Volume 7, Number 1, 2006, 95-104

A VARIANT EXISTENCE RESULT FOR PERIODIC SOLUTIONS OF A CLASS OF HAMILTONIAN SYSTEMS WITH INDEFINITE POTENTIAL

LEONARD KARSHIMA SHILGBA

Abstract

In this paper we have solved an open problem by providing a variant existence result for periodic solutions to a class of Hamiltonian systems with a sign-indefinite super quadratic potential.

1. Introduction

It is our objective to investigate the existence of periodic solutions of the class of Hamiltonian systems:

$$
\begin{align*}
& \ddot{x}+A(t) x+b(t) V^{\prime}(x)=0 \quad \text { on } \quad[0, T] \tag{P}\\
& x(0)=x(T) \\
& \dot{x}(0)=\dot{x}(T)
\end{align*}
$$

where
1.1 $A \in C^{0}\left(\mathbb{R}, \mathbb{R}^{N \times N}\right)$ is a symmetric T-periodic matrix function that is not sign definite on $[0, T]$
$1.2 b \in C^{0}(\mathbb{R}, \mathbb{R}) \quad$ is T-periodic and changes sign on $[0, T]$
$1.3 V \in C^{2}\left(\mathbb{R}^{N}, \mathbb{R}\right) \quad$ with $\quad V(x) \geqslant V(0)=0 \quad$ for all $\quad x \in \mathbb{R}^{N}$, and has super quadratic behaviour.
The above problem has been studied by several authors case-by-case:
Case A: $A \equiv 0$. Lassoued [14] obtained existence of T-periodic solutions when V is strictly convex and homogeneous, while Ben Naoum etal [6] provided existence results by relaxing condition on V to only homogeneity.

By using the Alama-Tarantella condition [1] given as follows:
(1.4) There exist $c>0, \beta>2:\left|V^{\prime}(x) x-\beta V(x)\right| \leqslant c|x|^{2} \quad$ for all $\quad x \in \mathbb{R}^{N}$,

Girardi and Matzeu [13] proved some existence and multiplicity results for Tperiodic and subharmonic solutions.

Case B: $A \neq 0$. Refer to $[3],[2],[10]$ (with the references contained therein), severally for existence of periodic, homoclinic, and subharmonic solutions where b and matrix function A are sign-definite. Besides, when we assume b changes sign and A is a negative definite matrix, there are some existence and multiplicity results of periodic, subharmonic, and homoclinic solutions.(Refer to [12], [8], and [5]). When $b($.$) changes sign and A$ is not sign-definite, the author is aware of only two results,

[^0]namely, Antonacci's [4], and (the most recent) that of Yuang-Tong Xu and Zhi-Ming Guo's [18]. Antonacci proved existence of non-trivial periodic solutions under the assumption that
\[

$$
\begin{equation*}
\int_{0}^{T}(A(t) \xi, \xi) d t>0 \quad \text { for all } \quad \xi \in \mathbb{R}^{N}, \quad|\xi|=1 \tag{1.5}
\end{equation*}
$$

\]

Antonacci observed the vital role played by assumption (1.5) as he posed two open problems:

Given that $A($.$) is not negative definite, to:$

1. Study the existence of T-periodic solutions of (P) in the case (1.5)holds and $A($.$) is sign indefinite in any interval [0, \mathrm{~T}]$.
2. find some existence results in the case that A does not satisfy (1.5).

Antonacci solved problem 1 in [4]. Yuang-Tong Xu and Zhi-Ming Guo, in attempting the solution of open problem 2 in [18], relied among other assumptions, on the weaker version of (1.5) that,

There exist $\quad \alpha, \mu>0, \quad \beta>2, \quad \gamma: 0<\gamma<\alpha\left(\int_{0}^{T} b(t) d t\right) \beta \quad$ such that

$$
\begin{equation*}
\int_{0}^{T}(A(t) \xi, \xi) d t \geqslant-\gamma, \quad \text { for all } \quad \xi \in \mathbb{R}^{N}, \quad|\xi|=1 \tag{1.6}
\end{equation*}
$$

where $\quad V(x) \geqslant \alpha|x|^{\beta}-\mu \quad$ for all sufficiently large $x \in \mathbb{R}^{N}$.
It is clear from (1.6) that $\int_{0}^{T}(A(t) \xi, \xi) d t, \xi \in \mathbb{R}^{N},|\xi|=1$ is neither assumed to be definitely positive nor negative, which is a relaxation on condition (1.5.) In this paper we seek to fill in some gaps and provide a variant existence result to those of the above quoted authors [4,18]. For instance, while Yuang-Tong Xu and Zhi-Ming Guo do not assume (1.5) in order to answer the second open problem posed by Antonacci, their restriction to the case $\int_{0}^{T} b(t) d t>0$ leaves the case $\int_{0}^{T} b(t) d t<0$ unresolved, which would indeed break down assumption (1.6) and hence the entire structure of the proof in [18]. We shall resolve this problem.

