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SERIES OF SETS AND FUZZY SETS

MASAMICHI KON

ABSTRACT. In this study, we propose series of sets and fuzzy sets and investigate
their properties. We derive the properties of addition, scalar multiplication, and
orderings for these sets. The relationships between our definitions and existing
definitions are also investigated.

1. INTRODUCTION

Kurano et al. [7] considered an infinite-horizon Markov decision process (MDP)
as a maximization problem of the discounted total reward that is a series of compact
convex sets, which represent rewards, defined by the limit of a sequence with respect
to the Pompeiu-Hausdorff distance. Here, we propose another series of sets that are
not necessarily compact convex and investigate their properties. We then prove that
our definition is equivalent to the definition with respect to the Pompeiu-Hausdorff
distance under some conditions.

Carrero-Vera et al. [1], Cruz-Sudrez et al. [2], Kurano et al. [8], and Semmouri
et al. [11] considered an infinite-horizon MDP as a maximization problem of the
discounted total reward that is a series of fuzzy numbers, which represent rewards,
defined by the limit of a sequence with respect to the distance between these num-
bers, which is defined using the Pompeiu-Hausdorff distances between the level sets
of these numbers. Kurano et al. [9] considered an infinite-horizon MDP as a maxi-
mization problem of the discounted total reward that is a series of compact convex
fuzzy sets, which represent rewards, defined by the limit of a sequence with respect
to the distance between these sets, which is defined using the Pompeiu-Hausdorff
distances between the level sets of the compact convex fuzzy sets. Here, we propose
another series of fuzzy sets that are not necessarily compact convex and investigate
their properties.

Stojakovié¢ et al. [12, 13] proposed a series of fuzzy sets based on Zadeh’s extension
principle and investigated their properties. While their definition differs from ours,
we prove that the two definitions are equivalent. Stojakovié et al. [12, 13] mainly
derived the properties of the level sets of a series. Here, we derive other properties
of a series of fuzzy sets.

It is expected that the properties derived in this study will be useful for an
infinite-horizon MDP or dynamic programming as a maximization problem of the
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discounted total reward in which the rewards are given as compact sets or compact
fuzzy sets and are not necessarily convex.

The remainder of this article is organized as follows. Section 2 presents definitions
of operations and orderings for sets. Section 3 presents definitions of the limit of a
sequence of sets. Section 4 describes the proposed series of sets and their properties.
Section 5 presents definitions of operations and orderings for fuzzy sets. Section 6
presents some properties for a generator of a fuzzy set. Section 7 presents definitions
of the limit of a sequence of fuzzy sets. Section 8 describes the proposed series of
fuzzy sets and their properties. Finally, Section 9 gives the conclusions.

2. OPERATIONS AND ORDERINGS FOR SETS

For a,b € R, we set [a,b] ={z € R:a <z <b}, Ja,b)={z €R:a <z < b},
[a,b[ ={z € R:a <z <b}, and Ja,b] = {x € R: a < x < b}. In addition, we set
R? ={x € R": 2 > 0} and R” = {x € R" : & < 0}. For S C R", int(S) and
cl(S) denote the interior and closure of S, respectively. Its characteristic function
cs : R" — {0,1} is defined as

col(@) = 1 ifxes,
ST o ife ¢S
for each & € R™. Let || - ||,|| - |loo : R™ — R4 be Euclidean and Chebyshev norms

on R", respectively, and (-,-) : R" x R™ — R be the canonical inner product on R™.
For S C R”, define

(2.1) S| = sup |||
Tes

where sup ) = 0. Let P(R"™) be the set of all subsets of R” and C(R™) be the set of
all nonempty compact subsets of R". We define addition and scalar multiplication
on P(R™) as follows:

(2.2) A+B={x+y:x e Ayec B},

(2.3) pA={px:x c A}

for A,B € P(R") and p € R. For A,B € P(R"), we define their orderings as
follows:

def

(2.4) A<BEBCA+R" AC B+R",
(2.5) A<BE BCA+int(R?),AC B+ int(R").

Thus, < is a preorder relation on P(R"™) (a binary relation on P(R"™) that is reflexive
and transitive) and < is a strict partial order relation on C(R™) (a binary relation
on C(R™) that is irreflexive and transitive). See [5, Proposition 3.3] or [6, Theorem
6.6] regarding the irreflexivity of the strict partial order relation < on C(R").
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For A, B,C,D € P(R™), it holds that (see [5, Proposition 3.4] or [6, Theorem
6.7])

(2.6) A<B,C<D=A+C<B+D,
(2.7) A<B,C<D=A+C<B+D.

3. LIMIT OF SEQUENCE OF SETS

Let N be the set of all natural numbers. Then, we set
Noo = {NCN:N\N finite}
= { subsequences of N containing all ¥ beyond some kq },
N: = {N CN:N infinite}
= { all subsequences of N}.

A subsequence of a sequence {zy}ren is represented as {x }ren for some N € NE.

We write limyg, limy_, oo, or limgeny when & — oo in N, but limgey or limy—y o, in the
N

case of the convergence of {xy}ren for some N € N or N € Na.

