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UNCERTAINTY RELATION FOR Q-COMMUTATOR

KENJIRO YANAGI

ABSTRACT. We show that an uncertainty relation for Wigner-Yanase-Dyson skew
information proved by Yanagi [5] can be extended for g-commutator which is
defined by [A, Bl = AB —qBA, where A, B are self-adjoint operators and ¢ > 0.

1. INTRODUCTION

Wigner-Yanase skew information

I,(H) = %Tr[(z‘ [pl/g,HDZ]
= TrlpH?| = Tr[p"*Hp'/H|

was defined in [4]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state p and an observable H. Here we denote
the commutator by [X,Y] = XY — Y X. This quantity was generalized by Dyson

lo(H) = %TT[(i[po‘,H])(i[pl‘ayHD]
= Tr[pH?| — Tr[p“Hp* “H],a € [0,1]

which is known as the Wigner-Yanase-Dyson skew information. It is well known that
Heisenberg uncertainty relation is represented by the commutator in the following.

Theorem 1.1. Let p be a density operator and A, B be self-adjoint operators. Then
the following uncertainty relation holds.

1
(1.1) 2 TrlplA, B <V, (A)V,(B),
where V,(A) = Tr[pA?] — (TrpA])?.
Luo [3] gave an extension of (1.1) in the following.

Theorem 1.2. Let p be a density operator and A, B be self-adjoint operators. Then
the following uncertainty relation holds.

(12) LTrlA, BYP < Up(A)U,(B),
where Ag = A —Tr[pA]l, I,(A) = %Tr[(i[plﬂ,Ao])Q}, Jp(A) = %TT[{pI/Q,AO}2} =
STr((pY /2 Ag + Agp*/?)?], and U,(A) = \/I,(A)J,(A).
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Furthermore Yanagi [5] gave an extension of (1.2) in the following.

Theorem 1.3. Let p be a density operator and A, B be self-adjoiint operators. Then
for 0 < a <1 the following uncertaity relation holds.

(1.3) a(l —a)[Tr[p[A, BH|2 < Upa(A)Upa(B),

where Ag = A — Tr[pAll, I,.(A) = 3Tr((i[p™, Ao))(i[p'~*, Ao))], Jpa(d) =

sTrl{p® Ao Hp' ™%, Ao}] and Upa(4) = /Tp.a(A) Jpa(A).

In this paper we have several extensions for generalized Heisenberg uncertainty
relation (1.3) by using g-commutator.
2. Q-COMMUTATOR

Let B(H), B(H)s and S(H) be the set of all bounded linear operators on Hilbert
space H, the set of all self-adjoint operators and the set of all density operators. For
A,B € B(H)s, we define commutator and anti-commutator by [A, B] = AB — BA
and {A, B} = AB + BA, respectively. g-commutator and g-anti-commutator are
defined by [A,B], = AB — ¢BA and {A, B}, = AB + gqBA, respectively, where
g€ Rand A, B € B(H);. q-commutator is a generalization of commutator [A, B].

Definition 2.1. Let p € S(H), A,B € B(H);, 0 <a <1andgq>0.

(1) I5a(4) = %TT[(i[pavAO]q)@[Pl_a?AO]l/q)]-

(2) J8a(A) = STrlo", Aoky{p™ Ao}y

(3) UjalA) = \/ I5.a(A) J5a(A).
Now we state the properties of If o(A) and Ji o (A).

Proposition 2.2. Let p = Y .2, \i|$i){(¢i] be the spectral decomposition of p and
let a;; = (¢ilAo|9j)

1 LY A+ ayl—a —aya
(1) I (A) = 22{<q+q> TJ — (XS A}. + A Aj)} |a; ]2

1,
1 1 )\z + A\ —a —a
(2) Ji,(A) = 3 > { <q + q> TJ + TN+ Ag)} |a;]?.
i3
Proof. (1)
1 e
Ia(A) = STr((ilp™ Aolg)(ilp' ™, Aol /)]
1 1
= —§Tr [(pO‘AO — qApp®) <p1_O‘A0 — qupl_C“)]

1 1
= —5Ir [PaAoplaAo - 60(1143917& —qAopAo + AOPO‘Aopla]
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2