2. Main Result

Theorem 2.1. Let conditions 1.1-1.3 be verified in addition to the following conditions:

$$
\begin{array}{ll}
\text { a. } 1 & 0<l=\max _{t \in[0, T]}|A(t)|<\frac{4 \pi^{2}}{\left(1+4 \pi^{2}\right) T^{2}}:(A(t) x, x) \leqslant l|x|^{2} . \\
& \text { for all } \quad x \in \mathbb{R}^{N}, \quad t \in[0, T] \\
\text { b. } 1 \quad \int_{0}^{T} b(t) d t \neq 0
\end{array}
$$

m. $1 \quad$ There exist $\delta>0, \quad \eta: \quad 0<\eta<l, \quad t_{0} \in[0, T], \quad R_{1}>0$:
i) $b(t)>0 \quad$ for all $\quad t \in I_{\delta}, \quad I_{\delta}=\left[t_{0}-\delta, t_{0}+\delta\right] \subset[0, T]$.
ii) $\int_{I_{\delta}}(A(t) x, x) d t \geqslant \eta \int_{I_{\delta}}|x|^{2} d t \quad$ for all $\quad x \in \mathbb{R}^{N}$.
iii) $\quad \int_{\bar{I}}(A(t) \xi, \xi) d t \geqslant-\eta T \quad$ for all $\quad \xi \in \mathbb{R}^{N}, \quad|\xi|=1, \quad\left(\bar{I}=[0, T] \backslash I_{\delta}\right)$.
V. 1 There exist $\beta>2, a_{1}>0, R_{2}>0$:
i) $\beta V(x) \leqslant V^{\prime}(x) x \quad$ and
ii) $\quad V(x) \geqslant a_{1}|x|^{\beta} \quad$ for all $\quad x \in \mathbb{R}^{N},|x| \geqslant R_{2}$.
V. 2 There exists $R_{3}>0:-\beta V(x)+\left(V^{\prime}(x), x\right) \leqslant c|x|^{2} \quad$ for all $x \in \mathbb{R}^{N},|x| \geqslant R_{3}$ where

$$
c<\frac{\beta-2}{2 m}\left[\frac{4 \pi^{2}}{\left(1+4 \pi^{2}\right) T^{2}}-l\right], \quad m=\max _{t \in[0, T]} b(t)
$$

$V .3 \lim _{|x| \rightarrow 0} \frac{V(x)}{|x|^{2}}=0$
Then problem (P) has at least one periodic solution.
Remark. Assumption m. 1 indicates that

$$
\int_{0}^{T}(A(t) \xi, \xi) d t \geqslant \eta(2 \delta-T) \quad \text { for all } \quad \xi \in \mathbb{R}^{N}, \quad|\xi|=1 ; 2 \delta-T<0
$$

This is an improvement on condition (0.2) in [4].
We shall investigate the periodic solutions of (P) in the Sobolev space $H_{T}^{1}=$ $H^{1}\left([0, T], \mathbb{R}^{N}\right)=\left\{u:[0, T] \rightarrow \mathbb{R}^{N}\right.$, is absolutely continuous, $u(0)=u(T), \dot{u} \in$ $\left.L^{2}\left(0, T ; \mathbb{R}^{N}\right)\right\}$ with the norm:

$$
\|u\|=\left(\int_{0}^{T}|\dot{u}|^{2}+\int_{0}^{T}|u|^{2}\right)^{\frac{1}{2}} \quad \text { for all } \quad u \in H_{T}^{1}
$$

Hamiltonian action:
We reduce problem (P) to finding critical points of the functional:

$$
\begin{equation*}
I(x)=\frac{1}{2}\left[\int_{0}^{T}|\dot{x}|^{2}-\int_{0}^{T} A(t) x \cdot x\right]-\int_{0}^{T} b(t) V(x) \quad x \in H_{T}^{1} \tag{*}
\end{equation*}
$$

associated with (P). We note that the critical points of this functional correspond to periodic solutions of $(\mathrm{P}) .(x y$ denotes the inner product of the pair of vectors $x, y \in \mathbb{R}^{N}$).
Definition 2.2. Given a real Banach space X, we say that $I \in C^{1}(X, \mathbb{R})$ satisfies the Cerami-Palais-Smale condition at level $d \in \mathbb{R}$ (i.e condition $(C P S)_{d}$ for short) if for any sequence $\left(x_{n}\right) \in X$ such that

$$
I\left(x_{n}\right) \rightarrow d \quad \text { and } \quad\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right) \rightarrow 0
$$

it implies that $\left(x_{n}\right)$ contains a strongly convergent subsequence in X.
Remark. The Cerami-Palais-Smale condition was introduced by G. Cerami [9] as a weaker variant of the classical Palais-Smale condition.

