x‖ =

{
‖x‖∞ x1x2 ≥ 0

‖x‖1 x1x2 ≤ 0

for x = (x1, x2) (cf. [5]). Note that X is not uniformly convex and is uniformly
non-square. As in [9], we have s(X) = 2ρX(1) = 1. The following shows that there
exist many non-uniformly convex (uniformly non-square) Banach spaces X that we
have strict inequality in (2.1).

Proposition 2.2. Let X be a Banach space. If ε0(X) ≤ 1/2, then s(X) < 2ρX(1).

Proof. Assume that s(X) = 2ρX(1). Take sequences {xn} and {yn} in SX with

s(X)− 1

n
< 〈xn, yn〉 − 〈yn, xn〉.

Let s and t be any numbers in (0, 1). Since |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X([3]),
sequence {〈yn, xn〉} is bounded and hence we may assume without loss of generality
that limn→∞〈yn, xn〉 exists. Then, by Lemma 1.3,

〈xn, yn〉 − 〈yn, xn〉 ≤
‖xn + syn‖ − ‖xn‖

s
− 〈yn, xn〉

≤ ‖xn + yn‖ − ‖xn‖
1

− 〈yn, xn〉

≤ ‖xn + yn‖ − 1− ‖yn − txn‖ − ‖yn‖
−t

≤ ‖xn + yn‖ − 1− ‖yn − xn‖ − ‖yn‖
−1
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= ‖xn + yn‖+ ‖xn − yn‖ − 2 ≤ 2ρX(1) = s(X).

As n → ∞, it follows that

c− 1

s
= a− 1,(2.2)

d− 1

t
= b− 1(2.3)

and

s(X) = a+ b− 2 = 2ρX(1),(2.4)

where a = limn→∞ ‖xn + yn‖, b = limn→∞ ‖yn − xn‖, c = limn→∞ ‖xn + syn‖ and
d = limn→∞ ‖yn − txn‖. If a = 0, then b = 2 by Lemma 1.4. Hence it follows from
(2.4) that ρX(1) = 0. This is a contradiction to the fact that ρX(1) ≥

√
2 − 1(cf.

[5]). Hence a > 0. Similarly, b > 0. From (2.2) and (2.3), it follows that

lim
n→∞

‖s(xn + yn) + (1− s)xn‖ = lim
n→∞

(‖s(xn + yn)‖+ ‖(1− s)xn‖)(2.5)

and

lim
n→∞

‖t(yn − xn) + (1− t)yn‖ = lim
n→∞

(‖t(yn − xn)‖+ ‖(1− t)yn‖)(2.6)

for all s, t in (0, 1). By Lemma 1.2,

lim
n→∞

∥∥∥ xn + yn
‖xn + yn‖

+ xn

∥∥∥ = lim
n→∞

∥∥∥ yn − xn
‖yn − xn‖

+ yn

∥∥∥ = 2.

As Lemma 1.5 we have

lim
n→∞

∥∥∥ xn + yn
‖xn + yn‖

− xn

∥∥∥ ≤ ε0(X) and lim
n→∞

∥∥∥ yn − xn
‖yn − xn‖

− yn

∥∥∥ ≤ ε0(X).

Since ‖xn + yn‖ → a as n → ∞, we obtain

lim
n→∞

∥∥∥xn + yn
a

− xn

∥∥∥ ≤ ε0(X)(2.7)

by using the triangle inequality. Similarly,

lim
n→∞

∥∥∥yn − xn
b

− yn

∥∥∥ ≤ ε0(X).(2.8)

If a ≤ 1, then it follows from (2.7) that

ε0(X) ≥ 1

a
lim
n→∞

‖yn + (1− a)xn‖ ≥ 1

a
(1− (1− a)) = 1.

If b ≤ 1, then it follows from (2.8) that

ε0(X) ≥ 1

b
lim
n→∞

‖xn − (1− b)yn‖ ≥ 1

b
(1− (1− b)) = 1.

