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3, 4, 5, 6, 8]. In this paper, we deal with the well-known dot product type and inner

product type learning mappings, which are different in structure from the above,

and discuss the mathematical properties related to the preservation of the state

characteristics of the model function in the learning process. Dot product learning

is a popular index for measuring similarity, and while there is little theoretical

research or results from a mathematical approach to self-organizing maps, which

uses dot product learning, it has long been used occasionally in applications.

In this paper, we deal with a self-organizing map with an inner product learning

mapping, and assume a one-dimensional node array structure similar to the type

introduced in T. Kohonen [7]. This model is characterized by four objects: nodes,

values of nodes, inputs, and learning process, as follows:(
{1, 2, . . . , N}, V, {xt}∞t=0, {mt(·)}∞t=0

)
.

(i) It is assumed that the model has nodes arranged according to a certain rule.

Let I denote the set of all nodes, which is called the node set. In this paper,

we suppose that the model consists of nodes aligned in a one-dimensional

sequence and assume that I is a finite totally ordered set metrized by the

following metric d, that is,

I = {1, 2, . . . , N} ⊂ N,
1 < 2 < · · · < N,

d(i, j) = |i− j|, i, j ∈ I.

(ii) Each node has a value and it is updated by learning. V is the space of values

of nodes. Suppose V is a subset of a real inner product space (H, ⟨·, ·⟩). A

mapping m : I → V transforming each node i to its value m(i) is called a

model function.

(iii) X is the input set. LetX be a subset of V . Consider a sequence {xt}∞t=0 ⊂ X

of input values.

(iv) The learning process is as follows. If an input is given, then each node

learns the input value and updates its current value to a new value. Suppose

an initial model function m0 and a sequence {xt}∞t=0 ⊂ X of input values

are given. Then the sequence {mt(·)}∞t=0 of model functions are generated

sequentially according to the following.

(a) Range of nodes whose values should be updated by learning: for each

node i ∈ I,

N1(i) =
{
j ∈ I

∣∣ |j − i| ≤ 1
}
.(1.1)

(b) Learning-rate factor: α > 0.

(c) Learning process: for each mt and xt, let

Mt = argmax
j∈I

⟨mt(j), xt⟩
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and define the sequence {mt(·)}∞t=0 as follows.

mt+1(i) =


mt(i) + αxt

∥mt(i) + αxt∥
, if i ∈ ∪

i∗∈Mt

N1(i
∗) and mt(i) + αxt ̸= 0,

mt(i), otherwise.

(1.2)

It is also common to use ∪i∗∈Mt N1(i
∗) or N1(minMt) instead of {i ∈

∪i∗∈Mt N1(i
∗) | mt(i)+αxt ̸= 0} as the set of nodes to be updated by learn-

ing. Here, as the number of update learning iterations increases, Mt becomes

a singleton set with a high probability, so in the following discussion, there

is no essential difference between ∪i∗∈Mt N1(i
∗) and N1(minMt). Further-

more, as learning progresses, except when the number of nodes is small, it

becomes extremely unlikely that mt(i)+αxt = 0 for some i ∈ ∪i∗∈Mt N1(i
∗)

will hold. In this sense, we will use equation (1.2) in this paper.

It has been studied that the self-organizing map with a linear combination type

learning mapping, that is, mt+1(i) = (1− αmt,xt(i))mt(i) + αmt,xt(i)xt for the rate

αmt,xt(i) ∈ [0, 1], has some properties regarding the state preservation of model

functions under learning processes. For example, the one-dimensional input model

with a linear combination mapping has several characteristics, such as monotonic-

ity being preserved before and after the model function is updated. A property

like monotonicity is called an absorbing state or a closed class of states in a self-

organizing map model in the sense that once a model function is in this state, it

does not become any other state for any input. In addition, a state class in which

the state is preserved for all nodes except for a few nodes before and after the model

function is updated is called nearly absorbing. Furthermore, it has been shown that

in some cases, nearly absorbing state classes exist; see, for example, [4]. Generally,

when applying this type of algorithm to real data, problems arise during the learn-

ing update, such as whether the update is performed appropriately and whether

the number of updates is sufficient. The above state characteristics help with the

evaluation and judgment of such problems.