Definition 3.1. ([10, Definition 4.1]) For a sequence {C}}ren of subsets of R”, its
lower limit is defined as the set

liminf C;, = {:IZGRn:HNENOO,HwkECk(kEN) with :Itk—>:13},
k—oo N
and its upper limit is defined as the set

limsupC, = {az eR":3dN e Nﬁo,ﬂazk € Ck(k € N) with wkﬁw}
k—o0

The limit of {Cj }ren is said to exist if liminfy_, o, Ck = limsup,_, Ck. Then, the

limit is defined as the set

lim Cj = limsup C; = liminf CY.
k—ro00 k—00 k—ro00

When C = limy, C}, exists in the sense of Definition 3.1, it is said that the sequence
{C%}ken converges to C' as Painlevé-Kuratowski convergence, and we write

Ck — C.
The distance between a point * € R™ and a set C' C R" is defined as
d = inf —yl|.
o(x) nf, |z —yll

We also write this distance as d(zx, C), where do(x) = oo for C = 0.
For nonempty closed sets C, D C R"™, the Pompeiu-Hausdorff distance between
C and D is defined as

d(C,D) = sup |dc(z) — dp(z)|.
b ASING
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The supremum could equally be taken just over C'U D, yielding the alternative
formula

doo(C,D)=inf{n>0:C C D+nB,D C C+nB}
where B = {z € R" : ||z|| < 1}.

A sequence {Cy}ren of nonempty closed subsets of R™ is said to converge to a
nonempty closed set C' C R™ with respect to the Pompeiu-Hausdorff distance when
doo(Clm C ) — 0.

When Cy, C' C X for some bounded set X C R”, Pompeiu-Hausdorff convergence
and Painlevé-Kuratowski convergence are equivalent, where these sets are nonempty

and closed. However, they are not equivalent without this boundedness restriction.
For example, see Rockafellar [10] for details.

4. SERIES OF SETS

Let {Si}ien € P(R™) \ {0}. When

o0 m

g x; = lim g x;
m—0o0

t=1 t=1

converges for any x; € Syt € N, it is said that {S;} satisfies the convergence
assumption (CA). Then, we define a series of sets as follows:

(41) ZSt:{Za:t:thSt,tEN}.
t=1

t=1

‘When
o

(4.2) D 18 < oo,
t=1

it is said that {S;} satisfies the absolute convergence assumption (ACA), where |S;|
is defined in (2.1). For example, if | J;2, S; is bounded, then {y71S;}icn satisfies
ACA for any v € [0,1[. If {S;} satisfies ACA, then it satisfies CA. However, the
converse does not hold in general. The following example demonstrates that the
converse does not hold.

Example 4.1. (i) If we set S; = R™ € P(R")\ {0} and S; = {0} € P(R™)\ {0} for
each t > 2, then {S;} satisfies CA, but not ACA. In this case, Y ,~; St = R™.

(ii) If we set Sy = {%} € P(R) \ {0} for each ¢t € N, then {S;} satisfies CA,
but not ACA. In this case, Y o, Sy = {log2}.

Lemma 4.2. Let k € R} \ {0} and {S;}ien C Sp,(R™), where

S(R") = {A e P(R"): glgﬁ(k,:@ and glelg<k,m> exist }
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If {St}en satisfies CA, then

ZSt = {th Xt € St,t S N} S Sk(Rn)
t=1

t=1

Proof. For each t € N, there exist x},x7 € S; such that (k,z}) = maxges, (k,z)
and (k,z?) = mingeg, (k,x). Then, Y ;% @}, > 0% x? € >0, S;. Fix any « €
> 121 Si. There exist @y € Sy, t € N such that @ = Y ;2 @;. Because

m m m m
<k,;m%>zz<k,w%> gleagikw 2; (k,x¢) = <k,;mt>,

< = >
t=1

k ; k,z}) = (k,
(156) S-S s
for any m € N, it follows that
<k,2w%> <k: Zwt> (k,x), <k Zazt>§<k,2wt>:<kzw
t=1 =1
as m — oo by the continuity of the inner product. Therefore, we have

k2 @)= (k. k — min (k).
< 7t21wt> xe%?ixlst ) < th> $6%£15t< , &)

by the arbitrariness of € > ;2 S. O

'
??‘
5:3

The following proposition presents the properties of addition, scalar multiplica-
tion, and orderings for a series of sets.

Proposition 4.3. Let {Si}ien, {Tien € P(R™) \ {0} satisfy CA and let B € R.
The following statements then hold.

