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NEW APPROXIMATION SCHEMES FOR NONEXPANSIVE
NONSELF-MAPPINGS IN A BANACH SPACE

SORNSAK THIANWAN, NARIN PETROT, AND SUTHEP SUANTAI

Abstract. In this paper, weak and strong convergence theorems of a new three-
step iteration with errors are established for nonexpansive nonself-mappings in
Banach spaces. The results obtained in this paper extend and improve the several
recent results in this area.

1. Introduction

Fixed-point iteration processes for approximating fixed point of nonexpansive
mapping in Banach spaces have been studied by various authors (see [3, 4, 6, 10,
11, 12, 16, 17, 18]) using the Mann iteration process (see [6]) or the Ishikawa iteration
process (see [4, 16, 18]). In 2000, Noor [8] introduced a three-step iterative scheme
and studied the approximate solutions of variational inclusion in Hilbert spaces. In
1998, Takahashi and Kim [15] proved strong convergence of approximants to fixed
points of nonexpansive nonself-mappings in reflexive Banach spaces with uniformly
Gâteaux differentiable norm. In the same year, Jung and Kim [5] proved the ex-
istence of a fixed point for nonexpansive nonself-mapping in a uniformly convex
Banach space with a uniformly Gâteaux differentiable norm.

In [16], Tan and Xu introduced a modified Ishikawa process to approximate fixed
points of nonexpansive self-mappings defined on nonempty closed convex bounded
subsets of a uniformly convex Banach space. Suantai [14] defined a new three-
step iterations which is an extension of Noor iterations and gave some weak and
strong convergence theorems of such iterations for asymptotically nonexpansive
mappings in uniformly Banach spaces. Recently, Shahzad [13] extended Tan and
Xu’s results([16],Theorem 1, p.305) to the case of nonexpansive nonself-mapping in
a uniformly convex Banach space. Inspired and motivated by research going on in
this area, we define and study a new three-step iteration with errors for nonexpan-
sive nonself-mapping. This scheme can be viewed as an extension for the two-step
iterative schemes of Shahzad [13]. The scheme is defined as follows.

Let X be a normed space, C be a nonempty convex subset of X, P : X → C
be the nonexpansive retraction of X onto C, and T : C → X be a given mapping.
Then for a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the iterative
scheme

zn = P (anTxn + (1− an − γn)xn + γnun)

yn = P (bnTzn + cnTxn + (1− bn − cn − µn)xn + µnvn)(1.1)

xn+1 = P (αnTyn + βnTzn + (1− αn − βn − λn)xn + λnwn), n ≥ 1,
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where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn}, {λn} are appropriate sequences in
[0, 1] and {un}, {vn} and {wn} are bounded sequences in C.

If an = cn = βn = γn = µn = λn ≡ 0, then (1.1) reduces to the iteration scheme
defined by Shahzad [13]

yn = P (bnTxn + (1− bn)xn)

xn+1 = P (αnTyn + (1− αn)xn), n ≥ 1,(1.2)

where {bn}, {αn} are appropriate sequences in [0, 1].
If T : C → C, then the iterative scheme (1.1) reduces to the three-step iterations

with errors

zn = anTxn + (1− an − γn)xn + γnun

yn = bnTzn + cnTxn + (1− bn − cn − µn)xn + µnvn(1.3)

xn+1 = αnTyn + βnTzn + (1− αn − βn − λn)xn + λnwn, n ≥ 1,

where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn}, {λn} are appropriate sequences in
[0, 1] and {un}, {vn} and {wn} are bounded sequences in C.

The purpose of this paper is to establish weak and strong convergence results of
the iterative scheme (1.1) for completely continuous nonexpansive nonself-mappings
in a uniformly convex Banach space. Our results extend and improve the corre-
sponding ones announced by Shahzad [13], Tan and Xu [16] and others.

Now, we recall the well known concepts and results.
Recall that a Banach space X is said to satisfy Opial’s condition [9] if xn → x

weakly as n →∞ and x 6= y imply that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.1 ([16], Lemma 1 ). Let {an}, {bn} and {δn} be sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ...,

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then
(1) limn→∞ an exists .
(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 1.2 ([7], Lemma 1.4 ). Let X be a uniformly convex Banach space and
Br = {x ∈ X : ‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing,
and convex function g : [0,∞) → [0,∞), g(0) = 0 such that

‖αx + βy + µz + λw‖2 ≤ α‖x‖2 + β‖y‖2 + µ‖z‖2 + λ‖w‖2 − αβg(‖x− y‖),
for all x, y, z, w ∈ Br, and all α, β, µ, λ ∈ [0, 1] with α + β + µ + λ = 1.