Let a > 1 and b > 1. By (2.3) we have d > 1 and hence limn→∞ ‖yn − txn‖ > 1 for
all t ∈ (0, 1]. Thus it follows that

ε0(X) ≥ 1

a
lim
n→∞

‖yn − (a− 1)xn‖ >
1

a
≥ 1

2

by (2.7). This completes the proof. □
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As an immediate consequence of this proposition we have the following.

Corollary 2.3 ([9]). Let X be a Banach space. If X is uniformly convex, then
s(X) < 2ρX(1).

In [11], Takahashi and Kato gave an estimate ρX(1) from above by the James
constant J(X).

Proposition 2.4 ([11]). Let X be a Banach space. Then

ρX(1) ≤ 2
{
1− 1

J(X)

}
.

Combining the preceding proposition with Proposition 2.1, we obtain the following.

Proposition 2.5 ([9]). Let X be a Banach space. Then

s(X) ≤ 4
{
1− 1

J(X)

}
.(2.9)

Combining Proposition 2.2 with Proposition 2.4, we have the strict inequality in
(2.9).

Proposition 2.6. Let X be a Banach space. If ε0(X) ≤ 1/2, then

s(X) < 4
{
1− 1

J(X)

}
.

In the following, we consider an estimate the constant s(X) from below by ε0(X).

Lemma 2.7. Let X be a Banach space with 1 ≤ ε0(X) ≤ 2 and 0 < t < 1. Then

s(X) ≥ 4t− 2 + ε0(X)

t2 + t
− 2.

Proof. Let 0 < t0 < 1. Take sequences {un}, {vn} in SX such that ‖un − vn‖ →
ε0(X) and ‖un + vn‖ → 2. Put wn = un + t0vn, zn = vn − t0un, xn = wn/‖wn‖
and yn = zn/‖zn‖ for each n. Since ‖wn‖ ≤ 1 + t0 and ‖wn‖ = ‖un + vn − (1 −
t0)vn‖ ≥ ‖un + vn‖ − (1 − t0), we have ‖wn‖ → 1 + t0. Since sequences {‖zn‖},
{〈xn, yn〉}, {〈yn, xn〉} are bounded, we may without loss of generality assume that
‖zn‖ → a, 〈xn, yn〉 → b and 〈yn, xn〉 → c for some a, b, c. Since ‖zn‖ ≤ 1 + t0 and
‖zn‖ = ‖vn − un + (1− t0)un‖ ≥ ‖un − vn‖ − (1− t0), we have

(2.10) ε0(X)− (1− t0) ≤ a ≤ 1 + t0

and hence it follows from our assumption that a ≥ t0 > 0. Also, ‖wn−t0zn‖ = 1+t20
and ‖zn + t0wn‖ = 1 + t20. Thus we have for all t with 0 < t < t0,

‖wn + tzn‖ − ‖wn‖
t

≥ ‖wn − t0zn‖ − ‖wn‖
−t0

=
1 + t20 − ‖wn‖

−t0
,

from which it follows that

〈xn, yn〉 =
1

‖wn‖‖zn‖
〈wn, zn〉



262 K.-I. MITANI AND K.-S. SAITO

=
1

‖zn‖
lim
t→+0

‖wn + tzn‖ − ‖wn‖
t

≥ 1

‖zn‖
· 1 + t20 − ‖wn‖

−t0
.

As n → ∞, we have

b ≥ 1

a
· 1 + t20 − (1 + t0)

−t0
=

1− t0
a

.

From (2.10),

b ≥ 1− t0
1 + t0

.

On the other hand, for all t with with 0 < t < t0,

‖zn + twn‖ − ‖zn‖
t

≤ ‖zn + t0wn‖ − ‖zn‖
t0

=
1 + t20 − ‖zn‖

t0
,

from which it follows that

〈yn, xn〉 =
1

‖zn‖‖wn‖
〈zn, wn〉 =

1

‖wn‖
lim
t→+0

‖zn + twn‖ − ‖zn‖
t

≤ 1

‖wn‖
· 1 + t20 − ‖zn‖

t0
.