We shall rely on the following linking theorem of Benci- Rabinowitz (see [16], [7]) as an investigative tool:

Theorem 2.3 (Linking theorem). Let E be a Banach space and $I \in C^{1}(E, \mathbb{R})$ such that
a) $E=E_{-} \oplus E_{+}, \quad \operatorname{dim} E_{-}<\infty \quad$ and $\quad E_{+} \quad$ is closed in E.
b) There exist $r, R: \quad 0<r<R, \quad$ and $\quad \nu \in E_{+}$with $\quad\|\nu\|=1$: $\sup \{I(x): x \in \partial Q\} \leqslant \inf \{I(x): x \in D\}$

$$
Q=\left\{u+\lambda \nu: \lambda \geqslant 0, u \in E_{-},\|u+\lambda \nu\| \leqslant R\right\} \subset E_{-} \oplus \mathbb{R} \nu
$$

$$
D=\left\{x \in E_{+}:\|x\|=r\right\}
$$

c) I satisfies the Cerami-Palais-Smale condition $(C P S)_{d}$,

$$
d=\inf _{g \in \Gamma} \sup _{y \in Q} I(g(y)), \quad \Gamma=\{g \in C(Q, E): g(y)=y \quad \text { for all } \quad y \in \partial Q\}
$$

Then $d \geqslant \inf _{D} I$ and d is a critical value of I.Moreover, if $d=\inf _{D} I$, there is a critical point $x_{d} \in D: I\left(x_{d}\right)=d$.

Lemma 2.4. Let conditions 1.1 - 1.3, a.1, b.1, V.1, andV. 2 be verified. Then $I \in$ $C^{1}\left(H_{T}^{1}, \mathbb{R}\right)$ given as in $(*)$ satisfies the Cerami-Palais-Smale condition for all real d.

Proof. We only need to show that given any sequence $\left(x_{n}\right) \in H_{T}^{1}$ such that $I\left(x_{n}\right)$ is bounded and $\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ (i.e $\sup \left\{\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right) \theta: \theta \in\right.$ $\left.H_{T}^{1},\|\theta\|=1\right\} \rightarrow 0$ as $\left.n \rightarrow \infty\right)$, then $\left(x_{n}\right) \quad$ contains a strongly convergent subsequence in H_{T}^{1}.

Boundedness of $I\left(x_{n}\right)$ implies that there exists $k>0$ such that

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \leqslant \frac{1}{2} \int_{0}^{T}\left(A(t) x_{n}, x_{n}\right)+\int_{0}^{T} b(t) V\left(x_{n}\right)+k \tag{2.1}
\end{equation*}
$$

Since $\quad\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right)$ is linear, it follows from Riesz's representation theorem that there exists a sequence $\left(z_{n}\right) \in H_{T}^{1} \quad$ such that

$$
\begin{gathered}
\left\|\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right)\right\|_{H_{T}^{-1}}=\left\|z_{n}\right\|=\varepsilon_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty \quad \text { and } \\
\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right) \varphi=\left\langle z_{n}, \varphi\right\rangle_{H_{T}^{1}} \quad \text { for all } \quad \varphi \in H_{T}^{1} .
\end{gathered}
$$

Thus, we have from Cauchy-Schwartz inequality that

$$
\begin{gathered}
\int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \geqslant \int_{0}^{T}\left(A(t) x_{n}, x_{n}\right)+\int_{0}^{T} b^{+}(t)\left(V^{\prime}\left(x_{n}\right), x_{n}\right)-\int_{0}^{T} b^{-}(t)\left(V^{\prime}\left(x_{n}\right), x_{n}\right)-\varepsilon_{n} \\
\text { where } b^{+}(t)=\max \{0, b(t)\} \quad \text { and } \quad b^{-}(t)=-\min \{0, b(t)\}, \quad t \in[0, T] \\
\text { Clearly, } b(t)=b^{+}(t)-b^{-}(t) \text { for all } t \in[0, T]
\end{gathered}
$$

Hence,

$$
\int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \geqslant \int_{0}^{T}\left(A(t) x_{n}, x_{n}\right)+\beta \int_{0}^{T} b(t) V\left(x_{n}\right)-m c \int_{0}^{T}\left|x_{n}\right|^{2}-\varepsilon_{n}
$$

Therefore,
(2.2) $-\frac{1}{\beta} \int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \leqslant-\frac{1}{\beta} \int_{0}^{T}\left(A(t) x_{n}, x_{n}\right)-\int_{0}^{T} b(t) V\left(x_{n}\right)+\frac{m c}{\beta} \int_{0}^{T}\left|x_{n}\right|^{2}+\frac{\varepsilon_{n}}{\beta}$.