Lemma 1.3 (Browder [1]). Let X be a uniformly convex Banach space, C a
nonempty closed convex subset of X and T : C → X be a nonexpansive map-
ping. Then I − T is demiclosed at 0, i.e., if xn → x weakly and xn − Txn → 0
strongly, then x ∈ F (T ), where F (T ) is the set of fixed point of T .
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Lemma 1.4 ([14], Lemma 2.7 ). Let X be a Banach space which satisfies Opial’s
condition and let {xn} be a sequence in X . Let u, v ∈ X be such that limn→∞ ‖xn−
u‖ and limn→∞ ‖xn− v‖ exist. If {xnk

} and {xmk
} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.

2. Main Results

In this section, we prove weak and strong convergence theorems of the new three-
step iterative scheme (1.1) for nonexpansive nonself-mapping in a uniformly convex
Banach space. In order to prove our main results, the following lemma is needed.

Lemma 2.1. Let X be a uniformly convex Banach space, and let C be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let
T : C → X be a nonexpansive nonself-mapping with F (T ) 6= ∅. Let {an}, {bn}, {cn},
{αn}, {βn}, {γn}, {µn} and {λn} be real sequences in [0, 1] such that an + γn, bn +
cn +µn and αn +βn +λn are in [0, 1] for all n ≥ 1, and

∑∞
n=1 γn < ∞,

∑∞
n=1 µn <

∞,
∑∞

n=1 λn < ∞, and let {un}, {vn} and {wn} be bounded sequences in C. For a
given x1 ∈ C, let {xn}, {yn} and {zn} be the sequences defined as in (1.1).

(i) If q is a fixed point of T , then limn→∞ ‖xn − q‖ exists.
(ii) If 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < 1, then limn→∞ ‖Tyn

−xn‖ = 0.
(iii) If either 0 < lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1 or 0 <

lim infn→∞ αn and 0 < lim infn→∞ bn ≤ lim supn→∞(bn +cn +µn) < 1, then
limn→∞ ‖Tzn − xn‖ = 0.

(iv) If the following conditions
(a) 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < 1 and
(b) either 0 < lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1 and

lim supn→∞ an < 1 or 0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn +
µn) < 1

are satisfied, then limn→∞ ‖Txn − xn‖ = 0.

Proof. Let q ∈ F (T ), by boundedness of the sequence {un}, {vn} and {wn}, we can
put

M = max{sup
n≥1

‖un − q‖, sup
n≥1

‖vn − q‖, sup
n≥1

‖wn − q‖}.

(i) For each n ≥ 1, we have

‖xn+1 − q‖ = ‖P (αnTyn + βnTzn + (1− αn − βn − λn)xn + λnwn)− P (q)‖
(2.1)

≤ ‖αnTyn + βnTzn + (1− αn − βn − λn)xn + λnwn − q‖
≤ αn‖Tyn − q‖+ βn‖Tzn − q‖

+ (1− αn − βn − λn)‖xn − q‖+ λn‖wn − q‖
≤ αn‖yn − q‖+ βn‖zn − q‖+ (1− αn − βn − λn)‖xn − q‖+ Mλn,

‖zn − q‖ = ‖P (anTxn + (1− an − γn)xn + γnun)− P (q)‖(2.2)

≤ an‖Txn − q‖+ (1− an − γn)‖xn − q‖+ γn‖un − q‖
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≤ an‖xn − q‖+ (1− an − γn)‖xn − q‖+ Mγn

≤ ‖xn − q‖+ Mγn

and

‖yn − q‖ = ‖P (bnTzn + cnTxn + (1− bn − cn − µn)xn + µnvn)− P (q)‖
≤ bn‖Tzn − q‖+ cn‖Txn − q‖

+ (1− bn − cn − µn)‖xn − q‖+ µn‖vn − q‖
≤ bn‖zn − q‖+ cn‖xn − q‖+ (1− bn − cn − µn)‖xn − q‖+ Mµn

≤ bn‖zn − q‖+ (1− bn)‖xn − q‖+ Mµn.

From (2.2) we get

‖yn − q‖ ≤ bn(‖xn − q‖+ Mγn) + (1− bn)‖xn − q‖+ Mµn(2.3)

= ‖xn − q‖+ εn
(1),

where εn
(1) = Mbnγn + Mµn. Since

∑∞
n=1 γn < ∞ and

∑∞
n=1 µn < ∞, we have∑∞

n=1 εn
(1) < ∞.