As n → ∞, we have

c ≤ 1

1 + t0
· 1 + t20 − a

t0
.

From (2.10),

c ≤ 1 + t20 − (ε0(X)− (1− t0))

(1 + t0)t0
=

t20 − t0 + 2− ε0(X)

(1 + t0)t0
.

Thus,

s(X) ≥ b− c

≥ 1− t0
1 + t0

− t20 − t0 + 2− ε0(X)

(1 + t0)t0

=
−2t20 + 2t0 − 2 + ε0(X)

(1 + t0)t0

=
4t0 − 2 + ε0(X)

t20 + t0
− 2.

This completes the proof. □

Lemma 2.8. Let X be a Banach space with 1 ≤ ε0(X) ≤ 2. We define a function
f on (0, 1) as

f(t) =
4t− 2 + ε0(X)

t2 + t
− 2.

Then

(2.11) sup
t∈(0,1)

f(t) = 2 + 2(2− ε0(X))− 2
√

(2− ε0(X))(6− ε0(X)).
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Proof. Let ε0(X) = 2. Since f is decreasing on (0, 1), we have

sup
t∈(0,1)

f(t) = 2

and so (2.11). Let 1 ≤ ε0(X) < 2. Put d = 2− ε0(X) ∈ (0, 1]. Since the derivative
of f is

f ′(t) =
4(t2 + t)− (4t− d)(2t+ 1)

(t2 + t)2
=

−4t2 + 2dt+ d

(t2 + t)2
,

we have f ′(t1) = 0 and f has the maximum at t = t1, where

t1 =
1

4
(d+

√
d(d+ 4)) ∈ (0, 1).

We now calculate the value f(t1). By f ′(t1) = 0, we have

4(t21 + t1) = (4t1 − d)(2t1 + 1),

which implies

f(t1) =
4t1 − d

t21 + t1
− 2 =

4

2t1 + 1
− 2 =

8

d+
√

d(d+ 4) + 2
− 2

= 2{d+ 1−
√
d(d+ 4)}.

Thus we obtain (2.11). This completes the proof. □

Remark 2.9. Note that if ε0(X) < 3/2, then

2 + 2(2− ε0(X))− 2
√
(2− ε0(X))(6− ε0(X)) < 0.

Combining Lemma 2.8 with Lemma 2.7, we obtain the main result.

Theorem 2.10. Let X be a Banach space. Then

s(X) ≥ 2 + 2(2− ε0(X))− 2
√
(2− ε0(X))(6− ε0(X)).(2.12)

Remark 2.11. The inequality (2.12) in the preceding theorem directly gives that
s(X) < 2 implies ε0(X) < 2.

Remark 2.12. In [9], the first, second authors and Takahashi estimated s(X) from
below by the James constant J(X), as follows:

s(X) ≥ 2 + 4(2− J(X))− 4
√

(2− J(X))(4− J(X))

for any Banach space X. We define a function f on [0, 2] as

f(t) = 2 + 4(2− t)− 4
√
(2− t)(4− t).

It is easy to see that f is increasing. Also, Takahashi [10] showed that

J(X) ≥ ε0(X)

for any Banach space X. Hence we obtain

s(X) ≥ f(J(X)) ≥ f(ε0(X)).

Namely,

s(X) ≥ 2 + 4(2− ε0(X))− 4
√
(2− ε0(X))(4− ε0(X)).(2.13)
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Wemention that the inequality (2.12) in Theorem 2.10 is sharper than the inequality
(2.13). Indeed, we define a function g on [0, 2] as

g(t) = 2 + 2(2− t)− 2
√

(2− t)(6− t).

It is obvious that g(t) ≥ f(t) for all 0 ≤ t ≤ 2. Therefore we obtain

2 + 2(2− ε0(X))− 2
√
(2− ε0(X))(6− ε0(X))

= g(ε0(X)) ≥ f(ε0(X))

= 2 + 4(2− ε0(X))− 4
√
(2− ε0(X))(4− ε0(X)).
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