Numerical example 1. As an example of numerical calculation of the model

in Section 1, consider a dot product self-organizing map with 150 nodes and 3-

dimensional inputs,
(
{1, 2, . . . , 150}, V ⊂ R3, {xk}∞k=0, {mk(·)}∞k=0

)
. Initial node-

values m0(i), i = 1, 2, . . . , 150, are generated by the uniform distribution over

{(x, y, z) | x2+y2+z2 = 1} ⊂ R3. Inputs are generated by the uniform distribution

over [−1.05, 1.05]3 ⊂ R3. Assume Learning process (iv) in Section 1, where the dot

product 〈(
a1
a2
a3

)
,

(
b1
b2
b3

)〉
=

3∑
i=1

aibi,

(
a1
a2
a3

)
,

(
b1
b2
b3

)
∈ R3

is used as the inner product. In numerical calculation by computer, Figure 1 rep-

resents nodes and their values in each iteration steps. The position of every node

means its value. It is observed that they are sorted by learning.
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Figure 1. Initial values (left) and values after 5000 learning itera-

tions (right) with α = 0.8．

□

2. Local behavior and state preservation of updated model functions

In this section, in the model with inner product learning mapping, we will focus

on the local behavior of the model function before and after learning. The following

theorem describes its absorption properties and state preservation.

Theorem 2.1. Suppose a self-organizing map model(
{1, 2, . . . , N}, V, {xt}∞t=0, {mt(·)}∞t=0

)
with an inner product learning mapping defined by (i)-(iv) in Section 1. Suppose

that for the model function m after several updates, input x and three consecutive

nodes j − 1, j, j +1, argmaxk∈I⟨m(k), x⟩ is a singleton set, and the following holds.

argmax
k∈I

⟨m(k), x⟩ = {j},(2.1)

∥m(j − 1)∥ = ∥m(j)∥ = ∥m(j + 1)∥ = 1,(2.2)

m(j ± 1) + αx ̸= 0.(2.3)

Let m′ be the updated model function of m when learning input x. If the condition

for inner product

(2.4) ⟨m(j − 1)−m(j),m(j + 1)−m(j)⟩ < 0

holds for m and nodes j − 1, j and j + 1, then the inner product condition for m′

and nodes j − 1, j and j + 1 also holds, that is,

(2.5) ⟨m′(j − 1)−m′(j),m′(j + 1)−m′(j)⟩ < 0.
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Note that the statement of the above theorem still holds even if (2.4) and (2.5)

are replaced with the following conditions

(2.6) ⟨m(j − 1)−m(j),m(j + 1)−m(j)⟩ ≤ 0
and

(2.7) ⟨m′(j − 1)−m′(j),m′(j + 1)−m′(j)⟩ ≤ 0,

respectively, and this also holds for Theorem 2.2 and 2.3, which will be described

below. Note further that in many situations, as the number of learning updates in-

creases, the frequency and probability that argmaxk∈I⟨m(k), x⟩ becomes a singleton

and all node values satisfy condition (2.2) gradually increase, and as the updates

proceed further, these conditions are satisfied.

Proof. Using (2.2), we have

∥m(j) + αx∥2 − ∥m(j − 1) + αx∥2

= ∥m(j)∥2 + 2α⟨m(j), x⟩+ α2∥x∥2 − ∥m(j − 1)∥2 − 2α⟨m(j − 1), x⟩ − α2∥x∥2

= 2α
(
⟨m(j), x⟩ − ⟨m(j − 1), x⟩

)
.

Assumption (2.1) implies ⟨m(j), x⟩ > ⟨m(j − 1), x⟩. Therefore, we obtain

(2.8) ∥m(j) + αx∥ > ∥m(j − 1) + αx∥.

It follows from (2.3) and (2.8) that m(i) + αx ̸= 0 for i = j, j ± 1. Therefore, by

(iv) in Section 1 and equation (2.1) the following equation holds.