(i) {St + Ti} satisfies CA and

Zst-i—Tt ZSt-i-ZTt
t=1

(ii) {BS:} satisfies CA and

> BSi=p)_ 5
t=1 t=1

(iii) If Sy < Ty for any t € N, then

o oo
Z Sy < Z T.
t=1 t=1

(i) If Sy < Ty for any t € N and if there exists m € N such that Sy, < T,,, then

00 oo
Z St < Z T;.
t=1 t=1
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Proof. (i) First, fix any «; € S; + T3 (t € N). For each ¢ € N, there exist y, € S;
and z; € T; such that x; = y, + z;. Because {S;} and {T}} satisfy CA, it follows

that - - - -
Zwt = Z(yt +z¢) = Zyt + Zzt-
t=1 t=1 =1 =1

Therefore, {S; + T} } satisfies CA by the arbitrariness of @, € S; + T} (t € N).
Next, let @ € > ;°,(St + T3). There exist y, € St,z¢ € T; (t € N) such that
x =3 12, (y, + z). It then follows that

00
w:Zyt—l—zt Zyt—FZztGZSt—i-ZTt
t=1

Therefore, we have Y 72, (S; +1;) C thl Sy + thl T;.

Next, let & € Y72, Se+ > 1oy Ty There exist y € Y ;2 Sy and z € >_;°, T; such
that € = y + z, and there exist y, € St, z; € T; (t € N) such that y = > ;7 y, and
z =) 12, z. Because

yt—i—zt € St+Tt (t e N),

o0
m—y+z—2yt+2zt ZytJrzt eZStJth
t=1 t=1

we have Y 2, (Sy +1T;) D Zt:l St + Zt:l Ti.

(ii) First, fix any x; € 8S; (t € N). For each ¢t € N, there exists y, € Sy such that
x; = By,. Because {S,;} satisfies CA, it follows that

[o¢] (o] o0
th = Zﬁyt = 52%-
t=1 t=1 t=1

Therefore, {S;} satisfies CA by the arbitrariness of x; € 85; (t € N).
Next, let € Y72, 8S:. There exist y, € S¢ (t € N) such that * = >_;°, fy,. It

then follows that o . o
T = Zﬂyt 252% € /32&5'
t=1 t=1 t=1

Therefore, we have > ;2 3S: C 8 12y St
Next, let & € 3 12, S;. There exists y € Y 1=, S; such that « = Sy, and there
exist y, € S¢ (t € N) such that y =) ;°, y,. Because

Byt € BSta te N)

z=Py=P> y,=> By € B,
t=1 t=1

t=1
we have Y 72, 35y D B> %, St

(iii) In order to show that

00 00 0o 00
ZTtCZSt—FRi, ZStCZTt‘i‘REa
=1 t=1 =1 t=1
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we show that

oo oo
yEZTtéﬂmezsts.t.ccgy,
t=1 t=1

o o0
mezstéﬂyEZTts.t.azgy.
t=1 t=1

First, let y € Y ;2 T;. There exist y, € T; (¢t € N) such that y =) ;2 y,. For
each t € N, because T; C Sy + R}, there exists x; € S; such that x; < y,. If we put
T= @€Y oS, thenwehave z =) 0 x <> 0y, = y.

Next, let @ € > ;2 Si. There exist x; € S (t € N) such that @ = > 72, «;. For
each t € N, because S; C T; + R™, there exists y, € T; such that ; < y,. If we put
Y=Y € 22 Th, then we have & = 3 % @y <3 3%, y, = y.

(iv) Tt is easy to see that

o0 m [e.o] oo m [e.o]
DSi=D 8+ > S Y L=y T+ . T
t=1 t=1 t=m+1 t=1 t=1 t=m+1

Because S; < T;(t € N) and S,,, < 1), from the assumption, it follows that

m m 00 ()
2.5 <) T ), S< ) T
t=1 t=1

t=m+1 t=m+1

from (2.6), (2.7), and (iii) of this proposition. Therefore, we have

ZStZZSt—F Z St<ZTt+ Z Tt:ZTt
t=1 t=1 t=m-+1 t=1 t=m+1 t=1
from (2.7). O

For a sequence of sets in a series, the following proposition shows that the sequence
approaches the origin.

Proposition 4.4. Let {S;}en C P(R™)\{0}. If {St}ien satisfies CA, then for any
e > 0, there exists to € N such that Sy C B, for any t > ty, where B. = {& € R" :
[z]loe <€}

Proof. Suppose that for some €9 > 0 and any t € N, there exists k; > t such that
Sk, ¢ B.,. We derive the following contradiction. From the above assumption, there
exists Ny € ./\/'éjo such that Sy ¢ B, for any t € Ny. Fix any @; = (241, 42, . . ., Tn) €
S\ Be, for each t € Ny, and fix any ; = (z41, T2, ..., Zm) € S¢ for each t € N\ Np.
For each t € Ny, because & = (T41, T42, - - ., Ttn) ¢ By, there exists iy € {1,2,...,n}
such that |zy;,| > €. Thus, there exist ig € {1,2,...,n} and Ny € N, Ny C Ny
such that |z4,| > g for any t € Nj. It then follows that z4, 4 0 as t — oo.
Therefore, because Y ;= x4, does not converge, Y .=, @; does not converge. This
contradicts that {S;} satisfies CA. O
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For a series of sets, the following proposition shows that the sum of the latter
part of the series approaches the origin.

Proposition 4.5. Let {Si}ien C P(R™)\ {0}. If {Si}ien satisfies ACA, then for
any € > 0, there exists mo € N such that > ;0 Sy C B, for any m > mg, where
B. ={x e R": ||z| < }.