1 1 _
= 25 <q+ q) /\i\aij|2 — Z)\?/\} a]a,-jIQ

i3 2

1 1 AZ+)‘ [e —x -y«
= 22{(Q+q)23—()\i)\; + 2] Aj)}ya,-jP.
%,

1 1 .
= Tr [ (q + q) pA§ — p™Aop' Ao]

1 «a —a
Jg,a (A) = §T7”‘[{p 3 Ao}q{ﬂl ) AO}I/q]

1 — 1 —
= Ir [(PO‘AO + qAop®) (pl Ao + 5Aopl )]

1 1
= ;Tr {paAopl‘“Ao + 5/)"‘143/)1_"‘ + qAopAo + Aopo‘Aopl_a]

1 1
= Tr [2 (q + q) pAG + p“Aopl‘aAo}
= 505 (o) e+ 3 AN layl?
vy 2 q J v ] J

1 LY Ai+ A ayl—a —aya
= 22{(Q+q>2j+()\1)\]1 +)‘zl )\j)}|ai]’|2.
Z?]

We need the following lemma in order to prove the main theorem.
Lemma 2.3. For 0 < a <1,t>0 and q > 0, the following inequality holds.
(2.1) (1 —2a0)%(qt — 1)% — (¢°t* — ¢' 7172 > 0.

Proof. Let F(t) = (1 —2a)?(qt — 1) — (¢*t® — ¢'~*t1=*)2. We have
F'(t) = 2(1 - 20)%q(qt — 1) = 2(¢"t* — ¢' ') (ag"t* ™" — (1 —a)q' "¢
= 2(1 — 20)%q(qt — 1) — 20¢**t**7 1 1 2(1 — a)q
+2aq — 2(1 — )P~
F'(t) = 2(1 — 20)%¢% — 2a(2a — 1)@*t%* 72 — 2(1 — a)(1 — 20) 21~ 2,

F" () = —2a(2a — 1)(2a — 2)%* %73 + 4(1 — a)(1 — 2a)ag?1 201

q2(1—a) q20¢
= 40((1 — a)(l — 204) 12041 - $3—2a [ °

When 1 —2a > 0, "' (t) > 0 is equivalent to t > ¢~ and F (t) < 0 is equivalent
tot < ¢ ! Since F'(¢7!) = 0, we have F"(t) > 0 for t > 0. When 1 — 2a < 0,
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1

F"(t) > 0 is equivalent to t > ¢~! and F"'(t) < 0 is equivalent to t < ¢~*. Since

1

F"(¢g7") =0, we have F" (t) > 0 for t > 0. And since F' (¢~') = 0, we have F' (t) < 0

for t < ¢~* and F'(t) > 0 for t > ¢~ !. Since F(¢g~') = 0, we have F(t) > 0 for

t > 0. Then we have the result.
We obtain the main theorem.
Theorem 2.4. Let pe S(H), A, B€ B(H); and 0 < a<1. If0< g <1, then
(1 = &)|Tr[p[Ao, Bolgl|* < UZ o (A)UE o (B),
where Ag = A —Tr[pA]l and By = B—Tr[pB]I. If ¢ > 1, then
a(l = a)|Tr[p[Ao, Bolgl* < ¢°Up o (AU 1 _o(B).

p,l—a pl—a

Proof. We put t = :\\—Z in (2.1). Then we have

() (e () e () 7) =0

And we get
(1= 20)%(ghy — M) = (" XA — g1 =M= > 0
and
(@A) = A)? = (@“MFNT =" N2 > da(l — a)(ghy — Ni)?
and
(A +2)? = (@*MPA Y + ¢ 7NN > da(l — a)(gh; — M)
Then
2v/a(1 = a)[Ai — ghj] < {(h +gAg)% = (@AFA T + "N TN
= (N + X — ¢"AA T — g AT 2
(i gAj + @™ AGNT + g TONTOAN) 2,
Since
Tr(p[Ao, Bolg] = > (A — aX;)(¢il Aol;) (651 Bol i),
i,
we have
a(l = a)|Tr[p[Ao, BolglI*
2

<ol —a) QY [N — ghjllais||bjil
i.j

1
-3 > 2y/a(l = a)Xi — gXjllaig|[bjql
i
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DA+ aN)? = (@ XN+ g NN [bil

IN
[

i+ qAj — @*ATN T = ¢ NN fagg )

