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Let C be a non-empty, convex and closed subset of a Hilbert space H. Suppose

T : H → H is a mapping. The Variational Inequality Problem (VIP) can be defined

as follows:

find a vector x∗ ∈ C such that ⟨T (x∗), y − x∗⟩ ≥ 0, for all y ∈ C.(1.1)

V I(C, T ) is the solution set of the VIP (1.1). The formulation of the Dual Vari-

ational Inequality Problem (DVIP), often called the Minty Variational Inequality

Problem (MVIP), is as follows:

find a vector x∗ ∈ C such that ⟨T (y), y − x∗⟩ ≥ 0, for all y ∈ C.(1.2)

The DVIP solution set (1.2) is indicated by DV I(C, T ). Clearly, DV I(C, T ) is

closed and convex. If T is continuous and C is convex, then DV I(C, T ) ⊆ V I(C, T )

(see to [32]). However, when T is a continuous and quasi-monotone mapping, the

inclusion V I(C, T ) ⊆ DV I(C, T ) may not always hold (refer to [31]). In fact, if T
is continuous and pseudo-monotone, then V I(C, T ) = DV I(C, T ) (see, [6].

Since its inception in 1964 by Stampacchia [25] and Fichera [9], the theory of varia-

tional inequalities has received substantial attention and remains a hot topic. One

of the main causes of this is the wide range of problems that can be expressed as

variational inequalities, including those emerging in the domains of optimization

and control, engineering science, mechanics, game theory, elasticity, physics, eco-

nomics, transportation equilibrium, etc.

According to [11], the Dual Variational Inequality problem has real-world applica-

tions. A dynamical system with T has been shown to have solutions of a DVIP

associated with a single-valued continuous mapping T defined on an open convex

domain, which can be viewed as the subset of stable equilibria within the set of all

equilibria (represented by the Stampacchia variational inequality solutions).

Many numerical iterative approaches have been developed to tackle variational in-

equalities and optimization problems (e.g., [4, 22]). The authors investigated a

variety of projection-type techniques to tackle the variational inequality problem.

The gradient method (GM) is the first projection technique for solving the VIP and

is provided by

x1 ∈ H, xn+1 = PC(xn − λT xn),(1.3)

where PC is the projection operator onto the convex and closed subset C of a Hilbert

space H and λ > 0 is a suitable stepsize. With only one projection onto the feasible

set, the gradient method (GM) is the most straightforward approach for solving the

VIP. The approach, however, only converges when the cost operator T is α-strongly

monotone and L-Lipschitz continuous with λ ∈ (0, 2α
L2 ). These stringent conditions

greatly limit the scope of applications of the GM (1.3).
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To avoid the notion of strong monotonicity, Korpelevich [12] introduced the ex-

tragradient method (EGM), described below, which is an algorithm for resolving

variational inequalities in a Hilbert space H:

x1 ∈ H, yn = PC (xn − λT xn) ; xn+1 = PC (xn − λT yn) ,(1.4)

where T : C → H is monotone and L-Lipschitz continuous and λ ∈
(
0, 1

L

)
and

C ⊆ H is closed and convex. He established the weak convergence of (1.4) to a

solution of the VIP (1.1) in Hilbert spaces if T is monotone and Lipschitz.

The algorithm (1.4) has significant drawbacks, as shown by the above technique.

It is necessary that the mapping have the properties of Lipschitz continuity, mono-

tonicity, and a known Lipschitz constant. This algorithm’s complexity and low

efficiency stem from the need to compute projections twice for the feasible set C

during each iteration. To ensure algorithm convergence, research on variational in-

equality problems focuses on weakening the mapping and speeding the convergence

rate.

Scholars have made significant improvements to the EGM, as seen in [7, 18, 23]

and references. One of the method’s primary areas for improvement is to reduce

the number of projections onto the feasible set C every iteration. Censor et al.

[4] made the first attempt in this way. They altered the EGM and substituted a

projection onto a half-space for the second projection. This strategy, known as the

subgradient extragradient technique (SEGM), only requires one projection onto the

feasible set C. The SEGM is presented as follows:

x1 ∈ H, yn = PC(xn − λT xn); xn+1 = PTn(xn − λTyn),(1.5)

where Tn = {z ∈ H : ⟨xn − λT xn − yn, z − yn⟩ ≤ 0} and λ ∈ (0, 1
L). As seen,

the projection for xn+1 in the scheme (1.5) is computed on a half-space Tn which is

inherently explicit. Using the same assumptions as the EGM (1.4), the Censor et al.

[4] obtained a weak convergence for the SEGM (1.5). The SEGM is an advance over

the EGM since it allows for explicit computation of projection into a half-space. We

should remark, however, that each iteration of the SEGM still requires computing

two projections onto the closed convex sets C and Tn. This may be a substantial

hurdle to the SEGM’s implementation.

The second attempt is the following Tseng extragradient method: choose x0 ∈ H,

for each n ≥ 0, compute:

yn = PC(xn − λT xn); xn+1 = yn − λ(T yn − T xn),(1.6)

where λ ∈ (0, 1
L). The scheme (1.6) is based on Tseng’s modified forward-backward

splitting technique, which was first introduced in [29]. He showed that the sequence

{xn} converges weakly to a VIP solution (1.1). Tseng’s approach offers an advantage

over Korpelevich’s in that it just requires one projection every iteration. It still
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requires two evaluations of the mapping T per iteration. Several researchers have

studied changes to Tseng’s algorithm (see, for example, [18, 22, 23, 34]).

It is worth noting that the aforementioned approaches use norm distance and metric

projections. Applying this theory to Banach spaces creates complications, as many

beneficial qualities of nonexpansive operators in Hilbert space, such as the metric

projection PK onto a nonempty, closed, and convex subset K of H, are no longer

nonexpansive in Banach spaces. There are several strategies for solving these obsta-

cles. One of these is to use the Bregman distance, which requires no symmetry or

triangle inequality properties. Instead of employing metric projections, which are

less flexible and broad, researchers in this situation use the Bregman distance and

projection. As a result, the Bregman distance and projection methods for approxi-

mating VIP solutions are useful for analyzing a wide range of problems.

In 1999, Solodov and Svaiter [24] studied the following double projection method

with the use of Bregman distance and Bregman projection for solving variational

inequalities in Euclidean spaces.

Algorithm: Choose x0 ∈ H, and γ, σ ∈ (0, 1). Take k = 0. Calculate {xk} as

follows:

Step 1: Compute zk = (∇g)−1 [∇g(xk)− T (xk)] ;

If xk = ΠC(zk), then stop; else go to Step 2.

Step 2: Compute

mk = min
{
m ∈ N :

⟨
T (xk)− T (ym), xk −Πg

C(zk)
⟩
≤ σDg

(
Πg

C (zk) , xk
)}

;

where ym = γmΠg
C(zk) + (1− γm)xk; Let yk = γmkΠg

C(zk) + (1− γmk)xk;

and Πg
C is the Bregman projection(see Section 2 for the definition).

Step 3: Compute xk+1 = Πg
C

∩
Hk

(xk); where Hk = {v ∈ E : ⟨T (yk), v − yk⟩ ≤ 0} ;
Step 4 : Let k = k + 1 and return to Step 1.

In 2018, Zheng [4] extended the results from Euclidian to Banach spaces. The

suggested technique strongly converges to the solution of variational inequalities in

reflexive real Banach spaces, assuming V I(C, T ) ̸= ∅ and T is uniformly continuous

and quasimonotone mapping. We believe there is a gap in the proof of the strong

convergence theorem, therefore the convergence of the double method to the solution

of variational inequalities in the same scenario as Zheng [4] is still open.

Consider C and D as convex and closed subsets of real Banach spaces E1 and E2,

respectively. Let T : E1 → E∗
1 and S : E2 → E∗

2 be non-linear mappings, and

A : E1 → E3, B : E2 → E3 be bounded linear mappings. The Split Equality
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Variational Inequality Problem (SEVIP) involves locating two points:

x∗ ∈ V I(C, T ) and y∗ ∈ V I(D,S) such that Ax∗ = By∗.(1.7)

On the other hand, the Split Equality Duality Variational Inequality Problem (SED-

VIP) consists of locating two points.

x∗ ∈ DV I(C, T )and y∗ ∈ DV I(D,S) such that Ax∗ = By∗.(1.8)

Special examples of the inclusion problem (1.8) include variational inequality, convex

programming, split feasibility, and minimization.

Based on the aforementioned results, we raise the following important questions:

1. Can we extend the double projection algorithm proposed by Solodov and

Svaiter using the Bregman distance to that of split equality variational in-

equality problems in real Banach spaces?

2. Can we prove weak/strong convergence results using the Bregman distance

to the solution of the variational inequality problems in real Banach spaces?

Motivated and inspired by the efforts of Tseng [29], Solodov and Svaiter [24], and

Zheng [4], in this paper we introduce and investigate a projection-based algorithms

for solving split equality variational inequality problems as well as split equality

dual variational inequality problems in reflexive real Banach spaces with uniformly

continuous quasimonotone mappings. A Halpern-type projection-based algorithm

is utilized to obtain the strong convergence. We also present some concrete appli-

cations of the key ideas, as well as a numerical example, to validate our theoretical

findings. Our findings complement Zheng’s work [4] and broaden the existing liter-

ature.

The following is the paper’s outline: We provide some fundamental concepts and

background information in Sect. 2 that will be helpful in our analysis. In Sect. 3, we

present some necessary hypotheses and our algorithms. Subsequently, we establish

weak convergence analysis of the first method to the solution of split equality vari-

ational inequality problems, and derive strong convergence analysis for the second

method, which addresses the solution of split equality dual variational inequality

problems. In sect. 4, we present some specific applications of our main results.

Some numerical experiments are presented in Sect. 5 illustrating the applicability

of the algorithm. Finally, we present some concluding remarks on our work in Sec.