Combining (2.1) and (2.2) results in,

$$
\begin{aligned}
& \frac{\beta-2}{2 \beta} \int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \leqslant \frac{(\beta-2) l+2 m c}{2 \beta} \int_{0}^{T}\left|x_{n}\right|^{2}+\frac{\varepsilon_{n}}{\beta}+k . \text { That is, } \\
& (\beta-2) \int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \leqslant[(\beta-2) l+2 m c] \int_{0}^{T}\left|x_{n}\right|^{2}+\bar{k}, \quad(0<\bar{k}<\infty)
\end{aligned}
$$

Or, according to Wirtinger's inequality, we have that

$$
\left\{(\beta-2)-[(\beta-2) l+2 m c] \frac{T^{2}}{4 \pi^{2}}\right\} \int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \leqslant T[(\beta-2) l+2 m c]\left|\bar{x}_{n}\right|^{2}+\bar{k}
$$

where

$$
\bar{x}_{n}=\frac{1}{T} \int_{0}^{T} x_{n}(t) d t, \quad n \in \mathbb{N}
$$

Clearly from condition V.2,

$$
\bar{d}=(\beta-2)-[(\beta-2) l+2 m c] \frac{T^{2}}{4 \pi^{2}}>0
$$

Thus, setting

$$
\begin{gather*}
d_{1}=\frac{T[(\beta-2) l+2 m c]}{\bar{d}}(>0) \quad \text { and } \quad d_{2}=\frac{\bar{k}}{\bar{d}}(>0), \quad \text { we obtain } \\
\int_{0}^{T}\left|\dot{x}_{n}\right|^{2} \leqslant d_{1}\left|\bar{x}_{n}\right|^{2}+d_{2} \tag{2.3}
\end{gather*}
$$

Moreover, applying Sobolev inequality and from (2.3), it is not difficult to verify that,

$$
\underset{t \in[0, T]}{\min \left|x_{n}(t)\right| \geqslant d_{3}\left|\bar{x}_{n}\right|-d_{4}, \quad\left(d_{3}=1-\left(T d_{1}\right)^{\frac{1}{2}}, \quad d_{4}=\left(T d_{2}\right)^{\frac{1}{2}}\right)}
$$

We claim that $1-T d_{1}>0$. Suppose the contrary, that

$$
1-T d_{1} \leqslant 0 . \quad \text { That is if and only if } 2 m c \geqslant(\beta-2)\left[\frac{4 \pi^{2}}{\left(1+4 \pi^{2}\right) T^{2}}-l\right]
$$

This is a contradiction. Hence, we have,

$$
\begin{equation*}
\min _{t \in[0, T]}\left|x_{n}(t)\right| \geqslant d_{3}\left|\bar{x}_{n}\right|-d_{4}, \quad\left(d_{3}, d_{4}>0\right) \tag{2.4}
\end{equation*}
$$

Clearly, if the sequence $\left(\left|\bar{x}_{n}\right|\right)$ of real numbers is bounded, then so is $\left(x_{n}\right)$ in H_{T}^{1}. Suppose

$$
\begin{gathered}
\left|\bar{x}_{n}\right| \rightarrow+\infty \quad \text { as } n \rightarrow+\infty \text {. Then } \\
V\left(x_{n}\right) \rightarrow+\infty . \text { So, we can define a sequence in } H_{T}^{1}: \\
\psi_{n}(t)=\frac{x_{n}(t)}{\left(1+\left\|x_{n}\right\|\right) V\left(x_{n}(t)\right)}, t \in[0, T] \quad \text { which is well defined at infinity. }
\end{gathered}
$$

$$
\begin{gathered}
\dot{\psi}_{n}=\frac{V\left(x_{n}\right) \dot{x}_{n}-x_{n}\left[V^{\prime}\left(x_{n}\right) \dot{x}_{n}\right]}{\left(1+\left\|x_{n}\right\|\right)\left(V\left(x_{n}\right)\right)^{2}} ; \text { So, } \\
\left|\dot{\psi}_{n}\right|^{2} \leqslant \frac{\text { const. }\left|\dot{x}_{n}\right|^{2}}{\left[\left(1+\left\|x_{n}\right\|\right) V\left(x_{n}\right)\right]^{2}} \quad \text { for sufficiently large } \mathrm{n}, \text { and } \\
\left\|\psi_{n}\right\|^{2} \leqslant \frac{\left[\left\{\frac{T^{2}}{4 \pi^{2}}+\text { const. }\right\} d_{1}+T\right]\left|\bar{x}_{n}\right|^{2}+\text { const. }}{a_{1}^{2}\left(1+\left\|x_{n}\right\|\right)^{2}\left(d_{3}\left|\bar{x}_{n}\right|-d_{4}\right)^{2 \beta}} \rightarrow 0 \quad \text { as } n \rightarrow+\infty . \text { Hence, } \\
\left(1+\left\|x_{n}\right\|\right) I^{\prime}\left(x_{n}\right) \psi_{n} \rightarrow 0 \quad \text { as } n \rightarrow+\infty .
\end{gathered}
$$