⟨m′(j − 1)−m′(j),m′(j + 1)−m′(j)⟩

=

〈
m(j − 1) + αx

∥m(j − 1) + αx∥
− m(j) + αx

∥m(j) + αx∥
,

m(j + 1) + αx

∥m(j + 1) + αx∥
− m(j) + αx

∥m(j) + αx∥

〉
= A+B,

where

A =
1

∥m(j − 1) + αx∥∥m(j + 1) + αx∥
⟨m(j − 1)−m(j),m(j + 1)−m(j)⟩,

B =
1

∥m(j − 1) + αx∥

(
1

∥m(j + 1) + αx∥
− 1

∥m(j) + αx∥

)
× ⟨m(j − 1)−m(j),m(j) + αx⟩

+
1

∥m(j + 1) + αx∥

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)
× ⟨m(j + 1)−m(j),m(j) + αx⟩

+

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)(
1

∥m(j + 1) + αx∥
− 1

∥m(j) + αx∥

)
× ∥m(j) + αx∥2.
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Inequality (2.4) implies A < 0．Furthermore, term B can be transformed into

B =
1

2∥m(j − 1) + αx∥

(
1

∥m(j + 1) + αx∥
− 1

∥m(j) + αx∥

)
×
(
∥m(j − 1) + αx∥2 − ∥m(j − 1)−m(j)∥2 − ∥m(j) + αx∥2

)
+

1

2∥m(j + 1) + αx∥

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)
×
(
∥m(j + 1) + αx∥2 − ∥m(j + 1)−m(j)∥2 − ∥m(j) + αx∥2

)
+

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)(
1

∥m(j + 1) + αx∥
− 1

∥m(j) + αx∥

)
× ∥m(j) + αx∥2

= − 1

2∥m(j − 1) + αx∥

(
1

∥m(j + 1) + αx∥
− 1

∥m(j) + αx∥

)
× ∥m(j − 1)−m(j)∥2

− 1

2∥m(j + 1) + αx∥

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)
× ∥m(j + 1)−m(j)∥2

− 1

2∥m(j − 1) + αx∥∥m(j) + αx∥∥m(j + 1) + αx∥
×
(
∥m(j) + αx∥ − ∥m(j − 1) + αx∥

)(
∥m(j) + αx∥ − ∥m(j + 1) + αx∥

)
×
(
∥m(j − 1) + αx∥+ ∥m(j + 1) + αx∥

)
.

In the same way as inequality (2.8) using (2.1) and (2.2),

∥m(j) + αx∥ > ∥m(j + 1) + αx∥

can be shown. Using this inequality and (2.8), we obtain B < 0. Thus, inequality

(2.5) holds for the updated model function m′. □

The following theorem is a result for the case where argmaxk∈I⟨m(k), x⟩ = {j−1}
occurs instead of (2.1) in Theorem 2.1.

Theorem 2.2. Suppose a self-organizing map model(
{1, 2, . . . , N}, V, {xk}∞k=0, {mk(·)}∞k=0

)
with an inner product learning mapping defined by (i)-(iv) in Section 1. Suppose

that for the model function m after several updates, input x and three consecutive

nodes j − 1, j, j +1, argmaxk∈I⟨m(k), x⟩ is a singleton set, and the following holds.

argmax
k∈I

⟨m(k), x⟩ = {j − 1},(2.9)

∥m(j − 1)∥ = ∥m(j)∥ = ∥m(j + 1)∥ = 1,(2.10)

∥m(j) + αx∥ ≥ 1,(2.11)

⟨m(j − 1) + αx,m(j + 1)⟩ ≥ 0.(2.12)
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Let m′ be the updated model function of m when learning input x. Then, the inner

product condition for model function m and nodes j − 1, j and j + 1 is preserved

for model function m′ and nodes j − 1, j and j + 1, that is, if

(2.13) ⟨m(j − 1)−m(j),m(j + 1)−m(j)⟩ < 0,
then

(2.14) ⟨m′(j − 1)−m′(j),m′(j + 1)−m′(j)⟩ < 0.

Proof. By (2.9), ⟨m(j), x⟩ < ⟨m(j − 1), x⟩ holds and it follows from (2.10) that

∥m(j) + αx∥2 − ∥m(j − 1) + αx∥2 = 2α
(
⟨m(j), x⟩ − ⟨m(j − 1), x⟩

)
< 0.

Therefore, we have

(2.15) ∥m(j) + αx∥ < ∥m(j − 1) + αx∥.