From (2.1), (2.2) and (2.3) we get

‖xn+1 − q‖ ≤ αn(‖xn − q‖+ εn
(1)) + βn(‖xn − q‖+ Mγn)(2.4)

+ (1− αn − βn − λn)‖xn − q‖+ Mλn

= αn‖xn − q‖+ αnεn
(1) + βn‖xn − q‖+ Mβnγn

+ (1− αn − βn − λn)‖xn − q‖+ Mλn

≤ ‖xn − q‖+ εn
(2),

where εn
(2) = αnεn

(1) + Mβnγn + Mλn. Since
∑∞

n=1 εn
(2) < ∞ we obtain from (2.4)

and Lemma 1.1 that limn→∞ ‖xn − q‖ exists.
(ii) By (i) we have that limn→∞ ‖xn − q‖ exists for any q ∈ F (T ). It follows from
(2.2) and (2.3) that {xn−q}, {Txn−q}, {zn−q}, {Tzn−q}, {yn−q} and {Tyn−q}
are bounded sequences. This allows us to put

K = max{M, sup
n≥1

‖xn − q‖, sup
n≥1

‖Txn − q‖, sup
n≥1

‖zn − q‖,

sup
n≥1

‖Tzn − q‖, sup
n≥1

‖yn − q‖, sup
n≥1

‖Tyn − q‖}.

Since 0 < lim infn→∞ αn ≤ lim supn→∞(αn +βn +λn) < 1, It follows from (2.2) and
(2.3) that

‖zn − q‖2 ≤ ‖xn − q‖2 + εn
(3)(2.5)

‖yn − q‖2 ≤ ‖xn − q‖2 + εn
(4),(2.6)

where εn
(3) = M2γ2

n + 2MKγn and εn
(4) = (εn

(1))
2 + 2Kεn

(1). Since
∑∞

n=1 εn
(3) < ∞

and
∑∞

n=1 εn
(4) < ∞, by Lemma 1.2, there is a continuous strictly increasing convex

function g : [0,∞) → [0,∞), g(0) = 0 such that

‖λx + βy + γz + µw‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2 + µ‖w‖2 − λβg(‖x− y‖)(2.7)
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for all x, y, z, w ∈ BK and all λ, β, γ, µ ∈ [0, 1] with λ + β + γ = 1. By (2.5), (2.6)
and (2.7), we have

‖xn+1 − q‖2 = ‖P (αnTyn + βnTzn(2.8)

+ (1− αn − βn − λn)xn + λnwn)− P (q)‖2

≤ ‖αn(Tyn − q) + βn(Tzn − q)

+ (1− αn − βn − λn)(xn − q) + λn(wn − q)‖2

≤ αn‖Tyn − q‖2 + βn‖Tzn − q‖2

+ (1− αn − βn − λn)‖xn − q‖2 + λn‖wn − q‖2

− αn(1− αn − βn − λn)g(‖Tyn − xn‖)
≤ αn‖yn − q‖2 + βn‖zn − q‖2 + (1− αn − βn − λn)‖xn − q‖2

+ K2λn − αn(1− αn − βn − λn)g(‖Tyn − xn‖)
≤ αn(‖xn − q‖2 + εn

(4)) + βn(‖xn − q‖2 + εn
(3))

+ (1− αn − βn − λn)‖xn − q‖2 + K2λn

− αn(1− αn − βn − λn)g(‖Tyn − xn‖)
= αn‖xn − q‖2 + αnεn

(4) + βn‖xn − q‖2 + βnεn
(3)

+ (1− αn − βn − λn)‖xn − q‖2 + K2λn

− αn(1− αn − βn − λn)g(‖Tyn − xn‖)
≤ ‖xn − q‖2 + εn

(5) − αn(1− αn − βn − λn)g(‖Tyn − xn‖),
where εn

(5) = αnεn
(4)+βnεn

(3)+K2λn. It is worth to note here that
∑∞

n=1 εn
(5) < ∞ since∑∞

n=1 εn
(4) < ∞,

∑∞
n=1 εn

(3) < ∞, and
∑∞

n=1 λn < ∞. Since 0 < lim infn→∞ αn ≤
lim supn→∞(αn + βn + λn) < 1, there exists n0 ∈ N and δ1, δ2 ∈ (0, 1) such that
0 < δ1 < αn and αn + βn + λn < δ2 < 1 for all n ≥ n0. Hence, by (2.8), we have

δ1(1− δ2)
m∑

n=n0

g(‖Tyn − xn‖) <
m∑

n=n0

(‖xn − q‖2 − ‖xn+1 − q‖2) +
m∑

n=n0

εn
(5)(2.9)

= ‖xn0 − q‖2 +
m∑

n=n0

εn
(5).