Proof. First, fix any € > 0. Because Y =, |S| < oo, there exists mg € N such that
Yoo 1St < e for any m > my.

Next, fix any m > mg and any « € y = S;. There exist @; € S, t > m such
that @ = >";° ;. It then follows that

00 %
el <>l < D[S <
t=m t=m

Thus, « € B.. Therefore, we have >_,° S, C B, for any m > my. d

Proposition 4.6. Let {S;}ien € P(R™) \ {0}. If {Si}ien satisfies CA, then
{cl(St) }en € P(R™)\ {0} also satisfies CA.

Proof. Fix any € > 0 and any T; = (T¢1, Te2, - - - , Ttn) € cl(S¢) (t € N). In addition,
fix any v € ]0,1[ with ;1> < 5.

For each ¢t € N, because T = (Ty1,T12,...,Tm) € cl(S;), there exists x; =
(T41, %12, - .., Tan) € St such that |zy — Ty <A' (i =1,2,...,n). Because Y ;o zy
(i = 1,2,...,n) converge, {d ;" x4}, .y (¢ = 1,2,...,n) are Cauchy sequences.
There exists g € N such that ’Z;‘:SH acm-‘ <5 (i=12,...,n) for any u> s> t.

For each t € N, because xy; — v < Ty < xy; +7° (i = 1,2,...,n), it follows that

t=s+1 1=
u u
t
< D wmim D7
t=s+1 t=s+1
u
< D T
t=s+1
u u
< D wat >
t=s+1 t=s+1
- v
< Ty + ——
Z tt 1_ ~
t=s+1

< e (i=1,2,...,n)

for any u > s > tp and that ‘ZLSH Tti| <e (i =1,2,...,n). By the arbitrariness
ofe >0, {d 2, Ttif ey (0= 1,2,...,n) are Cauchy sequences. By the complete-
ness of R, > 3%, Ty (i = 1,2,...,n) converge. Consequently, > ;°, T; converges.

Therefore, {cl(S;)} satisfies CA. O
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Proposition 4.7. Let {S;}ten € P(R™)\{0}. If {Si}ien satisfies CA and S(t € N)

are bounded, then ZS} 1s nonempty and bounded.
t=1

Proof. From the assumption, we have > ;2 Sy # 0. We show that > ;°, cl(S¢) D
> iey St is bounded. From Proposition 4.6, {cl(S¢)}ten C C(R™) satisfies CA. For
each i € {1,2,...,n}, we put e; = (0;1,i2,...,0in) € RT \ {0}, where

s 1 ifi=j,

T 0 ifd # g
From Lemma 4.2, mingeye s, (€i,@') and maxgcse s, (e, @) exist for
each i € {1,2,...,n}. Because

min e, ) < (e,x)=mx; < max e, ) (i=1,2,...,n

x'ey 2, Cl(St)< > - < > xT'ey cl(St)< > ( )
for any © = (z1,22,...,25) € Y oy cl(St), D joqcl(St) is bounded. Therefore,
Yooy S € >0 cl(Sy) is bounded. O

Proposition 4.8. Let {Si}en C C(R™). If {Shen satisfies ACA, then Y S, €
t=1
C(R™).

Proof. From Proposition 4.7, >°;°,S; is nonempty and bounded. We show that
> o2, St is closed. Fix any convergent sequence {yj}ren C > poy St and let y;, —
Yo € R™. We show that y, € > 72, S;. For each k € N, there exist xy, € S; (t € N)
such that y, = > ;2 @ Because {S;}eny C C(R™), the following statements hold.

o There exists Ny € Nﬁo such that a:klk—J>v x, for some xg; € S7.
€N

e There exists Ny € Nﬁo with No C N7 such that wmk_}v xo2 for some xgy €
€N2
Ss.

e There exists N; € Nﬁo with N; C N;_1 such that wktk_}\/ xg; for some
[SYA%7

xo: € S;.

Put gy = D70, @0t € >0y Si. Now, fix any ¢ > 0. From Proposition 4.5,
there exists mp € N such that HZfimOH ol < £ (k € NU{0}). Because
Sl ek — Yo xor and y, — Yo as k — oo, there exists kg € N such that
1300 e — 2o/ xoe|| < § and |lyg, — yoll < §. For the above mg and ko, it
follows that

Do —woll =

mo mo mo
Yo — E xor + § Tor — E Tkt
t=1 t=1 t=1
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mo
+ kaot ~Yry t Yry — Yo

=1

mo mo mo

Yo — g xot E Tor — E Tkt
t=1 t=1 t=1

< +

mo
+ ZinOt — Yko || T 1Yk, — Yol
t=1
00 mo mo
= | 2wl D woe =) wa
t=mo+1 =1 =1
mo 00
+ kaot - Zﬁckot + 1Yx, — Yol
t=1 t=1
oo mo mo
S DORT H)oE 3
t=mo+1 t=1 t=1
o0
+ Z Thot || + 1Yr, — Yol
t=mo+1
< Sty
474 4 4 7
By the arbitrariness of ¢ > 0, we have yy =7y € > oy St g

The following proposition shows that our series of sets is equivalent to the limit of
partial sums of a series as Painlevé-Kuratowski convergence under some conditions.