6

2. Preliminaries

Let E be a reflexive real Banach space with E∗ as its dual and the function g : E →
(−∞,∞] be a proper, lower semicontinuous and convex with the effective domain

dom g = {x ∈ E : g(x) < +∞}. The real valued function g∗ is the Fenchel conjugate

of g: E → (−∞,∞] which is proper, lower semi-continuous and convex, is the real

valued function g∗: E∗ → (−∞,∞] defined by g∗(x∗) = sup {⟨x∗, x⟩ − g(x) : x ∈ E}
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for any x∗ ∈ E∗.

We denote by g′(x, y) the right-hand derivative of g at x ∈ int(dom g) in the direc-

tion y ∈ E, that is,

(2.1) g′(x, y) = lim
t↓0+

g(x+ ty)− g(x)

t
.

Recall that the function g is called Gâteaux differentiable at x if the limit as t → 0

in (2.1) exits at any y ∈ E. In this case g′(x, y) coincides with (∇g)(x), the value of

the gradient ∇g of g at x. In the event that the limit in (2.1) is attained uniformly

for any y ∈ E with ∥y∥ = 1, then g is considered to be Fréchet differentiable at x,

and if the limit (2.1) is attained uniformly for x ∈ C and ||y|| = 1, then g is said to

be uniformly Fréchet differentiable at x. It is known that if g : E → R is uniformly

Fréchet differentiable and bounded on bounded subsets of E, then ∇g is uniformly

continuous on bounded subsets of E (see, e.g., [21]) and it is also uniformly smooth

(see, e.g., [33]).

If a function g : E → R meets both of the following two requirements, it is referred

to be a Legendre function.

(L1) g is Gâteaux differentiable, int(dom g) ̸= Ø and dom ∇g =int(dom g);

(L2) g∗ is Gâteaux differentiable, int(dom g∗) ̸= Ø and dom ∇g∗ =int(dom g∗).

We say that the space E is smooth if the limit limt→0
∥x+ty∥−∥x∥

t , exists for x, y ∈ B

and E is said to be strictly convex if ∥x+y∥
2 < 1 for all x, y ∈ B with x ̸= y, where

B = {x ∈ E : ∥x∥ = 1}.
If E is a Banach space that is smooth and absolutely convex, then g(x) = 1

p∥x∥
p (1 <

p < ∞) is a lower semi-continuous, Legendre function with the Fenchel conjugate

g∗(x∗) = 1
q∥x

∗∥q (1 < q < ∞) which is characterized by 1
p +

1
q = 1 (see, e.g., [1]). In

this case, we have ∇g = Jp, where Jp : E → 2E
∗
is the multi-valued function defined

by

Jp(x) =
{
x∗ ∈ E∗ : ⟨x∗, x⟩ = ∥x∥p and ∥x∗∥ = ∥x∥p−1

}
,

for all x ∈ E. The special case when p = 2 gives that Jp = J , where J is the

normalized duality mapping. If E = H, where H is a real Hilbert space, then J = I,

where I is the identity mapping on H. We will refer to the normalized duality

mapping J on E as JE throughout the remainder of the paper.

Moreover, if E = H, where H is a real Hilbert space, then J = I, where I is

the identity mapping on H. Throughout the rest of the paper, we will denote the

normalized duality mapping J on E by JE.
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If g: E → (−∞,+∞] is a Legendre function and E is a reflexive Banach space,

then ∇g∗ = (∇f)−1(see, [2]). Moreover, we note that g is a Legendre function if

and only if g∗ is a Legendre function (see, [1]).

Definition 2.1. Let g: E → (−∞,∞] be a convex and Gâteaux differentiable

function.

(1) The nonnegative real-valued function Dg: dom g × int(dom g) → [0,∞)

defined by

(2.2) Dg(y, x) = g(y)− g(x)− ⟨∇g(x), y − x⟩, x ∈ int(dom g), and y ∈ dom g,

is called the Bregman distance with respect to g (see, Censor and Lent [5]).

(2) The modulus of total convexity of g at the point x ∈ E is the function

vg : E× [0,∞) → [0,∞) defined as

(2.3) vg(x, t) = inf {Dg(x, y) : y ∈ E, ||y − x|| = t} .

(3) A function g is said to be totally convex if vg(x, t) > 0 for all t > 0 and

x ∈ E.
(4) g is said to be a β-strongly convex function if there exists β > 0 such that

(2.4) g(x)− g(y)− ⟨∇g(y), x− y⟩ ≥ β||x− y||2, ∀x, y ∈ E.

note that ∇g∗ is 1
β− Lipschitz continuous if a function g is β−strongly convex

(see, [35]).

A function g: E → (−∞,∞] is said to be strongly coercive if lim∥x∥→∞

(
g(x)
∥x∥

)
= ∞.

If E is a smooth and 2-uniformly convex Banach space, then the function f(x) =
1
2∥x∥

2 is strongly coercive, lower semi-continuous, bounded, uniformly Fréchet dif-

ferentiable and strongly convex with strong convexity constant β ∈ (0, 1] and con-

jugate f∗(x∗) = 1
2∥x

∗∥2.

Lemma 2.2 ([33]). If g is convex and bounded on bounded subsets of E. Then the

following are equivalent:

i. g is strongly coercive and uniformly convex on bounded subsets of E.
ii. dom g∗ = E∗, g∗ is bounded on bounded subsets and uniformly smooth on

bounded subsets of E∗.

iii. dom g∗ = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-

norm continuous on bounded subsets of E∗.

Lemma 2.3 ([16]). Let g: E → (−∞,∞] be a Gâteaux differentiable function

which is totally convex on bounded subsets of E. Let the sequences {xn} and {yn}
be bounded in E. Then, limn→∞Dg(xn, yn) = 0 if and only if limn→∞ ∥xn−yn∥ = 0.

Definition 2.4. Let g: E → (−∞,∞] be a convex and Gâteaux differentiable

function and let C ⊆ int(dom g) be a nonempty, closed and convex subset of E.
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Then, the Bregman projection of x ∈ int(dom g) onto C is the unique vector Πg
C(x)

of C with the property

Dg(Π
g
C(x), x) = inf {Dg(y, x) : y ∈ C} .

The Bregman projection also satisfies the following properties:

(2.5) z = Πg
C(x) if and only if ⟨∇gx−∇gz, y − z⟩ ≤ 0, for all y ∈ C, and

(2.6) Dg(y,Π
g
C(x)) +Dg(Π

g
C(x), x) ≤ Dg(y, x), for all x ∈ E, y ∈ C.

Lemma 2.5 ([20]). Let g : E → (−∞,+∞] be a convex Gâteaux differentiable

function. The Bregman distance Dg(., .) has the following property called three point

identity

(2.7) Dg(y, z) +Dg(z, x)−Dg(y, x) = ⟨∇g(z)−∇g(x), z − y⟩

for any y ∈ domf and x, z ∈ int(domf).

Lemma 2.6 ([15]). Let C be a closed, non-empty, convex subset of E, and let

g : E → R be a totally convex, Frechet-differentiable function. If the level sets

Dg(x, .) are bounded for all x ∈ E and ∇g is uniformly continuous on bounded

subsets of E, then Πg
C : E1 → C maps bounded subset of E1 into bounded subset of

C.

Lemma 2.7 ([16]). Let E be a real Banach space. The non-negative real valued

Vg : E× E∗ → (−∞,∞] associated with a Gâteaux differentiable Legendre function

g : E1 → R defined by

(2.8) Vg(x, x
∗) = g(x) +∇g′(y∗)− ⟨x∗, x⟩ , ∀x ∈ E, x∗ ∈ E∗

satisfies the following two properties

(2.9) Vg(x, x
∗) = Dg(x, (∇g)−1(x∗))

and

(2.10) Vg(x, x
∗) +

⟨
y∗, (∇g)−1(x∗)− x

⟩
≤ Vg(x, x

∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗

Lemma 2.8 ([14]). Let g : E → R be a totally convex function. If the sequence

{Dg(xk, x0)} is bounded for any x0 ∈ E, then {xk} is bounded.

Lemma 2.9 ([24]). Let E1 and E2 be bounded spaces. Let U be a bounded subset

of E1. If T : E1 → E2 is uniformly continuous on bounded subsets of E1 then T is

bounded on U .

Lemma 2.10 ([10]). Assume y ∈ C and T to be a quasimonotone, continuous

operator on C ⊂ E. If for some x0 ∈ C we have ⟨T (y), x0 − y⟩ ≥ 0, then at least

one of the following must hold: ⟨T (y), x0 − y⟩ ≥ 0 or ⟨T (y), x− y⟩ ≥ 0, ∀x ∈ C.
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Lemma 2.11 ([32]). Let C be a non-empty, closed and convex subset of E and let

g be β-strongly convex and continuously differentiable function such that the level

sets Dg(x, .) are bounded for all x ∈ E. Define h : E × E → R by h(x, v) =

⟨T (v), x− v⟩ for any given v ∈ E and the mapping T : E → E∗ and take K(v) =

{x ∈ C : h(x, v) ≤ 0}. If K(v) ̸= ∅ and h(x, v) is Lipschitz continuous with respect

to x on C with modulus L > 0, then

(2.11) Dg(x, v) ≥
β

L2
h2(x, v), ∀x ∈ C \K(v), y ∈ K(v), v ∈ E.

Lemma 2.12 ([26]). Consider a smooth and strictly convex real Banach space, E.
The normalized duality mapping on E1, represented by JE1, possesses the subsequent

attribute:

(2.12) ||x+ y||2 ≤ ||x||2 + 2 ⟨JE1(x+ y), y⟩ , ∀x, y ∈ E1.

Lemma 2.13 ([19]). If g : E → (−∞,∞] is a proper, lower semi-continuous,

convex and Gâteaux differentiable function, then g∗ : E∗ → (−∞,∞] is a proper

weak* lower semi-continuous and convex function. Thus, for all x ∈ E1, we have

(2.13) Df

(
x, (∇g)−1

(
N∑
i=1

βi∇g(xi)

))
≤

N∑
i=1

βiDg(x, xi),

where {xi} ⊆ E, {βi} ⊆ (0, 1) and N ∈ N such that
∑N

i=1 βi = 1.