It is clear that,

$$
\begin{array}{ll}
\text { i). } & \left(1+\left\|x_{n}\right\|\right)\left|\int_{0}^{T} \dot{x}_{n} \dot{\psi}_{n}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty \\
\text { ii) } & \left(1+\left\|x_{n}\right\|\right)\left|\int_{0}^{T} A(t) x_{n} \psi_{n}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
\end{array}
$$

Now,

$$
\begin{aligned}
\left|\left(1+\left\|x_{n}\right\|\right) \int_{0}^{T} b(t) V^{\prime}\left(x_{n}\right) \psi_{n}\right| & \geqslant\left|\beta \int_{0}^{T} b(t) d t-c \int_{0}^{T} b^{+}(t) \frac{\left|x_{n}\right|^{2}}{V\left(x_{n}\right)} d t\right| \\
& \geqslant\left|\beta \int_{0}^{T} b(t) d t\right|-c\left|\int_{0}^{T} b^{+}(t) \frac{\left|x_{n}\right|^{2}}{V\left(x_{n}\right)} d t\right|
\end{aligned}
$$

Thus,

$$
\left|\left(1+\left\|x_{n}\right\|\right) \int_{0}^{T} b(t) V^{\prime}\left(x_{n}\right) \psi_{n}\right| \rightarrow L \geqslant\left|\beta \int_{0}^{T} b(t) d t\right| \neq 0 \quad \text { as } \quad n \rightarrow+\infty
$$

since $\quad \int_{0}^{T} b(t) d t \neq 0 \quad$ and

$$
\left|\int_{0}^{T} b^{+}(t) \frac{\left|x_{n}\right|^{2}}{V\left(x_{n}\right)} d t\right|<\frac{m\left(\frac{T^{2}}{4 \pi^{2}} d_{1}+T\right)\left|\bar{x}_{n}\right|^{2}+\text { const. }}{a_{1}\left(d_{3}\left|\bar{x}_{n}\right|-d_{4}\right)^{\beta}} \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
$$

Note: Either $\int_{0}^{T} b(t) d t<0 \quad$ or $\quad \int_{0}^{T} b(t) d t>0 ; \quad$ whichever the case may be, the same conclusion holds.

This contradicts our assumption. Therefore, $\left(x_{n}\right)$ is bounded, and so by a similar proof in [5], admits a strongly convergent subsequence.
Proof of theorem 2.1. $H_{T}^{1}=\widetilde{H} \oplus \mathbb{R}^{N}, \quad \widetilde{H}=\left\{x \in H_{T}^{1}: \int_{0}^{T} x(t) d t=0\right\}$. Let $x \in \widetilde{H}$. Then,

$$
\begin{aligned}
I(x) & =\frac{1}{2} \int_{0}^{T}|\dot{x}|^{2}-\frac{1}{2} \int_{0}^{T}(A(t) x, x)-\int_{0}^{T} b(t) V(x) \\
& \geqslant \frac{1}{2}\left(1-\frac{l T^{2}}{4 \pi^{2}}-\right) \int_{0}^{T}|\dot{x}|^{2}-m \int_{0}^{T} V(x)
\end{aligned}
$$

According to V.3, we can choose $\epsilon: 0<\epsilon<\frac{1}{2 m}\left(\frac{4 \pi^{2}}{T^{2}}-l\right)$ such that there exists $\quad r^{\prime}(\epsilon)>0 \quad$ sufficiently small and

$$
I(x) \geqslant \frac{1}{2}\left(1-\frac{l T^{2}}{4 \pi^{2}}\right) \int_{0}^{T}|\dot{x}|^{2}-m \epsilon \int_{0}^{T}|x|^{2}
$$

$$
\begin{aligned}
& \geqslant \frac{1}{2}\left(1-\frac{l T^{2}}{4 \pi^{2}}-m \epsilon \frac{T^{2}}{2 \pi^{2}}\right) \int_{0}^{T}|\dot{x}|^{2} \\
& \geqslant \frac{T}{24}\left(1-\frac{l T^{2}}{4 \pi^{2}}-m \epsilon \frac{T^{2}}{2 \pi^{2}}\right)\|x\|_{\infty}^{2} \geqslant \omega>0
\end{aligned}
$$

for all $\quad x \in \widetilde{H},\|x\|_{\infty}=r^{\prime}$. Thus, we can find $r\left(r^{\prime}\right)>0: I(x) \geqslant \omega$ for all $x \in$ $\widetilde{H},\|x\|=r$. Furthermore, choose a constant vector $\phi_{0} \in \mathbb{R}^{N}:\left|\phi_{0}\right|^{2}=\frac{\delta}{\delta^{2}+\pi^{2}}$.