Proposition 4.9. Let {Si}ien € C(R™). If {S;}ien satisfies ACA, then

o m
35— i 3
t=1 t=1
where the limit on the right-hand side means Painlevé-Kuratowski convergence.

Proof. First, let y € Y 12, S;. There exist x; € S; (t € N) such that y = > 2, ;.
Because > )"y xr € Y ;oS (m e N) and Y /" @ — > ;2 @ = y, it follows that
y € liminf,, oo > ;" Si. Therefore, we have Y 12, S; C iminf,, o0 > prq St
Next, let y € limsup,, .o Y7, S;. There exist N € V& and y,, € Y7, S,
(m € N) such that ymm?Ny. Set N = {my, ma,...} with m; < mg < ---. For each

k € N, there exist x}"* € Sy, t = 1,2,...,my, such that y,, = > /"% «/**. For each
ke N, fix any x;" € S; (t > my + 1), and set g, = > o ;"™ € > ;2 Si. Because
> iey St € C(R™) from Proposition 4.8, suppose that g, — g for some gy, € Y ;o S
without loss of generality. If this is not so, we can reset N = {my,, mg,,...} for a
convergent subsequence gy , Yy, - - - of {y;}. Now, fix any ¢ > 0. Because y;, — Y,
there exists k1 € N such that ||y, — ¥yl < 5 (k> k1). From Proposition 4.5, there
exists mg € N such that HZ;’imH a:;nkH < § (k€ N, m >my). Thus, there exists
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ko € N such that

my %) 0o
lym, = Tell = || D@ = ai™| = || Y @ <5 (k= ko).
t=1 t=1 t=mp+1
Put ky = max{k1, k2}. It then follows that
Ym, —Yoll = Y, — U +Yr — Yol
< Yy, = Yl + [k = Yol
< Shfoc (k>h)

2 2
Thus, it follows that y,, — Y. By the uniqueness of the limit, it follows that
Y =71y € Y 1oy St. Therefore, we have imsup,,, oo > 4oy St C > oy St

Because
oo m m oo
lim ing I
DS Climinf} S Climsup) S C S
t=1 t=1 t=1 t=1
we have
o0 m m m

O

Example 4.10. Set A = {x € R" : ||z||oc < 1} and let v € [0,1]. If we set S; =
1A € P(R™)\ {0} for each t € N, then {S,;} satisfies ACA. However, the assump-
tion of Proposition 4.9 is not satisfied because {S;} ¢ C(R™). In this case, Y o, St =

{:c ER": ||z]|eo < ﬁ} and limy, 500 ) 4oy St = {m ER": x| < ﬁ}, where
the limit means Painlevé-Kuratowski convergence. Therefore, we have y ;2 Sy #

. m
limyy, 00 Zt:l St.

From Proposition 4.9 and the statements about the Pompeiu-Hausdorff distance
in the last part of Section 3, the following proposition can be obtained.

Proposition 4.11. Let {S;}ien € C(R™). If {Si}ien satisfies ACA, then ZS,: 18

t=1
both the limit as Painlevé-Kuratowski convergence and the limit with respect to the
Pompeiu-Hausdorff distance.

5. OPERATIONS AND ORDERINGS FOR FUZZY SETS

For notational convenience, we identify a fuzzy set @ on R™ with its membership
function a : R™ — [0, 1]. Let F(R™) be the set of all fuzzy sets on R".

Let a € F(R™). For a € ]0,1], [a]a = {x € R™ : a(x) > a} is called the a-level
set of a@. The set supp(a) = {& € R™ : a(x) > 0} is called the support of a. The
fuzzy set @ is said to be normal if [a]; # 0. The fuzzy set a is said to be compact if
[a]q is compact for any « € ]0,1]. Let FA(R™) be the set of all normal fuzzy sets
on R™ and let FC(R™) be the set of all normal compact fuzzy sets on R"™.
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Addition and scalar multiplication on F(R™) by Zadeh’s extension principle are
defined as follows (see [4, 14]). For a,b € F(R™) and p € R, a + b, ua € F(R™) are
defined as

(5.1) (@+b)(@) = sup min{a(y),b(z)},
T=Y+2z
(5.2) (ua)(x) = sup a(y)
T=py

for each = € R"™. For a,b € F(R"), we define their orderings as follows:

7 def ~ g

(5.3) a <b<[a]lg < [b]a for any a €]0,1],
(5.4) @< b ¥ @), < [B]a for any o €10,1].

Thus, < is a preorder relation on F(R") (a binary relation on F(R"™) that is reflexive
and transitive) and < is a strict partial order relation on FC(R") (a binary relation
on FC(R™) that is irreflexive and transitive). See [5, Proposition 5.2] or [6, Theorem
8.9] regarding the irreflexivity of the strict partial order relation < on FC(R"™).