Lemma 2.14 ([13]). Let {an} be a sequence of nonnegative real numbers. If {ani}
is a subsequence of {an} such that ani < ani+1 for all i ∈ N, then there exists a

nondecreasing sequence {mk} of N such that limk→∞mk = ∞ and the following

properties are satisfied by all (sufficiently large) number k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk=max {n ≤ k : an < an+1}.

Lemma 2.15 ([30]). If {ak} is a sequence of nonnegative real numbers such that

ak+1 ≤ (1− αk) ak + αkdk,

where {αk} ⊂ (0, 1) such that
∑∞

k=1 αk = ∞ and {dk} is a sequence of real numbers

with lim supk→∞ dk ≤ 0, then limk→∞ ak = 0.

3. Main results

In this section, we describe our algorithms and their convergence outcomes under

the following circumstances:

(H1) Let E1 and E2 be reflexive real Banach spaces with duals E∗
1 and E∗

2, respec-

tively, and let C and D be non-empty, closed and convex subsets of E1 and

E2, respectively.
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(H2) Let T : E1 → E∗
1 and S : E2 → E∗

2 be quasi-monotone mappings which

are uniformly continuous on bounded subsets of C and D, respectively,

satisfying

(3.1) ||T (x)|| ≤ lim inf
k→∞

||T (xk)|| and ||S(y)|| ≤ lim inf
k→∞

||S(yk)||,

whenever {xk} and {yk} are sequences in E1 and E2, respectively, such that

xk ⇀ x and yk ⇀ y.

(H3) Let A : E1 → E3 and B : E2 → E3, where E3 is another real Banach space,

be bounded linear mappings with adjoints A∗ and B∗, respectively.

(H4) Let the set Ω = {(x∗, y∗) ∈ DV I(C, T )×DV I(D,S) : Ax∗ = By∗} be non-

empty.

(H5) Let the proper lower semi-continuous functions g : E1 → R and f : E2 →
R be strongly coercive Legendre functions which are bounded, uniformly

Fréchet differentiable and β-strongly convex on bounded subsets of E1 and

E2 respectively.

(H6) Let the sequence {αk} ⊂ (0, 1] be such that
∑∞

k=1 αk = ∞ and limk→∞ αk =

0.

Algorithm 3.1 Choose x0 ∈ E1, y0 ∈ E2 and γ, σ ∈ (0, 1). Take k = 1. Calculate

{xk} and {yk} as follows:

Step 1: Compute

(3.2) ak = Πg
C(∇g)−1 [∇g(xk)− γkA

∗ (JE3(Axk −Byk))] ;

bk = Πf
D(∇f)−1 [∇f(yk)− γkB

∗ (JE3(Byk −Axk))] ,

where 0 < ρ ≤ γk ≤ ρk with

(3.3) ρk = min

{
ρ+ 1,

β∥Axk −Byk∥2

2[∥A∗JE3(Axk −Byk)∥2 + ∥B∗JE3(Byk −Axk)∥2]

}
,

for k ∈ Υ = {m ∈ N : Axm −Bym ̸= 0}, otherwise γk = ρ.

Step 2: Compute

(3.4) zk = (∇g)−1 [∇g(ak)− βkT (ak)] ; uk = (∇f)−1 [∇f(bk)− βkS(bk)] ,

where {βk} ⊂ [a, 1] ⊂ (0, 1], for all k ≥ 1;

Step 3: Compute

(3.5) mk = min
{
m ∈ N :

⟨
T (ak)− T (dm), ak −Πg

C(zk)
⟩
≤ σDg

(
Πg

C (zk) , ak
)}

;

(3.6) lk = min
{
l ∈ N :

⟨
S(bk)− S(el), bk −Πf

D(uk)
⟩
≤ σDf

(
Πf

D (uk) , bk

)}
,
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where

(3.7) dm = γmΠg
C(zk) + (1− γm)ak; el = γlΠf

D(uk) + (1− γl)bk.

Let

(3.8) dk = γmkΠg
C(zk) + (1− γmk)ak; ek = γlkΠf

D(uk) + (1− γlk)bk.

Step 4: Compute

(3.9) xk+1 = Πg
C

∩
Hk

(ak); yk+1 = Πf
D

∩
Rk

(bk);

where

(3.10) Hk = {x ∈ E1 : ⟨T (dk), x− dk⟩ ≤ 0} ; Rk = {y ∈ E2 : ⟨S(ek), y − ek⟩ ≤ 0} .

Step 5 : Let k = k + 1 and return to Step 1.

Remark 3.1. The method we introduced is a newly proposed projection-based

method for solving the more general problem called split equality variational in-

equality problems associated with the class of uniformly continuous quasimonotone

mappings in Banach spaces. As far as our knowledge is concerned, our method is

the first method of its kind proposed in the setting of reflexive Banach spaces. It

does not require prior knowledge of the Lipschitz constants of the underlying map-

pings. It extends all the results in the literature from Hilbert spaces to the more

general reflexive Banach spaces under mild conditions.

Lemma 3.2. Let conditions (H1) − (H5) be satisfied. Then the line search rules

(3.5) and (3.6) are well defined.

Proof. Suppose that ak = Πg
C (zk), then (3.5) is satisfied for m = 0. Let ak ̸=

Πg
C (zk) and assume on the contrary that

(3.11)
⟨
T (ak)− T (dm) , ak −Πg

C (zk)
⟩
> σDg

(
Πg

C (zk) , ak
)
∀m ≥ 1.

Given that γ ∈ (0, 1), we have limm→∞ dm = limm→∞ γm
(
Πg

C (zk)
)
+(1− γm) ak =

ak.

Letting m → ∞ in (3.11) and by the continuity of T , we get

0 = limm→∞
⟨
T (ak)− T (dm) , ak −Πg

C (zk)
⟩

≥ σDg

(
Πg

C (zk) , ak
)
, and the fact

that σ > 0, we get

(3.12) Dg

(
Πg

C (zk) , ak
)
≤ 0.

But as g is strongly convex and ak ̸= Πg
C (zk), we have

(3.13) Dg

(
Πg

C (zk) , ak
)
> 0,

which is a contradiction. Thus, (3.5) is well defined. Similarly, the same can be

shown for (3.6). □
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Lemma 3.3. Assume the conditions (H1), (H2) and (H5) hold. Let T and S be

continuous mappings on C and D, respectively. For all x ∈ C and y ∈ D, we have

(3.14)
⟨
T (x) , x−Πg

C

[
(∇g)−1 (∇g (x)− βkT (x))

]⟩
≥ Dg

(
Πg

C

[
(∇g)−1 (∇g (x)− βkT (x))

]
, x
)
,

and

(3.15)
⟨
S (y) , y −Πf

D

[
(∇f)−1 (∇f (y)− βkS (y))

]⟩
≥ Df

(
Πf

D

[
(∇f)−1 (∇f (y)− βkS (y))

]
, y
)
.

Proof. Lemma 2.5 of [28]. □

Remark 3.4. Note from Algorithm 3.1 and Lemma 3.3 the following hold.

(3.16)

⟨
T (dk) , ak −Πg

C (zk)
⟩
≥ (1− σ)Dg

(
Πg

C (zk) , ak
)
,⟨

S (ek) , bk −Πf
D (uk)

⟩
≥ (1− σ)Df

(
Πf

D (uk) , bk

)
.

Proof. From Step 3 of the algorithm we have

(3.17)
⟨
T (dm) , ak −Πg

C (zk)
⟩
≥
⟨
T (ak) , ak −Πg

C (zk)
⟩
− σDg

(
Πg

C (zk) , ak
)
.

From Lemma 3.3, we get

(3.18)
⟨
T (ak) , ak −Πg

C (zk)
⟩
≥ Dg

(
Πg

C (zk) , ak
)
.

Hence,

(3.19)
⟨
T (dm) , ak −Πg

C (zk)
⟩
≥ (1− σ)Dg

(
Πg

C (zk) , ak
)
.

Therefore, for m = mk, we obtain

(3.20)
⟨
T (dk) , ak −Πg

C (zk)
⟩
≥ (1− σ)Dg

(
Πg

C (zk) , ak
)
.

Similarly, the relation (3.16) holds. □

Lemma 3.5. Assume the conditions (H1) − (H5) hold. If {ak} and {bk} are se-

quences generated by Algorithm 3.1, we get

(i) DV I(C, T ) ⊆ C ∩Hk and DV I(D,S) ⊆ D ∩Rk, for all k ≥ 1;

(ii) hk (ak)≥ck (1− σ)Dg

(
Πg

C (zk) , ak
)
and wk (bk)≥ tk (1− σ)Dg

(
Πg

D (uk) , bk
)

for ck = γmk , tk = γlk , hk(v) = ⟨Tdk, v − dk⟩ for v ∈ C and wk(u) =

⟨S(ek), u− ek⟩, for u ∈ D, for all k ≥ 1.

Proof. Let (x∗, y∗) ∈ Ω. Then ⟨T (dk) , x
∗ − dk⟩ ≤ 0 from which it follows that

x∗ ∈ C ∩ Hk and so DV I(C, T ) ⊂ C ∩ Hk, for all k ≥ 1. Similarly, we get

DV I(D,S) ⊂ D ∩Rk, for all k ≥ 1.

(ii) From Step 4 and Remark 3.4, we obtain that

hk (ak) = ⟨T (dk) , ak − dk⟩ = ck
⟨
T (dk) , ak −Πg

C (zk)
⟩

≥ ck (1− σ)Dg

(
Πg

C (zk) , ak
)
,
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which yields that the first part of (ii) holds. Similarly, we obtain that the second

part of (ii) holds. □

Lemma 3.6. Assume the conditions (H1)− (H5) hold. Let (x∗, y∗) ∈ Ω. Then, the

sequences {xk}, {ak}, {yk} and {bk} generated by Algorithm 3.1 satisfy the following

relations.