Define,

$$
\nu(t)= \begin{cases}\phi_{0} \cos \frac{\pi}{\delta}\left(t+\delta-t_{0}\right) & t \in I_{\delta} \\ 0 & t \in \bar{I}=[0, T] \backslash I_{\delta}\end{cases}
$$

So, we have $\nu(t) \in H_{T}^{1},\|\nu\|=1$. Besides, $\operatorname{supp}\{\nu\}=I_{\delta}$.
Set $\bar{H}=\left\{\lambda \nu+z: \lambda \geqslant 0, z \in \mathbb{R}^{N}\right\}$. Thus, for every $\lambda \nu+z \in \bar{H}$, we have

$$
\begin{aligned}
I(\lambda \nu+z) \leqslant & \frac{\lambda^{2}}{2} \int_{0}^{T}|\dot{\nu}|^{2}-\frac{|z|^{2}}{2} \int_{\bar{I}}(A(t) \xi, \xi)-\frac{\eta}{2} \int_{I_{\delta}}|\lambda \nu+z|^{2} \\
& -\int_{I_{\delta}} b(t) V(\lambda \nu+z)-V(z) \int_{\bar{I}} b(t) \\
\leqslant & \frac{\lambda^{2}}{2} \int_{I_{\delta}}|\dot{\nu}|^{2}+\frac{|z|^{2}}{2} \eta T-\frac{\eta}{2} \int_{I_{\delta}}|\lambda \nu+z|^{2} \\
& -a_{1} \tilde{\beta} \int_{I_{\delta}}|\lambda \nu+z|^{\beta}-V(z) \int_{\bar{I}} b(t)
\end{aligned}
$$

where $\quad \tilde{\beta}=\underset{I_{\delta}}{\min } b(t)>0 \quad$ and $\quad \xi \in \mathbb{R}^{N}, \xi=z /|z|$.
Now, defining some two norms on \bar{H} :

$$
\|\lambda \nu+z\|_{\delta_{1}}=\left(\int_{I_{\delta}}|\lambda \nu+z|^{2}\right)^{\frac{1}{2}}, \quad\|\lambda \nu+z\|_{\delta_{2}}=\left(\int_{I_{\delta}}|\lambda \nu+z|^{\sigma}\right)^{\frac{1}{\sigma}}, \quad \sigma \geqslant 2
$$

it is clear that they are equivalent since $\operatorname{dim} \bar{H}<\infty$. Therefore, for our fixed $\beta>2$, we have that, there exists $\quad k_{1}(\delta)>0$ such that $\|\lambda \nu+z\|_{\delta_{2}}^{\beta} \geqslant k_{1} \| \lambda \nu+$ $z \|_{\delta_{1}}^{\beta}$ for all $\lambda \geqslant 0, z \in \mathbb{R}^{N}$. Besides, we can find some constant $k_{2}>0$ (independent of $\left.\quad z \in \mathbb{R}^{N}, \lambda \geqslant 0\right)$:

$$
\begin{equation*}
I(\lambda \nu+z) \leqslant\left(k_{2}-\frac{\eta}{2}\right)\|\lambda \nu+z\|_{\delta_{1}}^{2}-k_{1} a_{1} \tilde{\beta}\|\lambda \nu+z\|_{\delta_{1}}^{\beta}-V(z) \int_{\bar{I}} b(t) \tag{2.5}
\end{equation*}
$$

We have two cases, namely,

$$
\begin{array}{ll}
\text { Case1: } \int_{\bar{I}} b(t)>0 . & \left(\text { i.e } \int_{0}^{T} b(t)>0 .\right) \\
\text { Case } 2: \int_{\bar{I}} b(t)<0 . & \left(\text { if and only if } \quad-\int_{\bar{I}} b(t)>0 .\right)
\end{array}
$$

Case1: We have from (2.5) that

$$
I(\lambda \nu+z) \leqslant k_{2}\|\lambda \nu+z\|_{\delta_{1}}^{2}-\frac{\eta}{2}\|\lambda \nu+z\|_{\delta_{1}}^{2}-k_{1} a_{1} \tilde{\beta}\|\lambda \nu+z\|_{\delta_{1}}^{\beta}
$$

Clearly, we can find $R>r$ (sufficiently large) such that,

$$
I(\lambda \nu+z) \leqslant 0 \quad \text { for all } \quad \lambda \nu+z \in \bar{H}:\|\lambda \nu+z\|=R .
$$

Therefore,

$$
\sup \left\{I(\lambda \nu+z): \lambda \geqslant 0 \quad z \in \mathbb{R}^{N}, \quad\|\lambda \nu+z\|=R\right\} \leqslant \inf \{I(x): x \in \widetilde{H}, \quad\|x\|=r\} .
$$

Hence the conditions of the linking theorem are satisfied. Consequently, I has a non-constant critical point in H_{T}^{1} which is a solution of (P).