For finitely many @,b,...,¢ € FC(R™), B,7,...,0 e Rand p € R, a € ]0,1], it
holds that ([5, Propositions 4.1 and 4.4] or [6, Theorems 8.1 and 8.5])

(5.5) w@+b+-+¢) = pa+pb+ -+ ué,
(5.6) (B + b+ + 08 = Blala + Y[Dla + - + 5[ca.

6. GENERATOR OF FUZZY SET

Set
(6.1) QR") = {{Sa}acio1) : Sa CR", ax €]0,1]},
(6.2) S(R™) = {{Sa}ae]o,l] € Q(R"):

B,v€10,1], 8 < imply Sg O S, }.
We then define M : Q(R") — F(R") as

(6.3) M ({Sa}tacjon) = sup acs,

a€)0,1]

for each {Sa}aepo,1) € Q(R™). For {Sa}acp,1) € QR") and x € R, it can be easily
seen that

(6.4) M ({Sa}acio) () = Sel]lopl] acg, (x) =sup{a €]0,1] : x € S, }

where sup @ = 0.

When a = M({Sa}ago,1)) for a € F(R") and {Sa}acp,) € QR™), @ is called
the fuzzy set generated by {Sa}aejo,1 and {Sa}aejo, is called a generator of a.
Notably, the generator of @ is not unique in general.
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A fuzzy set a € F(R™) can be represented as

(6.5) a=M <{[a]a}a€]0,1]> = Sel]lopl] ACla), -

This is known as the decomposition or representation theorem (see, for example, [4]
or [6, Theorem 7.1]).

Let {Sa}aejo,1):{Tataclo,1) € S(R™) and let @ = M({Sa}aejo,)) € F(R"), b =
M({Tu}ago,1)) € F(R™). In addition, let x € R. It then holds that ([5, Proposition
4.2] or [6, Theorem 8.2])

(6.6) G+b=M ({Sa+Talaeppy)) = SUP_acs, s,
«€]0,1]
(6.7) pa = M <{M5a}ae]o,1}) = sup acys,-
«€]0,1]

7. LIMIT OF SEQUENCE OF FUZZY SETS

The following definition is a fuzzified version of Definition 3.1.
Definition 7.1. Let {sj}reny C F(R™) and

L, = liminf[sg]n, U, = limsup[si|a
k—o0 k—o00

for each a €]0,1]. The lower limit of {Sk}ren is defined as the fuzzy set

liminf sy = sup acr, = M({La}aco,1));
k—oo €]0,1]

and the upper limit of {Sy}xen is defined as the fuzzy set

limsup sy = sup acy, = M{Ua}aelo,1))-
k—o0 a€]0,1]

The limit of {5k }ren is said to exist if liminfy_,~ S, = limsupy_,,, Sg. Then, the
limit is defined as the fuzzy set

lim s, = liminf s, = limsup ;.

k—o0 k—ro0 k—00

For sets Sy C R"(k € N), put L = liminfy_,o Sg,U = limsup,_, .. Sk, and put

T = limy_,o0 Sy, if the limit of {Sj}ren exists. It can be seen that liminfy_, o cg, =
cr, limsup,_, ¢s, = cy, and that limy_,o cs, = cp if the limit of {Sk}ren ex-
ists. Thus, the lower limit, upper limit, and limit of a sequence of fuzzy sets are
generalizations of those of a sequence of sets.
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8. SERIES OF FUZZY SETS

Let {ai}ien € FN(R™). When {[at]o}ten C P(R™) \ {0} satisfies CA for any
a € 10,1], it is said that {a;} satisfies the fuzzy convergence assumption (FCA).
Then, we define a series of fuzzy sets as follows:

(8.1) Sa=M {Z[at]a}
t=1 €]0,1]

t=1

‘When

(8.2) > @l < oo for any a €10,1],
t=1

it is said that {a;} satisfies the fuzzy absolute convergence assumption (FACA),
where |[a¢]q| is defined in (2.1). If {a;} satisfies FACA, then it satisfies FCA.

Let {at}teny € FN(R™). For a, B € ]0,1] with a < S, if {[at]o} satisfies CA,
then {[a;]s} also satisfies CA. When {supp(a¢)}ien C P(R"™) \ {0} satisfies CA,
it is said that {a;} satisfies the fuzzy support convergence assumption (FSCA). If
{a;} satisfies FSCA, then it satisfies FCA. However, the converse does not hold in
general. The following example demonstrates that the converse does not hold.

Example 8.1. Let @ € FC(R) with a(x) = e~I*l for each 2 € R and let v € ]0,1[.
Set a; = v~1a@ (t € N). For each a € ]0,1], it follows that

[a]a = [loga, - log Oé],
[at]o = [»ﬁ‘la]a = ”yt_l[?ﬂa = [fyt_l log «, —’yt_l loga] (t€N).

Thus, {a:}ieny C FC(R) satisfies FACA. Therefore, {a;} satisfies FCA, but not
FSCA because supp(a;) = R for any ¢ € N. In this case, because

(o] o
Y lada = > [y loga, =y 'logal
t=1 t=1

L L
= og o, — og
[ s ——log

1
= 7 _fy[loga,—loga]

for each « €0, 1], we have

a = M {Z[at]a}
t=1 a€]0,1]
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- ({fisd )

1
—a
L=y
€ FC(R)

from the decomposition theorem (6.5).