X

{ (A +gAj + gO NN+ g TN TOAD) bl

2 2

ANt A €O+ 4 7 ayica, yimaya
{ L+ 0) =5+ = (A + Al

LY A+ ayl—a —aya
(<Q+q>2]—()\i>\j1- + 2] Aj)>|aij|2

N

1
2
1 R B AR TV TC A TN
2{ ((1+Q) L - APAT + A7) ) ai;)?
1
2
1
2

L\ A + ayl-a —aya
0 (o g) T oA

1,

Because the last inequality is given by the following inequality. Since 0 < g < 1,

1 /\i"—)\j qa‘i'qlia ayl-«a l—aya
(1) A (1 g

2
1 Ai + A > +q
> (2 -1 ) 2227 I L ; )
_<q ) ' <1 L) it )
1 )\Z—l-)\] 1— )\Z‘—l-)\j
B e — (2 — g% — a) 7t T
q ) (2=d"=a) 2

Similarly we have

1 )\z + )\j qa + ql—a ayl—a l-ay«

1 /\Z )\j qa ql ayl—a 11—«
-z =z A + A\ *) > 0.
= <q 1> B + <1 5 ()‘z )\] /\7, )\J) 0

23
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Then we have

a(1 = a)|Trp[Ao, Bolgl|* < 1§ o (A) S o(B).
We also have

a(1 = a)|Tr[p[Ao, Bolgl* < J§ o (AL o(B).
Hence when 0 < ¢ < 1, we obtain

a(1 = @)|Tr[p[Ao, Bolg)|* < Uga(A)U ,(B).
On the other hand when ¢ > 1, we have

a1 = )| Tr[p[Ao, Boli/ql[* < Uy (AU, L(B) = Uy

p,lfa(A) Uq

p,lfa(B)'

Since [Ag, Bolq = —q[Bo, Aol1 /4, We have
a(l — a)|Tr[p[Ao, Bo]q”2 = a(l— a)\Tr[p[Bo,AO]l/qHZ

qQUg,l—a(A)Ug,l—a(B)'

IN

g

When ¢ = 1 in Theorem 2.4, we get Theorem 1.3. And by putting « = %, we have
the following.

Corollary 2.5. Let p€ S(H), A,B € B(H)s. For g > 0 we have the following.

1
1TrlplA0, Boly)? < max{L,*}U? (AU, (B)

By defining [[A, B]] = 1{[Ao, Bo]q — [Bo, Aolq} = 1—;”1[140, By), we have the following
theorem. We omit the proof.

Theorem 2.6. For 0 < a <1 and q > 0, the following inequality holds.

2
a1 = TrlpflAn, Bl < (5) UpaA)0pa(B).

Remark 2.7. We define If o(4), Jio(A) and UZ,(A) as the following. For p €
S(H), A,Be€ B(H)s,0<a<1andgq>0,

(1) I3a(4) = STrl(16", Aol (o~ Al)]

(2) J8a(A) = 5TrH0" Aok {r ™ Ao}

(3) UgalA) = \/I3a(A) J5a(A).

Then the corresponding uncertainty relation does not hold even if we choose the
appropreate g > 0.



UNCERTAINTY RELATION FOR Q-COMMUTATOR 25

REFERENCES

[1] R. J. Finkerstein, g-uncertainty relations, J. Modern Physics, A 13 (1998), 1795-1803.

[2] W. Heisenberg, Uber den anschaulichen Inhat der quantummechanischen Kinematik und
Mechanik, Zeitschrift fiir Physik 43 (1927), 172-198.

[3] S. Luo, Heisenberg uncertainty relation for mized states, Phys. Rev. A 72 (2005): 042110.

[4] E. P. Wigner and M. M. Yanase, Information content of distribution, Proc. Nat. Acad. Sci.
U,S,A. 49 (1963), 910-918.

[5] K. Yanagi, Uncertainty relation on Wigner-Yanase-Dyson skew information, J. Math. Anal.
Appl. 365 (2010), 12-18.

[6] K. Yanagi, Uncertainty relation on generalized Wigner-Yanase-Dyson skew information, Linear
Algebra and its Applications 433 (2010), 1524-1532.

Manuscript received 21 June 2024
revised 29 November 202/

K. YaNacr
Emeritus Professor of Yamaguchi University, 2-16-1, Tokiwadai, Ube, 755-8611, Japan
E-mail address: yanagi@yamaguchi-u.ac.jp