Note: $\|\lambda \nu+z\|_{\delta_{1}} \leqslant\|\lambda \nu+z\|$.
Case2: $\quad \int_{\bar{I}} b(t) d t<0$
Without loss of generality, we further assume that there exists real numbers, $\alpha, \gamma: \alpha>\gamma>1$ such that

$$
\gamma \int_{I_{\delta}} b(t) d t+\int_{\bar{I}} b(t) d t>0
$$

and for all $z_{1}, z_{2} \in \mathbb{R}^{N}, z_{1} \neq z_{2}$, and $\left|z_{1}+z_{2}\right|>R_{2}$, we have

$$
V\left(z_{1}+z_{2}\right)>\gamma\left(V\left(z_{1}\right)+V\left(z_{2}\right)\right)-\alpha\left|z_{1}-z_{2}\right|^{2} .
$$

For any $\lambda \geqslant 0$ and $z \in \mathbb{R}^{N},\|\lambda \nu+z\|=\lambda^{2}+T|z|^{2}$. So, $\|\lambda \nu+z\| \rightarrow+\infty$ if and only if $\lambda \rightarrow+\infty$ or $|z| \rightarrow+\infty$.
Hence, for sufficiently large $\lambda>0$ or $|z|$ we have,

$$
\begin{aligned}
I(\lambda \nu+z) \leqslant & \frac{\lambda^{2}}{2} \int_{0}^{T}|\dot{\nu}|^{2}-\frac{|z|^{2}}{2} \int_{\bar{I}}(A(t) \xi, \xi)-\frac{\eta \lambda^{2}}{2} \int_{I_{\delta}}|\nu|^{2}-\eta \delta|z|^{2} \\
& -\int_{I_{\delta}} b(t) V(\lambda \nu+z)-V(z) \int_{\bar{I}} b(t) d t .
\end{aligned}
$$

Or

$$
\begin{aligned}
I(\lambda \nu+z) \leqslant & \frac{\lambda^{2}}{2}\left(\int_{I_{\delta}}\left(|\dot{\nu}|^{2}-\eta|\nu|^{2}\right)\right)-\frac{|z|^{2}}{2}\left(\int_{\bar{I}}(A(t) \xi, \xi)+2 \eta \delta\right) \\
& -\left(\gamma \int_{I_{\delta}} b(t) d t+\int_{\bar{I}} b(t) d t\right) V(z)-\gamma \int_{I_{\delta}} V(\lambda \nu) d t+\alpha \int_{I_{\delta}} b(t)|\lambda \nu-z|^{2} \\
\leqslant & \frac{\lambda^{2}}{2}\left(\int_{I_{\delta}}|\dot{\nu}|^{2}+(2 \alpha m-\eta) \int_{I_{\delta}}|\nu|^{2}\right)-\frac{|z|^{2}}{2}\left(\int_{\bar{I}}(A(t) \xi, \xi)+2 \eta \delta-4 m \delta \alpha\right) \\
& -|z|^{\beta} a_{1}\left(\gamma \int_{I_{\delta}} b(t) d t+\int_{\bar{I}} b(t) d t\right)-a_{1} \lambda^{\beta} \gamma \int_{I_{\delta}}|\nu|^{\beta} d t
\end{aligned}
$$

Clearly, as $\|\lambda \nu+z\| \rightarrow+\infty, I(\lambda \nu+z) \rightarrow-\infty$; and so, we can find $R>r$ such that for $\|\lambda \nu+z\|=R, I(\lambda \nu+z) \leqslant 0$.

This verifies the Linking theorem and hence, completes the proof of theorem 2.1

Remark. We consider some examples of the potential V that satisfy our assumptions:
Example 1. The first obvious example is the function

$$
V(x)=|x|^{\beta}, \quad \text { for any } \quad \beta>2 .
$$

Here

$$
V^{\prime}(x) \cdot x=\beta V(x) \quad \text { for all } \quad x \in \mathbb{R}^{N}
$$

So, for any $c>0, \quad V(x)=|x|^{\beta} \quad$ satisfies condition V.2. Furthermore,

$$
\left|x_{1}\right|^{\beta}+\left|x_{2}\right|^{\beta}-\kappa\left|x_{1}-x_{2}\right|^{2} \leqslant \frac{1}{2}\left|x_{1}+x_{2}\right|^{\beta}, \quad(\kappa>1 \quad \text { is large enough })
$$

for all $\quad x_{1}, x_{2} \in \mathbb{R}^{N}, \quad\left|x_{1}-x_{2}\right| \neq 0, \quad$ and $\quad\left|x_{1}+x_{2}\right| \quad$ sufficiently large.
Example 2. We define

$$
V(x)=|x|^{\beta} \log _{e}\left(\frac{1+2|x|^{2}}{1+|x|^{2}}\right), \quad 2<\beta<3
$$