The following proposition presents the properties of addition and scalar multipli-
cation for a series of fuzzy sets.

Proposition 8.2. Let {a;}ien, {Et}teN C FC(R™) satisfy FCA and let B € R.
(i) {@ + b} satisfies FCA and

Zat+bt ZatJert
t=1

(ii) {Bai} satisfies FCA and
> Bar=8Y .
t=1 t=1

Proof. (i) Fix any a € ]0,1]. Because {[a;]o} and {[b]a} satisfy CA, {[a; + bia}
= {[@t]a + [bi]a} also satisfies CA from Proposition 4.3 (i). Therefore, {a; + by}
satisfies FCA by the arbitrariness of o € ]0, 1].

Fix any « € ]0,1] again. Because {[a]o} and {[b]a} satisfy CA, it follows that

Zat-l-bta—Z([ ] +[gt] Zat +th
t=1 t=1 t=1

from Proposition 4.3 (i). From the decomposition theorem (6.5) and (6.6),

@ +b) = M {Z[at+3t]a}
t=1 a€]0,1]
>

t=1

t=1 t=1
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(ii) Fix any « € ]0, 1]. Because {[a]o} satisfies CA, {[Ba¢]} = {Blat]} also satisfies
CA from Proposition 4.3 (ii). Therefore, {#a;} satisfies FCA by the arbitrariness
of o €10,1].

Fix any « € ]0,1] again. Because {[a:]o} satisfies CA, it follows that

o

> [Bada =Y Blada =B _[atla
t=1 t=1

t=1

from Proposition 4.3 (ii). From the decomposition theorem (6.5) and (6.7),

> Ba, = M {Z[ﬁa}]a}
t=1 a€]0,1]

t=1

€]0,1]

g

The following proposition shows that our series for fuzzy sets is equivalent to that
obtained using Zadeh’s extension principle.

Proposition 8.3. Let {a;}ien C FN(R™). If {a hen satisfies FCA, then

(8.3) (Z 6t> (x) = sup {)%gﬁt(wt) : Za:t = :c}
t=1

t=1

for any x € R™.

Proof. Fix any € R™ and set

f(z) = Zat> ()
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g(x) = sup{mfat ) th—m}

t=1

We show that f(x) = g(x).
First, we show that

f(x) >0« g(x) > 0.
Suppose that

f(x) = sup {a €10,1]:x € Z[Zit]a} > 0.
=1

There exists ag € ]0,1] such that * € Y ;2 [at]a, and there exist ¥ € [afa,
(t € N) such that # = > 72, Y. Because a;(x) > ap > 0 (¢ € N), it follows that
infen @y (29) > ag > 0. Therefore, we have

g(x) = sup{lnfat ) th = m} > 1nfat(a:t) > ag > 0.
t=1

Suppose that

g(x) —sup{mfat (x¢) Zazt —a:} > 0.

t=1
There exist Y € R*(t € N) such that x = Y ;°; ¥ and infieyar(z)) > 0. Put
o = infyen @ (x9) > 0. Because a;(x?) > ag > 0 (t € N), it follows that 29 € [a¢]ay
(teN)and z =2, & € 3¢° [Gt]a,- Therefore, we have

f(x) = sup {a €)0,1]:x € Z[?it]a} > ap > 0.
t=1
Therefore, it is proved that
f(x) >0+ g(z) >0,

and we have
f(®) =0« g(x)=0.
Next, suppose that

f(x) = sup {a €1]0,1]:x € Z['dt]a} =9 > 0.

It follows that @ € > ;7 [ai]a (o €]0,0]) and & ¢ > 72 [ar]a (o € Jap, 1]). For any
a € 0, ap, there exist f € [a]o (¢ € N) such that @ = Y ;°, . It holds that
x # > oz for any a € Jap, 1] and ¢ € [a4]o (t € N). For any a € 0, aol, it
follows that infien a¢(xf') > a because a¢(xf') > «a (t € N). Because

v

g(x) = sup

/—’H

fa = > inf >
tlgNata:t Zwt w} ;gNat(wt) a
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for any a € ]0, ap], it follows that

= inf a : = > .
g(x) sup{tlgéat(a:t) Zwt m}_ao

t=1
For any a € Jag,1], if * = Y [, @, then there exists ¢ty € N such that x;, ¢
[aty]a (& Gty (21,) < @), and then infien a(x;) < a. Because

= i a . = <
g(x) = sup {%glgat(a:t) Zwt :1:} <«

t=1
for any a € |ay, 1], it follows that

g(x) = sup {tig{]ﬁt(:ct) : th = ac} < ap.

t=1
Therefore, we have
— 1 f~ : = = = .
g(x) = sup {gélN a(ze) ;xt iU} ap = f(x)
O

Remark 8.4. In Stojakovi¢ and Stojakovié [12, 13], a series of {a; }reny € FN(R™),
which is not necessary to satisfy FCA, is defined as the right-hand side of (8.3) using
Zadeh’s extension principle. Proposition 8.3 shows that our series (8.1) of fuzzy sets
is equivalent to that in Stojakovi¢ and Stojakovié¢ [12, 13] when FCA is satisfied.