(1) Dg (xk+1, ak) ≤ Dg (x
∗, xk)−Dg (x

∗, xk+1)−γk ⟨A∗JE3(Axk −Byk), pk − x∗⟩;
Df (yk+1, bk) ≤ Df (y

∗, yk)−Df (y
∗, yk+1)−γk ⟨B∗JE3(Byk −Axk), tk − y∗⟩ .

where

pk = (∇g)−1 [∇g(xk)− γkA
∗(JE3(Axk −Byk))]

and

tk = (∇f)−1 [∇f(yk)− γkB
∗(JE3(Byk −Axk))] .

(2) {xk} and {yk} are bounded.

Proof. (1) From the three point identity, taking z = xk+1, x = ak, Lemma 2.5 and

(2.5) we get that:

(3.21)

Dg (y, xk+1) +Dg (xk+1, ak)−Dg (y, ak) = ⟨∇g (xk+1)−∇g (ak) , xk+1 − y⟩ ≤ 0,

∀y ∈ C ∩Hk.

Let y = x∗ in (3.21), then

(3.22) Dg (xk+1, ak) ≤ Dg (x
∗, ak)−Dg (x

∗, xk+1) .

Let pk = (∇g)−1 [∇g(xk)− γkA
∗(JE3(Axk −Byk)] and tk = (∇f)−1[∇f(fk)−

γkB
∗(JE3(Ayk −Bxk))]. From (2.6), (2.9), (2.10) and (3.2) we have

Dg (x
∗, ak) ≤ Dg (x

∗, pk) = Dg

(
x∗, (∇g)−1 [∇g(xk)− γkA

∗(JE3(Axk −Byk)]
)

= Vg (x
∗,∇g(xk)− γkA

∗ (JE3(Axk −Byk)))

≤ Vg (x
∗,∇g(xk))− γk ⟨A∗(JE3(Axk −Byk)), pk − x∗⟩

= Dg (x
∗, xk)− γk ⟨A∗JE3(Axk −Byk), pk − x∗⟩ .(3.23)

Combining (3.22) and (3.23), we get

(3.24)

Dg (xk+1, ak) ≤ Dg (x
∗, xk)−Dg (x

∗, xk+1)− γk ⟨A∗JE3(Axk −Byk), pk − x∗⟩ .

Following the same approach, we arrive at

(3.25)

Df (yk+1, bk) ≤ Df (y
∗, yk)−Df (y

∗, yk+1)− γk ⟨B∗JE3(Byk −Axk), tk − y∗⟩ .
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(2) From the fact that Dg (xk+1, ak) ≥ 0, Df (yk+1, bk) ≥ 0, (3.24), (3.25) and

Ax∗ = By∗, we have

(3.26)

Dg (xk+1, ak) +Df (yk+1, bk)

≤ Dg (x
∗, xk)−Dg (x

∗, xk+1)− γk ⟨A∗JE3(Axk −Byk), pk − x∗⟩
+Df (y

∗, yk)−Df (y
∗, yk+1)− γk ⟨B∗JE3(Byk −Axk), tk − y∗⟩

= Dg (x
∗, xk)−Dg (x

∗, xk+1) +Df (y
∗, yk)−Df (y

∗, yk+1)

− γk ⟨JE3 (Axk −Byk) , Apk −Btk⟩ .

Furthermore, we have

(3.27)

− ⟨JE3 (Axk −Byk) , Apk −Btk⟩
= −⟨JE3 (Axk −Byk) , Axk −Byk⟩ − ⟨JE3 (Axk −Byk) , Apk −Axk⟩
− ⟨JE3 (Axk −Byk) , Byk −Btk⟩

= −||Axk −Byk||2 − ⟨A∗JE3 (Axk −Byk) , pk − xk⟩
− ⟨B∗JE3 (Axk −Byk) , yk − tk⟩

≤ −||Axk −Byk||2 + ||pk − xk||||A∗JE3 (Axk −Byk) ||
+ ||yk − tk||||B∗JE3 (Axk −Byk) ||.

Using the Lipschitz continuity of (∇g)−1, we get

||pk − xk|| = ||(∇g)−1 [∇g(xk)− γkA
∗JE3(Axk −Byk)]− (∇g)−1 (∇g(xk)) ||

≤ γk
β
||A∗JE3 (Axk −Byk) ||.(3.28)

Similarly, the Lipschitz continuity of (∇f)−1 yields

(3.29) ||tk − yk|| ≤
γk
β
||B∗JE3 (Byk −Axk) ||.

Combining (3.27), (3.28), (3.29) and making use of (3.3), we obtain

− γk ⟨JE3 (Axk −Byk) , Apk −Btk⟩

≤ −γk||Axk −Byk||2 +
γ2k
β
||A∗JE3 (Axk −Byk) ||2 +

γ2k
β
||B∗JE3 (Byk −Axk) ||2

≤ −ρ

2
||Axk −Byk||2 −

γk
2
||Axk −Byk||2 +

γk
2

(
2γk
β

[
||A∗JE3 (Axk −Byk) ||2

])

+
γk
2

(
2γk
β

[
||B∗JE3 (Byk −Axk) ||2

])
≤ −ρ

2
||Axk −Byk||2.

(3.30)

As such, from (3.26) and (3.30), we obtain

Dg (xk+1, ak) +Df (yk+1, bk) ≤ Dg (x
∗, xk)−Dg (x

∗, xk+1)−Df (y
∗, yk+1)

+Df (y
∗, yk)−

ρ

2
||Axk −Byk||2.(3.31)
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Hence,

(3.32) Dg (x
∗, xk+1)+Df (y

∗, yk+1) ≤ Dg (x
∗, xk)+Df (y

∗, yk)−
ρ

2
||Axk −Byk||2.

We get that {Dg (x
∗, xk) + Df (y

∗, yk)} is decreasing and bounded below. Thus,

{Dg (x
∗, xk)} and {Df (y

∗, yk)} are bounded which implies that {xk} and {yk} are

bounded. □

Lemma 3.7. Assume that conditions (H1)− (H5) hold. Then, the sequences {xk},
{ak}, {yk} and {bk} generated by Algorithm 3.1 satisfy the following relations.

(1) limk→∞Dg (xk+1, ak) = 0 and limk→∞Df (yk+1, bk) = 0.

(2) Dg (xk+1, ak) ≥
αc2k
L2
1
(1− σ)2Dg

(
Πg

C (zk) , ak
)
and

Df (yk+1, bk) ≥
αt2k
L2
2
(1− σ)2Df

(
Πf

D (uk) , bk

)
.

Proof. (1) From (3.31), we obtain

(3.33)

∞∑
k=0

Dg (xk+1, ak)

≤
∞∑
k=0

Dg (xk+1, ak) +Df (yk+1, bk)

≤
∞∑
k=0

(Dg (x
∗, xk)−Dg (x

∗, xk+1)−Df (y
∗, yk+1) +Df (y

∗, yk))

≤ Dg (x
∗, x0) +Df (y

∗, y0) ,

which implies that

lim
k→∞

Dg (xk+1, ak) = 0.(3.34)

Again with a similar approach, we have

lim
k→∞

Df (yk+1, bk) = 0.

2) From Lemma 3.6, (3.23) and (3.34), we have that {ak} is bounded. Similarly, {bk}
is bounded. Using (H5) and the fact that T is uniformly continuous on bounded

subsets of E1, we get that {zk} is bounded. Also by Lemma 2.6, we get that{
Πg

C (zk)
}
is bounded. Thus, we get that {dk} is bounded and hence {T (dk)} is

bounded. Therefore, there exists L1 > 0 such that

||T (dk) || ≤ L1, ∀k ≥ 1.

Since hk(v) = ⟨T (dk) , v − dk⟩, we get

|hk (ak)− hk (xk+1) | = | ⟨T (dk) , ak − xk+1⟩ |
≤ ||T (dk) ||||ak − xk+1||
≤ L1||ak − xk+1||,
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which implies that hk is Lipschitz continuous on C. Using Lemmas 3.5 and 2.11,

we obtain

Dg (xk+1, ak) ≥
αc2k
L2
1

(1− σ)2D2
g

(
Πg

C (zk) , ak
)
.

Similarly, we get

(3.35) Df (yk+1, bk) ≥
αt2k
L2
2

(1− σ)2D2
f

(
Πf

D (uk) , bk

)
.

□

Lemma 3.8. Assume that conditions (H1) − (H5) hold. If {ak} and {bk} are

sequences generated by Algorithm 3.1, then V I(C, T ) and V I(D,S) contain weak

accumulation points of {ak} and {bk}, respectively.

Proof. From Lemma 3.7 (2), we have

lim
k→∞

Dg (xk+1, ak) ≥ lim
k→∞

αc2k
L2
1

(1− σ)2D2
g

(
Πg

C (zk) , ak
)
.(3.36)

Since α > 0, inequality (3.36) and equation (3.34) imply that

lim
k→∞

ckDg

(
Πg

C (zk) , ak
)
= 0.(3.37)

Let {aki} be a sub-sequence of {ak} which converges weakly to a∗. If there exists

N > 0 such that aki = Πg
Czki for all i ≥ N , then Taki = 0, for all i ≥ N and

hence by (H2), we get that 0 ≤ ||Ta∗|| ≤ lim inf i→∞ ||Taki || = 0, which implies

that a∗ ∈ V I(C, T ). Otherwise, we can take a subsequence of {aki}, with no loss of

generality, which could still be denoted {aki} such that aki ̸= Πg
Czki for all i ≥ 1.

In this case, the equality in (3.37) yields

(3.38) lim
i→∞

ckiDg

(
Πg

C (zki) , aki
)
= 0.

Now, we show that a∗ ∈ V I(T,C) under two cases.

Case 1. If lim supi→∞ cki > 0, then there exists a sub-sequence, with no loss of

generality, still denoted by {aki}, and constant θ > 0, such that cki > θ, for i ≥ N

and for some N > 0. From (3.38), we get

(3.39) lim
i→∞

Dg

(
Πg

C (zki) , aki
)
= 0.

