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In [7] it was studied the influence of errors on the convergence of orbits of non-

expansive mappings in metric spaces and it was obtained the following result (see

also Theorem 2.72 of [24]).

Theorem 1.1. Let A : X → X satisfy

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ X,

let F (A) be the set of all fixed points of A and let for each x ∈ X, the sequence

{Anx}∞n=1 converges in (X, ρ).

Assume that {xn}∞n=0 ⊂ X, {rn}∞n=0 ⊂ (0,∞) satisfies

∞∑
n=0

rn < ∞

and that

ρ(xn+1, Axn) ≤ rn, n = 0, 1, . . . .

Then the sequence {xn}∞n=1 converges to a fixed point of A in (X, ρ).

Theorem 1.1 found interesting applications and is an important ingredient in

superiorization and perturbation resilience of algorithms. See [6, 8, 15, 21] and

the references mentioned therein. The superiorization methodology works by tak-

ing an iterative algorithm, investigating its perturbation resilience, and then using

proactively such perturbations in order to ”force” the perturbed algorithm to do in

addition to its original task something useful.

Assume that S : X → X and T : X → X. If x ∈ X and S(x) = T (x), then the

point x is called a coincidence point, while the point y = T (x) is called a point of

coincidence.

We associate with the coincidence point problem sequences

{xn}∞n=0, {yn}∞n=0 ⊂ X

satisfying

T (xn) = yn = S(xn+1)

for each integer n ≥ 0. It is known that under certain assumptions the sequence

{yn}∞n=0 converges to a point of coincidence. In the present paper we show that

this property is stable under the presence of summable computational errors. It

should be mentioned that the study of the equation above and the convergence of

the sequence {yn}∞n=0 is now a growing area of research [1, 4, 5, 16, 17, 18]. Of

course, our results are theoretical but they can find applications in superiorization

and perturbation resilience of algorithms. See the discussion above.

2. The first result

Assume that (X, ρ) is a complete metric space, S, T : X → X,

(2.1) ρ(T (x), T (y)) ≤ ρ(S(x), S(y)) for each x, y ∈ X,
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S(X) is closed and that

(2.2) T (X) ⊂ S(X).

We assume that the following assumption holds.

(A) For each {xn}∞n=0, {yn}∞n=0 ⊂ X satisfying

T (xn) = yn = S(xn+1)

for each integer n ≥ 0, there exists limn→∞ yn.

Theorem 2.1. Assume that {xn}∞n=0, {yn}∞n=0 ⊂ X, {ri}∞i=0 ⊂ (0,∞),

∞∑
i=0

ri < ∞

and that for each integer i ≥ 0,

(2.3) ρ(T (xi), yi) ≤ ri, ρ(S(xi+1), yi) ≤ ri.

Then there exist

y∗ = lim
i→∞

yi

and x∗ ∈ X such that S(x∗) = y∗ = T (x∗).

Proof. Let ϵ ∈ (0, 1). Clearly, there exists a natural number n0 such that

(2.4)
∞∑

i=n0

ri < ϵ/4.

There exist {x̃n}∞n=0, {ỹn}∞n=0 ⊂ X such that

x̃n0 = xn0

and that for each integer i ≥ n0,

(2.5) ỹi = T (x̃i), S(x̃i+1) = ỹi.

Assumption (A) implies that there exists limi→∞ ỹi. Let i ≥ n0 be an integer. By

(2.1), (2.3) and (2.5),

ρ(ỹi+1, yi+1) ≤ S(yi+1, T (xi+1)) + S(T (xi+1), ỹi+1)

≤ ri+1 + ρ(T (xi+1), T (x̃i+1))

≤ ri+1 + ρ(S(xi+1), S(x̃i+1))

≤ ri+1 + ρ(S(xi+1), yi) + ρ(yi, ỹi)

≤ ri + ri+1 + ρ(yi, ỹi)

and

(2.6) ρ(ỹi+1, yi+1) ≤ ρ(yi, ỹi) + ri.

In view of (2.5),

(2.7) ρ(ỹn0 , yn0) = ρ(T (xn0), yn0) ≤ rn0 .
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By (2.4), (2.6) and (2.7),
∞∑

i=n0

ρ(ỹi, yi) < 2

∞∑
i=n0

ri < ϵ/2.

Since the sequence {ỹi}∞i=n0
converges we conclude that for each pair of sufficiently

large natural numbers i, j,

ρ(yi, yj) < ϵ.

Since ϵ is any element from (0, 1) {yi}∞i=0 is a Cauchy sequence and there exists

(2.8) y∗ = lim
n→∞

yn.

By (2.3) and (2.8),

y∗ = lim
n→∞

yn = lim
n→∞

S(xn).

There exists x∗ ∈ X such that

(2.9) S(x∗) = y∗.

In view of (2.1), for each integer n ≥ 0,

ρ(T (x∗), T (xn)) ≤ ρ(S(xn), S(x∗)) ≤ ρ(S(xn), yn) + ρ(yn, y∗) → 0

as n → ∞. Thus

T (x∗) = lim
n→∞

T (xn) = lim
n→∞

yn = y∗

as n → ∞. Theorem 2.1 is proved. □

It is not difficult to see that assumption (A) holds if K = X, S : X → X,

c ∈ (0, 1), Q : X → X satisfies ρ(Q(x), Q(y)) ≤ cρ(x, y), x, y ∈ X and T = Q ◦ S.