Remark 8.5. In this remark, we present other definitions of series of sets and fuzzy
sets. For {S;}eny C P(R™), which is not necessary to satisfy CA, define

oo o o0
ZS} = {Zaf:t rxy € S;,t €N, and Zwt converges } .
t=1

t=1 t=1
For {at}ien € F(R™), define
(Z@) (z) = sup {}ggfit(mt) : th = 56‘}
t=1 t=1
for each & € R™. It can be proved in a similar way to Proposition 8.3 that

da=M {Z[at]a}
t=1 a€]0,1]

t=1

For a series of fuzzy sets, the following theorem presents the conditions for which
level sets of a series coincide with a series of level sets.

Theorem 8.6. ([12, Theorem 1)) Let {a;}eny € FC(R™). If {a;}ien satisfies
FACA, then

o0

o t=1



SERIES OF SETS AND FUZZY SETS 107

for any a € ]0,1].

The following proposition presents the properties of orderings for a series of fuzzy
sets.

Proposition 8.7. Let {@; }ien, {bi}ren C FC(R™) satisfy FACA.
(i) If a; < by for any t € N, then

@<y b
t=1 t=1
(i) If a; < by for any t € N and if there exists m € N such that a,, < by, then

oo o .

Sa<Yh

t=1 t=1
Proof. (i) Fix any o € ]0, 1]. Because [a]a < [bi]a (t € N), it follows that Yoo lat)a
< > 21 [b)o from Proposition 4.3 (iii). From Theorem 8.6, [Y,°, @], = > ;= [Gt]a
< Zzl[gt]a = [Zfil Et} . Therefore, we have Y ;7 ay < > 72, by by the arbitrari-

«
ness of a € ]0,1].
(i) Fix any o € ]0, 1]. Because [dr]a < [bila (t € N) and [@m]a < [bm]a, it follows that
Yoeilatla < 352 [bt)a from Proposition 4.3 (iv). From Theorem 8.6, [> 72, @y,
= > laa < Efil[gt]a = [ ] Et} . Therefore, we have > ;7 ap < Y 7o) by by
«
the arbitrariness of a € ]0, 1]. O
The following proposition shows that our series of fuzzy sets is equivalent to

the limit of partial sums of a series under some conditions, where the limit is de-
fined as the limit in Definition 7.1 and is a fuzzified version of Painlevé-Kuratowski
convergence.

Proposition 8.8. Let {a;}ieny C FC(R™). If {ai }1en satisfies FACA, then

oo m
> = i 3
t=1 t=1
where the limit on the right-hand side is the limit in Definition 7.1.

Proof. From Proposition 4.9, it follows that

>l = Jim, 3"l = i 375

t=1 t=1 t=1

for any « € |0, 1], where lim,,_,, means Painlevé-Kuratowski convergence. There-

[e'e] m
Z Zit = hm Z Zit
m—00
t=1 t=1

where the limit on the right-hand side is the limit in Definition 7.1. U

fore, we have
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Example 8.9. Consider {S;} as in Example 4.10. If we set a; = ¢g, for each t € N,
then {a;} € FN(R") and {a;} ¢ FC(R"), and then {a;} satisfies FACA. In this

case,
m

e}
E ap = 5% 5, 7 Climy, 00 S, 5 = lim E :at
t=1

m—00
t=1

where the first limit means Painlevé-Kuratowski convergence and the second limit
is the limit in Definition 7.1.

9. CONCLUSION

In this study, we proposed series of sets and fuzzy sets and investigated their
properties.

First, we proposed a series of sets and derived the properties of addition, scalar
multiplication, and orderings (Proposition 4.3). For a sequence of sets in a series, it
was derived that the sequence approaches the origin (Proposition 4.4). For a series
of sets, it was derived that the sum of the latter part of the series approaches the
origin (Proposition 4.5). It was derived that a series of compact sets is compact
(Proposition 4.8). It was derived that under some conditions, our series of sets is
equivalent to the limit of partial sums of a series as Painlevé-Kuratowski convergence
(Proposition 4.9).

Next, we proposed a series of fuzzy sets and derived the properties of addition and
scalar multiplication (Proposition 8.2). It was derived that our series of fuzzy sets
is equivalent to that obtained using Zadeh’s extension principle (Proposition 8.3).
The properties of orderings for a series of fuzzy sets were derived (Proposition 8.7).
It was derived that under some conditions, our series of fuzzy sets is equivalent
to the limit of partial sums of a series, where the limit is a fuzzified version of
Painlevé-Kuratowski convergence (Proposition 8.8).

It is expected that the properties derived in this study will be useful for an
infinite-horizon MDP or dynamic programming as a maximization problem of the
discounted total reward, in which the rewards are given as compact sets or compact
fuzzy sets and are not necessarily convex.
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