By (2.11) and (2.15), m(j)+αx ̸= 0 and m(j−1)+αx ̸= 0 hold. Using assumptions

(2.9), (2.10), and (2.13), the following equation holds.〈
m′(j − 1)−m′(j), m′(j + 1)−m′(j)

〉
=

〈
m(j − 1) + αx

∥m(j − 1) + αx∥
− m(j) + αx

∥m(j) + αx∥
, m(j + 1)− m(j) + αx

∥m(j) + αx∥

〉

=

〈
m(j − 1)−m(j)

∥m(j − 1) + αx∥
,
m(j + 1)−m(j)

∥m(j) + αx∥

〉
+

〈
m(j − 1)−m(j)

∥m(j − 1) + αx∥
, m(j + 1)− m(j + 1) + αx

∥m(j) + αx∥

〉
+

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)
×
〈
m(j) + αx, m(j + 1)− m(j) + αx

∥m(j) + αx∥

〉
.

We set

C =

〈
m(j − 1)−m(j)

∥m(j − 1) + αx∥
,
m(j + 1)−m(j)

∥m(j) + αx∥

〉
,

then the previous equation can be transformed into the following equation using

assumption (2.10).〈
m′(j − 1)−m′(j), m′(j + 1)−m′(j)

〉
= C +

1

∥m(j − 1) + αx∥

(
1− 1

∥m(j) + αx∥

)
⟨m(j − 1) + αx,m(j + 1)⟩

− 1

∥m(j) + αx∥

(
1− 1

∥m(j − 1) + αx∥

)
⟨m(j) + αx,m(j + 1)⟩

− 1

∥m(j − 1) + αx∥∥m(j) + αx∥
(
⟨m(j − 1) + αx, αx⟩ − ⟨m(j) + αx, αx⟩

)
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− 1

∥m(j) + αx∥

(
1

∥m(j − 1) + αx∥
− 1

∥m(j) + αx∥

)
∥m(j) + αx∥2

= C +D + E,

where

D =
1

∥m(j − 1) + αx∥

(
1− 1

∥m(j) + αx∥

)
×
(
⟨m(j − 1),m(j + 1)⟩+ α⟨x,m(j + 1)⟩

)
− 1

∥m(j) + αx∥

(
1− 1

∥m(j − 1) + αx∥

)
×
(
⟨m(j),m(j + 1)⟩+ α⟨x,m(j + 1)⟩

)
,

E =− ∥m(j − 1) + αx∥2 − ∥m(j) + αx∥2

2∥m(j − 1) + αx∥∥m(j) + αx∥
− ∥m(j) + αx∥

∥m(j − 1) + αx∥
+ 1.

Here, inequality (2.13) implies C < 0. Since E can be transformed into

E = −1

2

( √
∥m(j) + αx∥√

∥m(j − 1) + αx∥
−
√
∥m(j − 1) + αx∥√
∥m(j) + αx∥

)2

,

we obtain E < 0. Furthermore, using (2.10) and (2.13), we have

(2.16) ⟨m(j − 1),m(j + 1)⟩ < ⟨m(j),m(j + 1)⟩.

Using inequalities (2.11) and (2.15), we obtain

0 ≤ 1

∥m(j − 1) + αx∥

(
1− 1

∥m(j) + αx∥

)
(2.17)

<
1

∥m(j) + αx∥

(
1− 1

∥m(j − 1) + αx∥

)
.

Inequalities (2.12), (2.16), and (2.17) imply D ≤ 0. Thus, it can be shown that

inequality (2.14) holds. □

Now, in a similar way, we obtain the following theorem.

Theorem 2.3. Suppose a self-organizing map model(
{1, 2, . . . , N}, V, {xk}∞k=0, {mk(·)}∞k=0

)
with an inner product learning mapping defined by (i)-(iv) in Section 1. Suppose

that for the model function m after several updates, input x and three consecutive

nodes j − 1, j, j +1, argmaxk∈I⟨m(k), x⟩ is a singleton set, and the following holds.

argmax
k∈I

⟨m(k), x⟩ = {j + 1},(2.18)

∥m(j − 1)∥ = ∥m(j)∥ = ∥m(j + 1)∥ = 1,(2.19)

∥m(j) + αx∥ ≥ 1,(2.20)

⟨m(j − 1),m(j + 1) + αx⟩ ≥ 0.(2.21)
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Let m′ be the updated model function of m when learning input x. Then, the inner

product condition for m and nodes j − 1, j and j +1 is preserved for m′ and nodes

j − 1, j and j + 1, that is, if

(2.22) ⟨m(j − 1)−m(j),m(j + 1)−m(j)⟩ < 0,

then

(2.23) ⟨m′(j − 1)−m′(j),m′(j + 1)−m′(j)⟩ < 0.