So by Lemma 2.3, we have

(3.40) lim
i→∞

||Πg
C (zki)− aki || = 0.

On the other hand, (2.5) implies that

(3.41)
⟨
∇g (zki)−∇g

(
Πg

C (zki)
)
, y −Πg

C (zki)
⟩
≤ 0, ∀y ∈ C.

Now, from the definition of zki and (3.41), we obtain

(3.42)
⟨
∇g (aki)−∇g

(
Πg

C (zki)
)
, y −Πg

C (zki)
⟩
≤ βk

⟨
T (aki) , y −Πg

C (zki)
⟩
.

Consequently, we get
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(3.43)
⟨
∇g (aki)−∇g

(
Πg

C (zki)
)
, y −Πg

C (zki)
⟩
− βk

⟨
T (aki) , aki −Πg

C (zki)
⟩

≤ βk ⟨T (aki) , y − aki⟩ .

From the uniform continuity of ∇g, the fact that βk ≥ a > 0 for all k ≥ 1, (3.40),

boundedness of {aki} and
{
Πg

C (zki)
}
, ( see Lemma 3.7 (2)), and letting i → ∞ in

(3.43), we get that

(3.44) lim inf
i→∞

⟨T (aki) , y − aki⟩ ≥ 0.

Hence, for any ϵ > 0, ∃N > 0 such that for i ≥ N ,we have

(3.45) ⟨T (aki) , y − aki⟩+ ϵ ≥ 0.

Since aki ̸= Πg
C(zki), we have T (aki) ̸= 0. Take vki ∈ E1 such that ⟨T (aki) , vki⟩ = 1,

then

(3.46) ⟨T (aki) , y + ϵvki − aki⟩ ≥ 0, ∀i ≥ N.

So, by Lemma 2.10, either

(3.47) ⟨T (y + ϵvki) , y + ϵvki − aki⟩ ≥ 0, ∀i ≥ N

or

(3.48) ⟨T (aki) , z − aki⟩ ≥ 0, ∀z ∈ C, ∀i ≥ N.

However, the inequality in (3.48) suggests that aki = Πg
C (zki), which contradicts

the assumption that aki ̸= Πg
C(zki). So, we get (3.47) that can be expressed as

(3.49)

⟨T (y) , y − aki⟩ ≥ ⟨T (y)− T (y + ϵvki) , y + ϵvki − aki⟩ − ϵ ⟨T (y) , vki⟩ , ∀i ≥ N.

Taking ϵ → 0 and using the continuity of T and boundedness of {aki}, we get

(3.50) ⟨T (y) , y − aki⟩ ≥ 0, ∀y ∈ C.

Hence, letting i → ∞, we get

(3.51) ⟨T (y) , y − a∗⟩ ≥ 0, ∀y ∈ C.

Therefore, a∗ ∈ DV I(C, T ) and hence a∗ ∈ V I(C, T ).

Case 2. If lim supi→∞ cki = 0, then we get limi→∞ cki = 0. Now, we show that

limi→∞Dg

(
Πg

C (zki) , aki
)
= 0. Take dki =

cki
γ Πg

C (zki)+
(
1− cki

γ

)
aki which implies

dki − aki =
cki
γ

(
Πg

C (zki)− aki
)
. From the boundedness of

{
Πg

C (zki)− aki
}
and the

fact that limi→∞ cki = 0, we get

(3.52) lim
i→∞

||dki − aki || = 0.

Hence, from the definition of cki and Step 3 of the Algorithm 3.1, we obtain

(3.53)
⟨
T (aki)− T

(
dki
)
, aki −Πg

C (zki)
⟩
> σDg

(
Πg

C (zki) , aki
)
.

Applying the fact that T is uniformly continuous on bounded subsets of E1, σ > 0

and boundedness of
{
Πg

C (zki)
}
and {aki}, we have

(3.54) lim
i→∞

Dg

(
Πg

C (zki) , aki
)
= 0.
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Then following the argument in Case 1, we arrive at the desired conclusion. □

Remark 3.9. Note that, if in Lemma 3.8, we assume that T (x) ̸= 0 for all x ∈ C

and S(y) ̸= 0 for all y ∈ D, then the method of proof of Lemma 3.8 provides that

DV I(C, T ) and DV I(D,S) contain the weak accumulation points of {ak} and {bk},
respectively.

In the sequel, we shall use the following lemma.

Lemma 3.10. Let E1 and E2 be real Banach spaces and g : E1 → (−∞,∞], f :

E2 → (−∞,∞] be proper and strictly convex Gâteaux differentiable functions such

that ∇f and ∇g are weakly sequentially continuous mappings. Suppose the sequence

{(xk, yk)} in E1 × E2 converges weakly to (x, y). Then

(3.55) lim sup
k→∞

[Dg(x, xk) +Df (y, yk)] < lim sup
k→∞

[Dg(x̂, xk) +Df (ŷ, yk)]

for any point (x̂, ŷ) ∈ E1 × E2 such that (x̂, ŷ) ̸= (x, y).

Proof. Using the Bregman distance definition, we get that

Dg(x, xk) +Df (y, yk)− [Dg(x̂, xk) +Df (ŷ, yk)]

= g(x)− g(xk)− ⟨x− xk,∇g(xk)⟩+ f(y)− f(yk)− ⟨y − yk,∇f(yk)⟩
− [g(x̂)− g(xk)− ⟨x̂− xk,∇g(xk)⟩+ f(ŷ)− f(yk)− ⟨ŷ − yk,∇f(yk)⟩]

= g(x)− g(x̂)− ⟨x− x̂,∇g(xk)⟩+ f(y)− f(ŷ)− ⟨y − ŷ,∇f(yk)⟩
= −[g(x̂)− g(x)− ⟨x̂− x,∇g(xk)⟩+ f(ŷ)− f(y)− ⟨ŷ − y,∇f(yk)⟩]
= −[g(x̂)− g(x)− ⟨x̂− x,∇g(xk) +∇g(x)−∇g(x)⟩+ f(ŷ)− f(y)

− ⟨ŷ − y,∇f(yk)−∇f(y) +∇f(y)⟩]
= −[g(x̂)− g(x)− ⟨x̂− x,∇g(x)⟩ − ⟨x̂− x,∇g(xk)−∇g(x)⟩
+ f(ŷ)− f(y)− ⟨ŷ − y,∇f(y)⟩
− ⟨ŷ − y,∇f(yk)−∇f(y)⟩]

= −Dg(x̂, x) + ⟨x̂− x,∇g(xk)−∇g(x)⟩ −Df (ŷ, y)

+ ⟨ŷ − y,∇f(yk)−∇f(y)⟩ .(3.56)

Now, using the fact that ∇f and ∇g are weakly sequentially continuous we get that

lim supk→∞[Dg(x, xk)+Df (y, yk)−[Dg(x̂, xk)+Df (ŷ, yk)]] = −Dg(x̂, x)−Df (ŷ, y).

Consequently,

lim sup
k→∞

[Dg(x, xk) +Df (y, yk)]

≤ lim sup
k→∞

[Dg(x, xk) +Df (y, yk)−Dg(x̂, xk)−Df (ŷ, yk)]

+ lim sup
k→∞

[Dg(x̂, xk) +Df (ŷ, yk)]

= −Dg(x̂, x)−Df (ŷ, y) + lim sup
k→∞

[Dg(x̂, xk) +Df (ŷ, yk)]
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< lim sup
k→∞

[Dg(x̂, xk) +Df (ŷ, yk)].(3.57)

Therefore, the conclusion of the lemma holds. □

Theorem 3.11. Assume that conditions (H1)− (H5) hold. In addition, let ∇g and

∇f be weakly sequentially continuous mappings. The sequence {(xk, yk)} generated

by Algorithm 3.1 converges weakly to a point in Ω∗, where Ω∗ = {(x∗, y∗) ∈ V I(C, T )

×V I(D,S) : Ax∗ = By∗}.

Proof. Let (x∗, y∗) ∈ Ω∗. From Lemma 3.6, we obtain that

(3.58) Ω∗
k+1 ≤ Ω∗

k −
ρ

2
||Axk −Byk||2,

where Ω∗
k = Dg (x

∗, xk) + Df (y
∗, yk). Hence, {Ω∗

k} is a decreasing and hence

convergent sequence. Thus (3.58) implies ||Axk − Byk|| → 0 as k → ∞. Since

{(xk, yk)} is bounded by Lemma 3.6 , a sub-sequence {(xki , yki)} of {(xk, yk)} such

that (xki , yki) ⇀ (x̂, ŷ) exists. This implies that xki ⇀ x̂ and yki ⇀ ŷ. By Lemmas

3.7 and 2.8, we get aki−1 ⇀ x̂ and bki−1 ⇀ ŷ as i → ∞. Thus, by Lemma 3.8, we

get that x̂ ∈ V I(C, T ) and ŷ ∈ V I(D,S). Moreover, from (3.58) and the fact that

A and B are bounded linear mappings and {Ωk} is convergent, we have Ax̂ = Bŷ.

Hence, (x̂, ŷ) ∈ Ω∗.

Now we prove that (xk, yk) ⇀ (x̂.ŷ) as k → ∞. Suppose to the contrary that this is

not the case. Then there exists a sub-sequence
{
(xkj , ykj )

}
of {(xk, yk)} such that

(xkj , ykj ) ⇀ (x, y) as j → ∞, where (x̄, ȳ) ̸= (x̂, ŷ). This implies that xkj ⇀ x and

ykj ⇀ y as j → ∞. Note that one may also show that (x, y) ∈ Ω∗. Now, using the

fact that {Ω∗
k} is convergent and the property in Lemma 3.10, we get

lim
k→∞

[Dg(x̂, xki) +Df (ŷ, yki)]

= lim sup
i→∞

[Dg(x̂, xki) +Df (ŷ, yki)]

< lim sup
i→∞

[Dg(x, xki) +Df (y, yki)]

= lim
k→∞

[Dg(x, xk) +Df (y, yk)] = lim sup
j→∞

[
Dg(x, xkj ) +Df (y, ykj )

]
< lim sup

j→∞

[
Dg(x̂, xkj ) +Df (ŷ, ykj )

]
= lim

k→∞
[Dg(x̂, xki) +Df (ŷ, yki)] ,

which is a contradiction. This yields that (x̂, ŷ) = (x, y). Therefore, the whole

sequence {(xk, yk)} converges weakly to (x̂, ŷ) ∈ Ω∗ as k → ∞ as desired. □

Next, we propose Halpern-type projection-based algorithm for approximating a

solution of variational problems in Banach spaces.