For sufficiently large $|x|$,

$$
V(x) \geqslant a|x|^{\beta} \quad \text { for some } \quad a: 0<a<\log _{e} 2
$$

since

$$
\begin{gathered}
\lim _{|x| \rightarrow+\infty} \log _{e}\left(\frac{1+2|x|^{2}}{1+|x|^{2}}\right)=\log _{e} 2 \\
V^{\prime}(x) x=\beta V(x)+\frac{2|x|^{\beta+2}}{\left(1+|x|^{2}\right)\left(1+2|x|^{2}\right)} \leqslant \beta V(x)+c|x|^{2}, \quad \text { for some } \quad c>0
\end{gathered}
$$

while

$$
V^{\prime}(x) x \geqslant \beta V(x) .
$$

Remark. The logarithmic operator moderates the growth of the potential in example 2. So, for any $z_{1}, z_{2} \in \mathbb{R}^{N}, z_{1} \neq z_{2}$, and $\left|z_{1}+z_{2}\right|$ sufficiently large, we can find some $\quad \alpha>\gamma>1, \alpha, \quad$ large enough so that

$$
\begin{aligned}
& \left|z_{1}+z_{2}\right|^{\beta} \log _{e}\left(\frac{1+2\left|z_{1}+z_{2}\right|^{2}}{1+\left|z_{1}+z_{2}\right|^{2}}\right) \\
& \quad \geqslant \gamma\left[\left|z_{1}\right|^{\beta} \log _{e}\left(\frac{1+2\left|z_{1}\right|^{2}}{1+\left|z_{1}\right|^{2}}\right)+\left|z_{2}\right|^{\beta} \log _{e}\left(\frac{1+2\left|z_{2}\right|^{2}}{1+\left|z_{2}\right|^{2}}\right)\right]-\alpha\left|z_{1}-z_{2}\right|^{2}
\end{aligned}
$$

References

[1] Alama S.and Tarantello G., On semilinear elliptica equations with indefinite non linearities. Calc. Var. Partial Diff. Eq. 93 (1991), pp. 1-18.
[2] Ambrosetti A. and Coti ZelatiV., Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. padova 89 (1993), pp. 177-194.
[3] Ambrosetti A. and Mancini G., Solutions of minimal period to a class of convex Hamiltonian systems. Math. Ann. 255 (1981), pp. 405-421.
[4] Antonacci F., Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. TMA, 29 (1997), pp. 1353-1364.
[5] Antonacci F., Periodic and Homoclinic solutions to a class of Hamiltonian systems with potential indefinite in sign. Boll. Unione. Mat. Ital. 10-B (1996),pp. 303-324.
[6] Ben Naoum A.K., Trostler,C. and Willem M., Existence and multiplicity results for homogeneous second order differential equations. J. Diff. Equations, 112 (1994), pp. 239-249.
[7] Benci V. and Rabinowitz P.H., Critical point theorem for indefinite functionals, Invent. Math. 52 (1979), pp.241-273.
[8] Caldiroli P. and Montecchiari P.,Homoclinic orbits for second order Hamiltonian systems with potential changing sign. Comm. Appl. Anal. 1 (1994), pp. 97-129.
[9] Cerami G., Un criterio di esistenza per in punti critici su varieta illimitate., Istit. Lombardo Accad. Sci. Lett. RendA112 (1978), 332-336.
[10] Coti Zelati V. and Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing super quadratic potential. J. Ann. Math. Soc. 4 (1991), pp. 693-727.
[11] Degiovani M., Basic tools of critical point theory. (2002).
[12] Ding Y.H. and Girardi M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potential changing sign. Dynamical systems. Appl. 2 (1993), pp. 131-145.
[13] Girardi M. and Matzeu M., Existence and multiplicity results for periodic solutions for super quadratic Hamiltonian systems where the potential changes sign. Nonlinear Differential Equations and Appl. 2 (1995), pp. 35-61.
[14] Lassoued L., Periodic solutions to a second order super quadratic system with a change of sign in the potential. J. Diff. Equations,93 (1991), pp. 1-18.
[15] Mawhin J. and Willem M., Critical point theory and Hamiltonian systems. Springer-Verlag, New York (1989).
[16] Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conference Series in Mathematics, American Mathematical Society, Providence, RI, Vol.65, 1986.
[17] Rabiniwitz P.H., Periodic solutions of Hamiltonian systems. Comm. Pure. Appl. Math. 31 (1978), pp. 157-184.
[18] Yuang-Tong Xu and Zhi- Ming Guo, Existence of periodic solutions to second order Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. TMA 51, 7 (2002), pp. 1273-1283.

Manuscript received December 3, 2004
revised April 12, 2005

Leonard Karshima Shilgba

ABTI-American University of Nigeria, School of Arts and Sciences, PMB 2250 Yola, Adamawa State, Nigeria.

E-mail address: shilgba@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 37J45, 70H05, 34B15.
 Key words and phrases. Periodic solutions, Hamiltonian systems, potential, linking.