Since
∑∞

n=n0
εn
(5) < ∞, by letting m → ∞ in (2.9) we get

∑∞
n=n0

g(‖Tyn − xn‖) <

∞, and therefore limn→∞ g(‖Tyn − xn‖) = 0. Since g is strictly increasing and
continuous at 0 with g(0) = 0, it follows that limn→∞ ‖Tyn − xn‖ = 0.
(iii) First, we assume that 0 < lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1. By
(2.7), we have

‖xn+1 − q‖2 ≤ αn‖yn − q‖2 + βn‖zn − q‖2(2.10)

+ (1− αn − βn − λn)‖xn − q‖2 + K2λn

− βn(1− αn − βn − λn)g(‖Tzn − xn‖)
≤ αn(‖xn − q‖2 + εn

(4)) + βn(‖xn − q‖2 + εn
(3))
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+ (1− αn − βn − λn)‖xn − q‖2 + K2λn

− βn(1− αn − βn − λn)g(‖Tzn − xn‖)
= αn‖xn − q‖2 + αnεn

(4) + βn‖xn − q‖2 + βnεn
(3)

+ (1− αn − βn − λn)‖xn − q‖2 + K2λn

− βn(1− αn − βn − λn)g(‖Tzn − xn‖)
≤ ‖xn − q‖2 + εn

(5) − βn(1− αn − βn − λn)g(‖Tzn − xn‖),
where εn

(5) = αnεn
(4) + βnεn

(3) + K2λn. Since 0 < lim infn→∞ βn ≤ lim supn→∞(αn +
βn + λn) < 1, there exists n0 ∈ N and δ1, δ2 ∈ (0, 1) such that 0 < δ1 < βn

and αn + βn + λn < δ2 < 1 for all n ≥ n0. Hence, by (2.10), we have εn
(5) =

αnεn
(4) + βnεn

(3) + K2λn.

δ1(1− δ2)
m∑

n=n0

g(‖Tzn − xn‖) <

m∑
n=n0

(‖xn − q‖2 − ‖xn+1 − q‖2) +
m∑

n=n0

εn
(5)(2.11)

= ‖xn0 − q‖2 +
m∑

n=n0

εn
(5).

Since
∑∞

n=n0
εn
(5) < ∞, by letting m →∞ in (2.11) we get

∑∞
n=n0

g(‖Tzn − xn‖) <

∞, and therefore limn→∞ g(‖Tzn − xn‖) = 0. Since g is strictly increasing and
continuous at 0 with g(0) = 0, it follows that limn→∞ ‖Tzn − xn‖ = 0.

Next, we assume that 0 < lim infn→∞ αn and lim infn→∞ bn ≤ lim supn→∞(bn +
cn + µn) < 1. By (2.5) and (2.7), we have

‖yn − q‖2 = ‖P (bnTzn + cnTxn(2.12)

+ (1− bn − cn − µn)xn + µnvn)− P (q)‖2

≤ ‖bn(Tzn − q) + cn(Txn − q)

+ (1− bn − cn − µn)(xn − q) + µn(vn − q)‖2

≤ bn‖Tzn − q‖2 + cn‖Txn − q‖2

+ (1− bn − cn − µn)‖xn − q‖2 + µn‖vn − q‖2

− bn(1− bn − cn − µn)g(‖Tzn − xn‖)
≤ bn‖zn − q‖2 + cn‖xn − q‖2

+ (1− bn − cn − µn)‖xn − q‖2 + µnK2

− bn(1− bn − cn − µn)g(‖Tzn − xn‖)
≤ bn(‖xn − q‖2 + εn

(3)) + cn‖xn − q‖2

+ (1− bn − cn − µn)‖xn − q‖2 + µnK2

− bn(1− bn − cn − µn)g(‖Tzn − xn‖)
≤ ‖xn − q‖2 + εn

(6) − bn(1− bn − cn − µn)g(‖Tzn − xn‖),
where εn

(6) = bnεn
(3) + µnK2.
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By (2.5), (2.7) and (2.12), we also have

‖xn+1 − q‖2 = ‖P (αnTyn + βnTzn

(2.13)

+ (1− αn − βn − λn)xn + λnwn)− P (q)‖2

≤ ‖αn(Tyn − q) + βn(Tzn − q)

+ (1− αn − βn − λn)(xn − q) + λn(wn − q)‖2

≤ αn‖yn − q‖2 + βn‖zn − q‖2 + (1− αn − βn − λn)‖xn − q‖2 + K2λn

= αn(‖xn − q‖2 + εn
(6) − bn(1− bn − cn − µn)g(‖Tzn − xn‖))