Algorithm 3.2 Choose x0 ∈ E1, y0 ∈ E2 and two parameters: γ, σ ∈ (0, 1). Take

k = 0. For arbitrary points u ∈ C and v ∈ D, calculate {xk} and {yk} as follows:



76 T. M. MAPHARING, H. ZEGEYE, AND O. A. BOIKANYO

Step 1: Compute

(3.59) ak = Πg
C(∇g)−1 [∇g(xk)− γkA

∗ (JE3(Axk −Byk))] ,

(3.60) bk = Πf
D(∇f)−1 [∇f(yk)− γkB

∗ (JE3(Byk −Axk))] ,

where 0 < ρ ≤ γk ≤ ρk with

ρk = min

{
ρ+ 1,

β∥Axk −Byk∥2

2[∥A∗JE3(Axk −Byk)∥2 + ∥B∗JE3(Byk −Axk)∥2]

}
,

for k ∈ Υ = {m ∈ N : Axm −Bym ̸= 0}, otherwise γk = ρ.

Step 2: Compute

zk = (∇g)−1 [∇g(ak)− βkT (ak)], uk = (∇f)−1 [∇f(bk)− βkS(bk)],

where {βk} ⊂ [a, 1] ⊂ (0, 1] for all k ≥ 1.

Step 3 : Compute

mk = min
{
m ∈ N :

⟨
T (ak)− T (dm), ak −Πg

C(zk)
⟩
≤ σDg

(
Πg

C (zk) , ak
)}

,

lk = min
{
l ∈ N :

⟨
S(bk)− S(el), bk −Πf

D(uk)
⟩
≤ σDf

(
Πf

D (uk) , bk

)}
,

where

dm = γmΠg
C(zk) + (1− γm)ak, el = γlΠf

D(uk) + (1− γl)bk.

Let

dk = γmkΠg
C(zk) + (1− γmk)ak, ek = γlkΠf

D(uk) + (1− γlk)bk.

Step 4 : Compute

xk+1 = αku+ (1− αk)Π
g
C

∩
Hk

(ak), yk+1 = αkv + (1− αk)Π
f
D

∩
Rk

(bk),

where

Hk = {x ∈ E1 : ⟨T (dk), x− dk⟩ ≤ 0} and Rk = {y ∈ E2 : ⟨S(ek), y − ek⟩ ≤ 0}.
Step 5 : Let k = k + 1 and return to Step 1.

Remark 3.12. The novelty of the proposed Halpern-type projection-based method

is that it provides strong convergence to the solution of the more general problem

know as split equality dual variational inequality problems associated with the class

of uniformly continuous quasimonotone mappings in Banach spaces. It does not

require prior knowledge of the Lipschitz constants of the underlying mappings. It

extends all the results in the literature from Hilbert spaces to the more general

reflexive Banach spaces under mild conditions.

Lemma 3.13. Assume that conditions (H1)−(H6) hold. Then, the sequences {xk},
{ak}, {yk} and {bk} generated by Algorithm 3.2 are bounded.
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Proof. Let (x, y) ∈ Ω. Then from (3.23), (2.11) and Lemma 2.13, we obtain that

Dg(x, xk+1) = Dg(x, (αku+ (1− αk)Π
g
C

∩
Hk

(ak))

≤ αkDg(x, u) + (1− αk)Dg(x,Π
g
C

∩
Hk

(ak))

≤ αkDg(x, u) + (1− αk)Dg(x, ak)

≤ αkDg(x, u) + (1− αk) (Dg (x, xk)− γk ⟨A∗JE3(Axk −Byk), pk − x⟩) .(3.61)

Similarly, we get

(3.62)

Df (y, yk+1) ≤ αkDf (y, v) + (1− αk) (Df (y, yk)− γk ⟨B∗JE3(Byk −Axk), tk − y⟩) .

Denote: Ωk = Dg(x, xk) + Df (y, yk). Then, from (3.61), (3.62) and (3.30) we

obtain that

Ωk+1 ≤ (1− αk)Ωk + αk [Dg(x, u) +Df (y, v)]−
ρ

2
||Axk −Byk||2

≤ (1− αk)Ωk + αk [Dg(x, u) +Df (y, v)]

≤ max {Ωk, Dg(x, u) +Df (y, v)}
...

≤ max {Ω0, Dg(x, u) +Df (y, v)} , ∀k ≥ 0.(3.63)

Thus, the sequence {Ωk} is bounded and hence the sequences {Dg(x, xk)} and

{Df (y, yk)} are bounded. Therefore, by Lemma 2.8, we have {xk} and {yk} are

bounded.

□

Theorem 3.14. Assume that conditions (H1)−(H6) hold. Let T (x) ̸= 0, for all x ∈
C and S(y) ̸= 0, for all y ∈ D. Then, the sequence {(xk, yk)} generated by Algorithm

3.2 converges strongly to (x∗, y∗) = Πh
Ω(u, v), where h(x, y) = (g(x), f(y)).

Proof. Let (x∗, y∗) = Πh
Ω(u, v). Then, from (2.5) we get that

(3.64) ⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (s, t)− (x∗, y∗)⟩ ≤ 0 ∀(s, t) ∈ Ω.

From (2.9), (2.10), Lemma 2.13 and (3.24), we have

Dg(x
∗, xk+1) = Dg(x

∗, (∇g)−1
(
αk∇g(u) + (1− αk)∇g(Πg

C
∩

Hk
(ak))

)
= Vg(x

∗, (αk∇g(u) + (1− αk)∇g(Πg
C

∩
Hk

(ak)))

≤ Vg(x
∗, (1− αk)∇g(Πg

C
∩

Hk
(ak)) + αk∇g(x∗))

+ αk ⟨∇g(u)−∇g(x∗), xk+1 − x∗⟩

= Dg(x
∗, (∇g)−1((1− αk)∇g(Πg

C
∩

Hk
(ak)) + αk∇g(x∗)) + αk∇g(x∗)

+ αk ⟨∇g(u)−∇g(x∗), xk+1 − x∗⟩
≤ (1− αk)Dg(x

∗,Πg
C

∩
Hk

(ak)) + αk ⟨∇g(u)−∇g(x∗), xk+1 − x∗⟩(3.65)

≤ (1− αk)Dg(x
∗, ak) + αk ⟨∇g(u)−∇g(x∗), xk+1 − x∗⟩(3.66)

≤ (1− αk)Dg (x
∗, xk)− (1− αk)γk ⟨A∗JE3(Axk −Byk), pk − x∗⟩
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+ αk ⟨∇g(u)−∇g(x∗), xk+1 − x∗⟩ .(3.67)

Similarly,

Df (y
∗, yk+1) ≤ (1− αk)Df (y

∗, yk)− (1− αk)γk ⟨B∗JE3(Byk −Axk), tk − y∗⟩
+ αk ⟨∇f(v)−∇f(y∗), yk+1 − y∗⟩ .(3.68)

Let Ωk = Dg(x
∗, xk) +Df (y

∗, yk), then from (3.67), (3.68) and (3.30), we get

Ωk+1 ≤ (1− αk)Ωk − (1− αk)
ρ

2
||Axk −Byk||2

+ αk [⟨∇g(u)−∇g(x∗), xk+1 − x∗⟩+ ⟨∇f(v)−∇f(y∗), yk+1 − y∗⟩](3.69)

≤ (1− αk)Ωk

+ αk [⟨∇g(u)−∇g(x∗), xk − x∗⟩+ ⟨∇f(v)−∇f(y∗), yk − y∗⟩]
+ αk [⟨∇g(u)−∇g(x∗), xk+1 − xk⟩+ ⟨∇f(v)−∇f(y∗), yk+1 − yk⟩]

≤ (1− αk)Ωk

+ αk [⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xk, yk)− (x∗, y∗)⟩]
+ αk [⟨∇g(u)−∇g(x∗), xk+1 − xk⟩+ ⟨∇f(v)−∇f(y∗), yk+1 − yk⟩] .(3.70)

We now consider two cases on the sequence {Ωk}.

Case I. Suppose there exists a natural number N such that Ωk+1 ≤ Ωk for all

k ≥ N , then we have by the Monotone Convergence Theorem that the sequence

{Ωk} converges. Taking the limit as k → ∞ in (3.69), we obtain

(3.71) lim
k→∞

∥Axk −Byk∥ = 0.

Moreover, since {(xk, yk)} is bounded in E1×E2 which is reflexive, then there exists

a subsequence {(xki , yki)} of {(xk, yk)} such that (xki , yki) ⇀ (x, y) ∈ E1 × E2 and

lim sup
k→∞

⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xk, yk)− (x∗, y∗)⟩

= lim
i→∞

⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xki , yki)− (x∗, y∗)⟩

= ⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (x, y)− (x∗, y∗)⟩ .(3.72)

Consequently, we have xki ⇀ x and yki ⇀ y. Now, we show that (x, y) ∈ Ω.