3. The second result

Assume that (X, ρ) is a complete metric space, K is a nonempty closed subset of

X, S, T : K → X,

(3.1) ρ(T (x), T (y)) ≤ ρ(S(x), S(y)) for each x, y ∈ K,

(3.2) K ∩ T (K) ⊂ S(K).

Theorem 3.1. Assume that the following assumption holds.

(B) for each {xn}∞n=0, {yn}∞n=0 ⊂ K satisfying for each integer i ≥ 0,

T (xi) = yi = S(xi+1)

there exists limi→∞ yi.

Assume that r ∈ (0, 1), {xn}∞n=0, {yn}∞n=0 ⊂ K, {ri}∞i=0 ⊂ (0,∞),

(3.3)
∞∑
i=0

ri < ∞

and that for each integer i ≥ 0,

(3.4) ρ(T (xi), yi) ≤ ri, ρ(S(xi+1), yi) ≤ ri
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and that for all sufficiently large natural numbers i,

(3.5) B(yi, r) ⊂ K.

Then there exists

y∗ = lim
i→∞

yi

and if x∗ ∈ X satisfies S(x∗) = y∗ (it exists if S(K) is closed) then T (x∗) = y∗.

Proof. Let ϵ ∈ (0, r). By (3.3), there exists a natural number n0 such that

(3.6)

∞∑
i=n0

ri < ϵ/8,

(3.7) B(yi, r) ⊂ K for all integers i ≥ n0.

Set

(3.8) x̃n0 = xn0 ∈ K

and

(3.9) ỹn0 = T (x̃n0).

In view of (3.4), (3.8) and (3.9),

(3.10) ρ(ỹn0 , yn0) = ρ(ỹn0 , T (xn0)) ≤ rn0 .

By (3.6), (3.7) and (3.10),

ỹn0 ∈ B(yn0 , rn0) ⊂ K.

Assume that n ≥ n0 is an integer, (3.8), (3.9) hold, x̃i, ỹi ∈ K, i = n0, . . . , n, for

each integer i ∈ {n0, . . . , n},

(3.11) ỹi = T (x̃i),

for each integer i ∈ {n0, . . . , n} \ {n},

(3.12) S(x̃i+1) = ỹi,

(3.13) ρ(yn, ỹn) ≤
∑

{2ri : i ∈ {n0, . . . , n} \ {n}}+ rn.

(Note that in view of (3.8)-(3.10) our assumption holds for n = n0.) By (3.6) and

(3.13),

(3.14) ρ(yn, ỹn) < r, ỹn ∈ K.

Equations (3.2) and (3.11) imply that there exists

x̃n+1 ∈ K

such that

(3.15) S(x̃n+1) = ỹn.

Set

(3.16) ỹn+1 = T (x̃n+1).
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It follows from (3.1), (3.4), (3.13) and (3.16) that

ρ(ỹn+1, yn+1) ≤ ρ(T (x̃n+1), T (xn+1)) + ρ(yn+1, T (xn+1))

≤ rn+1 + ρ(S(x̃n+1), S(xn+1))

≤ rn+1 + ρ(ỹn, yn) + ρ(yn, S(xn+1))

≤ rn+1 + rn + ρ(yn, ỹn)

≤
n∑

i=n0

2ri + rn+1.(3.17)

In view of (3.6) and (3.17),

ỹn+1 ∈ B(yn+1, r) ⊂ K.

Thus the assumption made for n also holds for n + 1. Therefore by induction we

constructed {x̃n}∞n=0, {ỹn}∞n=0 ⊂ K such that (3.8), (3.9) hold and that for each

integer n ≥ n0,

ỹn = T (x̃n), S(x̃n+1) = ỹn,

ρ(yn, ỹn) ≤ 2
n∑

i=n0

ri.

Assumption (B) and the relations above imply that for each n ≥ n0,

ρ(yn, ỹn) < ϵ/4

and the sequence {ỹi}∞i=n0
converges. This implies that for each pair of sufficiently

large natural numbers i, j,

ρ(yi, yj) < ϵ.

Since ϵ is any element from (0, 1) {yi}∞i=0 is a Cauchy sequence and there exists

(3.18) y∗ = lim
n→∞

yn ∈ K.

By (3.4) and (3.18),

(3.19) y∗ = lim
n→∞

S(xn).

Assume that there exists x∗ ∈ K such that

(3.20) S(x∗) = y∗.

In view of (3.1), (3.4), (3.19) and (3.20), for each integer n ≥ 0,

ρ(T (x∗), T (xn)) ≤ ρ(S(xn), S(x∗)) ≤ ρ(S(xn), y∗) ≤ ρ(S(xn), yn+1)+ρ(yn+1, y∗) → 0

as n → ∞. Thus

T (x∗) = lim
n→∞

T (xn) = lim
n→∞

yn = y∗.

Theorem 3.1 is proved. □
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