Proof. By using the symmetry of the node array, this theorem can be shown in the

same way as Theorem 2.2. □

3. A nearly absorbing state class under inner product learning

By combining the results of Theorems 2.1, 2.2, and 2.3 as properties related to the

state preservation of the model function before and after learning, it can be shown

that under an inner product learning mapping, the state class of model functions

that satisfy inequality (2.22) has the nearly absorbing property on the entire node

array.

Theorem 3.1. Suppose a self-organizing map model(
{1, 2, . . . , N}, V, {xk}∞k=0, {mk(·)}∞k=0

)
with an inner product learning mapping defined by (i)-(iv) in Section 1. Assume

that

∥m(i)∥ = 1, i = 1, 2, . . . , N,(3.1)

⟨m(i),m(i+ 2)⟩ ≥ 0, i = 1, 2, . . . , N − 2(3.2)

for the model function m after several updates, and further assume that, for input

x, the set argmaxk∈I⟨m(k), x⟩ is singleton, and

⟨m(i), x⟩ ≥ 0, i = j∗ ± 1, j∗ ± 2(3.3)

for the element j∗ ∈ argmaxk∈I⟨m(k), x⟩. Let m′ be the updated model function of

m when learning input x. Then, the inner product condition is preserved for all i

where |i− j∗| ̸= 2, that is, if

(3.4) ⟨m(i− 1)−m(i),m(i+ 1)−m(i)⟩ < 0,

then

(3.5) ⟨m′(i− 1)−m′(i),m′(i+ 1)−m′(i)⟩ < 0.

Note that the statement of the above theorem holds even if the inequality signs

in inequalities (3.4) and (3.5) are replaced with “≤” and ”≤”, respectively.



120 MITSUHIRO HOSHINO

Proof. (i) When i = j∗, using assumptions (3.1) and (3.3), we have

∥m(j∗ ± 1) + αx∥2 = ∥m(j∗ ± 1)∥2 + 2α⟨m(j∗ ± 1), x⟩+ α2∥x∥2 ≥ 1

and m(j∗ ± 1) + αx ̸= 0. Since argmaxk∈I⟨m(k), x⟩ = {i}, the inner product

condition is preserved by Theorem 2.1.

(ii) When i = j∗ + 1, argmaxk∈I⟨m(k), x⟩ = {i− 1} holds. By assumptions (3.1)

and (3.3),

∥m(i) + αx∥2 = ∥m(j∗ + 1) + αx∥2

= ∥m(j∗ + 1)∥2 + 2α⟨m(j∗ + 1), x⟩+ α2∥x∥2 ≥ 1

holds, and we obtain ∥m(i) + αx∥ ≥ 1. Furthermore, by assumptions (3.2) and

(3.3), we obtain

⟨m(i− 1) + αx,m(i+ 1)⟩ = ⟨m(j∗) + αx,m(j∗ + 2)⟩
= ⟨m(j∗),m(j∗ + 2)⟩+ α⟨x,m(j∗ + 2)⟩ ≥ 0.

According to these relations and Theorem 2.2, the inner product condition (3.4) is

preserved.

(iii) When i = j∗− 1, argmaxk∈I⟨m(k), x⟩ = {i+1}, so in the same way as when

i = j∗ + 1,

∥m(i) + αx∥2 = ∥m(j∗ − 1)∥2 + 2α⟨m(j∗ − 1), x⟩+ α2∥x∥2 ≥ 1

holds from assumptions (3.1) and (3.3), so we obtain ∥m(i)+αx∥ ≥ 1. Furthermore,

by assumptions (3.2) and (3.3), we have

⟨m(i− 1),m(i+ 1) + αx⟩ = ⟨m(j∗ − 2),m(j∗)⟩+ α⟨m(j∗ − 2), x⟩ ≥ 0.

According to these relations and Theorem 2.3, the inner product condition (3.4) is

preserved.

(iv) When i = j∗ ± 3, j∗ ± 4, . . ., we have

m′(i− 1) = m(i− 1),

m′(i) = m(i),

m′(i+ 1) = m(i+ 1).

Therefore, the inner product condition (3.4) is preserved.

Thus, the theorem is proven from the above (i)-(iv). □

In the learning update, whether model function has come to satisfy the inner

product condition (3.4) will help us evaluate and diagnose whether updates are

being done properly and whether the number of updates is sufficient.
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