From the definition of ak, (2.11), (2.9), (2.10), the property of the Bregman

projection and the Cauchy Schwarz inequality, we have

Dg (xk, ak) ≤ Dg

(
xk, (∇g)−1 [∇g(xk)− γkA

∗(JE3(Axk −Byk)]
)

= Vg (xk,∇g(xk)− γkA
∗ (JE3(Axk −Byk)))

≤ Vg (xk,∇g(xk))− γk ⟨A∗(JE3(Axk −Byk), pk − xk⟩
= Dg (xk, xk)− γk ⟨A∗JE3(Axk −Byk), pk − xk⟩
≤ γk||A∗JE3(Axk −Byk)||.||pk − xk||.(3.73)
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Substituting (3.28) into (3.73), taking the limit on both sides and making use of

the inequality in (3.71), we obtain

(3.74)

0 ≤ lim
k→∞

Dg(xk, ak)

≤ lim
k→∞

(
γ2k
β
||A||2||JE3 (Axk −Byk) ||2)

≤ lim
k→∞

(
γ2k
β
||A||2||Axk −Byk||2)

= 0.

This implies that limk→∞Dg(xk, ak) = 0 and hence by Lemma 2.3, we get

(3.75) lim
k→∞

||xk − ak|| = 0.

Similarly, we have that

(3.76) lim
k→∞

||yk − bk|| = 0.

Hence, we obtain that aki ⇀ x and bki ⇀ y. Therefore, by Remark 3.9, we get

x ∈ DV I(C, T ) and y ∈ DV I(D,S). Moreover, since A and B are bounded linear

maps, we obtain that Axki → Ax and Byki → By as i → ∞ and this with (3.71)

imply that Ax = By. Therefore, we have (x, y) ∈ Ω. Thus, from (3.64) and (3.72),

we obtain that

lim sup
k→∞

⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xk, yk)− (x∗, y∗)⟩

= lim
i→∞

⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xki , yki)− (x∗, y∗)⟩

= ⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (x, y)− (x∗, y∗)⟩ ≤ 0.(3.77)

Let vk = Πg
C

∩
Hk

(ak) and uk = Πf
D

∩
Rk

(bk). Then, from the convergence of Ωk,

(3.65),(3.80), (3.67) and (3.68) we get

(3.78)
lim
k→∞

[
Dg(x

∗, ak) +Df (y
∗, bk)

]
= lim

k→∞

[
Dg(x

∗, vk) +Df (y
∗, uk)

]
= lim

k→∞

[
Dg(x

∗, xk+1) +Df (y
∗, yk+1)

]
.

Moreover, using (2.6) and (3.78) we get

lim
k→∞

[
Dg(vk, ak) +Dg(uk, bk)

]
= lim

k→∞

[
Dg(x

∗, ak)−Dg(x
∗, vk) +Df (y

∗, bk)−Df (y
∗, uk)

]
= lim

k→∞

[
Dg(x

∗, ak) +Df (y
∗, bk)− (Dg(x

∗, xk+1) +Dg(y
∗, yk+1)

]
+ lim

k→∞

[
Dg(x

∗, xk+1) +Dg(y
∗, yk+1)− (Dg(x

∗, vk) +Dg(y
∗, uk))

]
→ 0 as k → ∞,(3.79)
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and hence Dg(vk, ak) → 0 and Dg(uk, bk) → 0 as k → ∞. This, along with Lemma

2.3, provides that vk − ak → 0 and uk − bk → 0 as k → ∞. Thus, from this and

Step 4 of Algorithm 3.2, we obtain

xk+1 − xk = αk(u− xk) + (1− αk)(vk − xk) → 0, as k → ∞.(3.80)

Similarly,

yk+1 − yk → 0, as k → ∞.(3.81)

Now, from (3.70), (3.77), (3.80), (3.81) and Lemma 2.15, we obtain that Ωk → 0 as

k → ∞, and hence Dg(x
∗, xk) → 0 and Df (y

∗, yk) → 0 as k → ∞. Therefore, by

Lemma 2.3, we obtain that xk → x∗ and yk → y∗ as k → ∞.

Case II. Suppose there exists a subsequence {Ωki} of {Ωk} with Ωki < Ωki+1 for

all i ≥ 0. Then, by Lemma 2.14, there exists a non-decreasing sequence {ml} of

positive integers such that liml→∞ml = ∞ and

(3.82) Ωml
≤ Ωml+1 and Ωk ≤ Ωml+1,

for all positive integers l. We have from (3.70) that

(3.83)

ρ

2
||Axml

−Byml
||2 ≤ (1− αl)Ωml

− Ωml+1

+ αml

[
⟨(∇g(u)−∇g(x∗)), xml+1 − x∗⟩

+ ⟨(∇f(v)−∇f(y∗)), yml+1 − y∗⟩
]
.

Taking the limit as l → ∞ on both sides of (3.83) and taking (3.82) and the property

of αml
into account, we obtain that lim

l→∞
∥Axml

− Byml
∥ = 0. Moreover, following

similar methods used in Case I, we obtain

lim sup
l→∞

⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xml
, yml

)− (x∗, y∗)⟩ ≤ 0.(3.84)

Thus, the inequalities in (3.70) and (3.82) imply that

(3.85)

αml
Ωml

≤ Ωml
− Ωml+1

+ αml
⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xml

, yml
)− (x∗, y∗)⟩

+ αml
[⟨(∇g(u)−∇g(x∗)), xml+1 − xml

⟩
+ ⟨∇f(v)−∇f(y∗), yml+1 − yml

⟩] .

which yields

Ωml
≤ ⟨(∇g(u),∇f(v))− (∇g(x∗),∇f(y∗)), (xml

, yml
)− (x∗, y∗)⟩

+ [⟨(∇g(u)−∇g(x∗)), xml+1 − xml
⟩+ ⟨∇f(v)−∇f(y∗), yml+1 − yml

⟩] .(3.86)

Taking the limsup as l → ∞ on both sides of (3.86) and using (3.84), (3.80) and

(3.81), we obtain that liml→∞Ωml
= 0. This together with (3.69) imply that

limk→∞Ωml+1 = 0, which implies by (3.82) that limk→∞Ωk = 0. As a consequence,

we get limk→∞Df (x
∗, xk) = limk→∞Dg(y

∗, yk) = 0 and hence, we obtain by Lemma

2.3 that limk→∞ xk = x∗ and limk→∞ yk = y∗. Therefore, we conclude from Cases I
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and II that the sequence {(xk, yk)} generated by Algorithm 3.2 converges strongly

to (x∗, y∗), where (x∗, y∗) = P h
Ω(x̂, ŷ), and hence the proof is complete. □

We notice that if the mappings T and S in Theorem 3.11 and Theorem 3.14 are

assumed to be Lipschitz continuous and quasimonotone, then we get the following

corollaries.

Corollary 3.15. Assume that (H1) and (H3)− (H5) hold. In addition, let ∇f and

∇g be weakly sequentially continuous mappings. If T : E1 → E∗
1 and S : E2 → E∗

2 are

quasimonotone mappings that are Lipschitz continuous on C and D, respectively,

satisfying (3.1), then the sequence {(xk, yk)} generated by Algorithm 3.1 converges

weakly to (x∗, y∗) ∈ Ω∗, where Ω∗ = {(x∗, y∗) ∈ V I(C, T )× V I(D,S) : Ax∗ = By∗} .

Corollary 3.16. Assume that (H1) and (H3) − (H6) hold. Let T : E1 → E∗
1 and

S : E2 → E∗
2 be quasimonotone mappings that are Lipschitz continuous on C and

D, respectively, satisfying (3.1). Let T (x) ̸= 0, for all x ∈ C and S(y) ̸= 0, for

all y ∈ D. The sequence {(xk, yk)} generated by Algorithm 3.2 converges strongly to

(x∗, y∗), where (x∗, y∗) = Πh
Ω(u, v).

If we assume that E1 and E2 are smooth and 2-uniformly convex Banach spaces

and take g(·) = 1
2 || · ||

2 and f(·) = 1
2 || · ||

2, then ∇g = JE1 ,∇f = JE2 , (∇g)−1 = J−1
E∗
1

and (∇f)−1 = J−1
E∗
2
. Thus, we get the following corollaries.

Corollary 3.17. Let C and D be nonempty, closed and convex subsets of the smooth

and 2-uniformly convex Banach spaces E1 and E2, and assume that conditions

(H2) − (H4) are satisfied. In addition, let ∇g = JE1 ,∇f = JE2 , (∇g)−1 = J−1
E∗
1

and (∇f)−1 = J−1
E∗
2
be weakly sequentially continuous mappings. Then, the sequence

{(xk, yk)} generated by Algorithm 3.1 converges weakly to (x∗, y∗) ∈ Ω∗, where

Ω∗ = {(x∗, y∗) ∈ V I(C, T )× V I(D,S) : Ax∗ = By∗} .

Corollary 3.18. Let C and D be nonempty, closed and convex subsets of the smooth

and 2-uniformly convex Banach spaces E1 and E2, and assume that the conditions

(H2) − (H4) and (H6) are satisfied. Let T (x) ̸= 0, for all x ∈ C and S(y) ̸= 0,

for all y ∈ D. Then, the sequence {(xk, yk)} generated by Algorithm 3.2 with ∇g =

JE1 ,∇f = JE2 , (∇g)−1 = J−1
E∗
1

and (∇f)−1 = J−1
E∗
2

, converges strongly to (x∗, y∗),

where (x∗, y∗) = Πh
Ω(u, v).

If we assume, in Theorem 3.11 and Theorem 3.14 that E1, E2 and E3 are real

Hilbert spaces, g(·) = 1
2 ||·||

2 and f(·) = 1
2 ||·||

2, then ∇g = IE1 ,∇f = IE2 , (∇g)−1 =

I−1
E∗
1
and (∇f)−1 = I−1

E∗
2
and hence we obtain the following corollaries.

Corollary 3.19. Let E1,E2 and E3 be real Hilbert spaces and let C and D be

nonempty, closed and convex subsets of E1 and E2, respectively. Assume that condi-

tions (H2)−(H4) are satisfied. Then the sequence {(xk, yk)} generated by Algorithm

3.1 with ∇g = IE1 ,∇f = IE2 , (∇g)−1 = I−1
E∗
1

and (∇f)−1 = I−1
E∗
2
, converges weakly

to (x∗, y∗) ∈ Ω∗, where Ω∗ = {(x∗, y∗) ∈ V I(C, T )× V I(D,S) : Ax∗ = By∗} .
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Corollary 3.20. Let E1,E2 and E3 be real Hilbert spaces and let C and D be

nonempty, closed and convex subsets of E1 and E2, respectively. Assume that con-

ditions (H2) − (H4) and (H6) are satisfied. Let T (x) ̸= 0, for all x ∈ C and

S(y) ̸= 0, for all y ∈ D. Then the sequence {(xk, yk)} generated by Algorithm 3.2

with ∇g = IE1 ,∇f = IE2 , (∇g)−1 = I−1
E∗
1

and (∇f)−1 = I−1
E∗
2
, converges strongly to

(x∗, y∗) = PΩ(u, v).

4. Applications

In this section, we apply our main result to solve some specific problems.

4.1. Split Variational Inequality Problems (SVIP). Let C andD be nonempty,

closed and convex subsets of real Banach spaces E1 and E2, respectively. Let

T : E1 → E∗
1 and S : E2 → E∗

2 be two non-linear mappings. Let A : E1 → E2

be a bounded linear mapping with A∗ as its adjoint. The SVIP (see, e.g., Censor

et al. [3]) is to:

find x∗ ∈ V I(C, T ), y∗ ∈ V I(D,S) such that y∗ = Ax∗,(4.1)

where as SDVIP is to:

find x∗ ∈ DV I(C, T ), y∗ ∈ DV I(D,S) such that y∗ = Ax∗.(4.2)

Censor et al. [3] introduced the SVIP in 2012. It is widely known to have a number

applications such as in phase retrieval, image and signal processing, data compres-

sion, among others (see, for example [27] and the references therein). Denote Γ =

{(x∗, y∗) ∈ DV I(C, T )×DV I(D,S) : Ax∗ = y∗} and Γ∗ = {(x∗, y∗) ∈ V I(C, T )×
V I(D,S) : Ax∗ = y∗}. Then, we have the following corollaries.

Corollary 4.1. Assume that conditions (H1) − (H3) and (H5), with E2 = E3 and

B = IE2 hold. Let ∇f and ∇g be weakly sequentially continuous mappings. If

Γ ̸= Ø, then the sequence {(xk, yk)} generated by Algorithm 3.1 converges weakly to

(x∗, y∗) ∈ Γ∗.

Corollary 4.2. Assume that conditions (H1)− (H3) and (H5)− (H6) with E2 = E3

and B = IE2 hold. If Γ ̸= Ø, then the sequence {(xk, yk)} generated by Algorithm

3.2, with B = IE2, converges strongly to (x∗, y∗), where (x∗, y∗) = Πh
Γ(u, v).

4.2. Common Solutions of Variational Inequality Problems. Let C and D

be nonempty, closed and convex subsets of a real Banach space E with it dual

E∗. Let T, S : E → E∗ be two nonlinear mappings. The Common Solutions of

Variational Inequality Problem is to:

find a point x∗ ∈ C such that x∗ ∈ V I(C, T ) ∩ V I(C, S),(4.3)

where as the Common Solutions of Dual Variational Inequality Problem is to:

find a point x∗ ∈ C such that x∗ ∈ DV I(C, T ) ∩DV I(C,S),(4.4)

Denote Ψ = {(x∗, y∗) ∈ DV I(C, T )×DV I(D,S) : x∗ = y∗} and Ψ∗ = {(x∗, y∗) ∈
V I(C, T )× V I(D,S) : x∗ = y∗}. Now, we have the following corollaries.
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Corollary 4.3. Assume that conditions (H1) − (H3) and (H5), with E1 = E2 =

E3 = E hold. Let ∇f and ∇g be weakly sequentially continuous mappings. If

Ψ ̸= Ø, then the sequence {(xk, yk)} generated by Algorithm 3.1, with A = B = IE,

converges weakly to (x∗, x∗) ∈ Ψ∗.

Corollary 4.4. Assume that conditions (H1) − (H3) and (H5) − (H6) with E1 =

E2 = E3 = E hold. If Ψ ̸= Ø, then the sequence {(xk, yk)} generated by Algorithm

3.2, with A = B = IE, converges strongly to (x∗, x∗), where (x∗, x∗) = Πh
Ψ(u, v).

5. Numerical example

In this section, we give a numerical example with illustrations to demonstrate the

applicability of the algorithms.

Example 5.1. Let E = E1 = E2 = E3 = R2 with the usual norm. Let

C =
{
(x, y) ∈ E : (x− 2)2 + y2 ≤ 1

}
and D =

{
(x, y) ∈ E : x2 + (y − 2)2 ≤ 1

}
.

Clearly, C and D are closed and convex subsets of E. Define the mappings T, S:

E → E by T (x, y) =
(

x2

1+x2 , 0
)

and S(x, y) =
(
0, y2

1+y2

)
. Clearly, the mappings

T and S are uniformly continuous on bounded subsets of C and D, respectively.

It remains to show that the mappings T and S are quasimonotone on E. Indeed,

suppose that for (x1, x2), (y1, y2) ∈ E, we have ⟨T (x1, x2), (y1, y2) − (x1, x2)⟩ > 0,

that is, ⟨(
x2
1

1+x2
1
, 0
)
, (y1, y2)− (x1, x2)

⟩
=

x2
1

1+x2
1
(y1 − x1) > 0.

Then, this implies that y1 − x1 > 0, and hence

⟨T (y1, y2), (y1, y2)−(x1, x2)⟩ =
⟨(

y21
1+y21

, 0
)
, (y1, y2)−(x1, x2)

⟩
=

y21
1+y21

(y1−x1) ≥ 0.

This yields that T is quasimonotone. However, if we take (x1, x2) = (0, 0) and

(y1, y2) =
(−1

2 , 0
)
, then ⟨T (x1, x2), (y1, y2)− (x1, x2)⟩ = 0, but ⟨T (y1, y2), (y1, y2)−

(x1, x2)⟩ < 0, which implies that T is not pseudomonotone. Similarly, one can

show that S is uniformly continuous on bounded subsets of D and quasimono-

tone. Moreover, DV I(C, T ) = V I(C, T ) = {(1, 0)} and DV I(D,S) = V I(D,S) =

{(0, 1)}. Let A: E → E and B: E → E be defined by A(x1, x2) =
(
0, x2

2

)
and

B(x1, x2) = (3x1, 0). Clearly, A and B are bounded linear mappings with adjoints

A∗(x1, x2) =
(
0, x2

2

)
and B∗(x1, x2) = (3x1, 0), respectively. In addition, we have

A (1, 0) = (0, 0) = B(0, 1). Therefore, we have that

(x∗, y∗) =
(
(1, 0), (0, 1)

)
∈ Ω = {(x, y) ∈ V I(C, T )× V I(D,S) : Ax = By}.

Define g: E → (−∞,+∞] and f : E → (−∞,+∞] by g(x) = 1
2∥x∥

2 and f(y) =
1
2∥y∥

2. Then, ∇g(x) = (∇g)−1x = IEx = x and ∇f(y) = (∇f)−1y = IEy = y. Take

αn = 1
n+1 , σ = 0.9, βn = 0.01+ 1

n+1 . Then the conditions (H1)− (H6) are satisfied.

We have conducted the numerical experiments to demonstrate that the error term

sequence En = {||(xn, yn)− (x∗, y∗)||}, n ≥ 1, of Algorithm 3.1 and 3.2 converges

to zero for different parameters.

In Figure 1(A) and Figure 1(B), the convergence of the error term sequence

En = {||(xn, yn)− (x∗, y∗)||} with the aforementioned parameters is indicated for
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Figure 1. Convergence rates of Alg. 3.1 and Alg. 3.2 for different

values of γ.

various values of γ and initial value (x0, y0) = ((2, 0), (0, 2)) for Algorithm 3.1 and

3.2, respectively.

Figure 2. Convergence rates of Alg. 3.1 and Alg. 3.2 for different

initial points.

It is clear that Figure 2(A) and Figure 2(B) illustrate how En = {||(xn, yn)
−(x∗, y∗)||} converges for the inertial parameter γ = 0.9 and different initial values

(x0, y0) = ((2, 0), (0, 2)) , (x0, y0) = ((3, 0), (0, 3)) , (x0, y0) = ((10, 0), (0, 10)) and

(x0, y0) = ((20, 0), (0, 20)) for Algorithms 3.1 and 3.2, respectively.
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Remark 5.2. The numerical experiment’s results, which can be seen in Figure 1

and Figure 2, demonstrate that En = ∥ (xn, yn) − (x∗, y∗)∥ converges strongly to

zero; that is, for both algorithms, the sequence {(xn, yn)} converges strongly to the

point (x∗, y∗) =
(
(1, 0), (0, 1)

)
of Ω.

We can also observe from Figure 1 and Figure 2 that the rate of convergence for

both algorithms eventually becomes the same regardless of the beginning locations

we choose.

6. Conclusions

In this paper, we proposed and studied an iterative method for solving split

equality variational inequality problems in reflexive real Banach spaces. Weak and

strong convergence theorems are established for Algorithm 3.1 and Algorithm 3.2,

respectively, under the assumption that the underlying mappings are quasimono-

tone and uniformly continuous. As a consequence, we obtain weak convergence of

Algorithm 3.1 to the solution of the variational inequality problems involving uni-

formly continuous quasimonotone mappings in reflexive real Banach spaces. Our

findings provide positive answers to the questions posed and expand on the existing

literature. Our main result has been supplemented with specific applications. In

addition, a numerical example has been provided to demonstrate the effectiveness

of our method.

This paper’s main result generalizes a lot of results found in the literature because

it deals with a more general split equality problem in the setting of Banach spaces,

a more general than Hilbert spaces. Specifically, it extends the works in [32] from a

variational inequality problem to a more general split equality variational inequality

problem and from weak convergence to strong convergence results.
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