+ βn(‖xn − q‖2 + εn
(3)) + (1− αn − βn − λn)‖xn − q‖2 + K2λn

= αn‖xn − q‖2 + αnεn
(6) − αnbn(1− bn − cn − µn)g(‖Tzn − xn‖)

+ βn‖xn − q‖2 + βnεn
(3) + (1− αn − βn − λn)‖xn − q‖2 + K2λn

≤ ‖xn − q‖2 + εn
(7) − αnbn(1− bn − cn − µn)g(‖Tzn − xn‖),

where εn
(7) = αnεn

(6) + βnεn
(3) + K2λn.

It is worth to note here that
∑∞

n=1 εn
(7) < ∞ since

∑∞
n=1 εn

(6) < ∞,
∑∞

n=1 εn
(3) < ∞,

and
∑∞

n=1 λn < ∞.
By our assumption 0 < lim infn→∞ αn and 0 < lim infn→∞ bn ≤ lim supn→∞(bn +

cn + µn) < 1, there exists n0 ∈ N and δ1, δ2 ∈ (0, 1) such that 0 < δ1 < αn,
0 < δ1 < bn and bn + cn + µn < δ2 < 1 for all n ≥ n0. Hence, by (2.13), we have

δ2
1(1− δ2)

m∑
n=n0

g(‖Tzn − xn‖) <

m∑
n=n0

(‖xn − q‖2 − ‖xn+1 − q‖2) +
m∑

n=n0

εn
(7)(2.14)

= ‖xn0 − q‖2 +
m∑

n=n0

εn
(7).

Since
∑∞

n=n0
εn
(7) < ∞, by letting m →∞ in (2.14) we get

∑∞
n=n0

g(‖Tzn − xn‖) <

∞, and therefore limn→∞ g(‖Tzn − xn‖) = 0. Since g is strictly increasing and
continuous at 0 with g(0) = 0, it follows that limn→∞ ‖Tzn − xn‖ = 0.
(iv) Suppose that the conditions (1) and (2) are satisfied. Then by (ii) and (iii), we
have

(2.15) lim
n→∞ ‖Tyn − xn‖ = 0 and lim

n→∞ ‖Tzn − xn‖ = 0.

From zn = P (anTxn + (1− an − γn)xn + γnun) and yn = P (bnTzn + cnTxn + (1−
bn − cn − µn)xn + µnvn), we have ‖zn − xn‖ ≤ an‖Txn − xn‖ + γn‖un − xn‖ and
‖yn − xn‖ ≤ bn‖Tzn − xn‖+ cn‖Txn − xn‖+ µn‖vn − xn‖. It follows that

‖Txn − xn‖ ≤ ‖Txn − Tzn‖+ ‖Tzn − xn‖
≤ ‖xn − zn‖+ ‖Tzn − xn‖
≤ an‖Txn − xn‖+ γn‖un − zn‖+ ‖Tzn − xn‖,
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which implies

(1− an)‖Txn − xn‖ ≤ γn‖un − zn‖+ ‖Tzn − xn‖.
If lim supn→∞ an < 1, this together with (2.15) and limn→∞ γn = 0 imply that

limn→∞ ‖Txn − xn‖ = 0.
If lim supn→∞(bn + cn + µn) < 1, there exists a positive integer N0 and η ∈ (0, 1)

such that
cn ≤ bn + cn + µn < η ∀n ≥ N0.

Then for n ≥ N0, we have

‖Txn − xn‖ ≤ ‖Txn − Tyn‖+ ‖Tyn − xn‖
≤ ‖xn − yn‖+ ‖Tyn − xn‖
≤ bn‖Tzn − xn‖+ cn‖Txn − xn‖

+ µn‖vn − xn‖+ ‖Tyn − xn‖
≤ bn‖Tzn − xn‖+ η‖Txn − xn‖

+ µn‖vn − xn‖+ ‖Tyn − xn‖.
Hence

(1− η)‖Txn − xn‖ ≤ bn‖Tzn − xn‖+ µn‖vn − xn‖+ ‖Tyn − xn‖.
This together with (2.15) and the fact that µn → 0 as n →∞ imply limn→∞ ‖Txn−
xn‖ = 0. ¤

Theorem 2.2. Let X be a uniformly convex Banach space, and let C be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :
C → X be a completely continuous nonexpansive nonself-mapping with F (T ) 6= ∅.
Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn} and {λn} be sequences of real numbers
in [0, 1] with an + γn ∈ [0, 1], bn + cn + µn ∈ [0, 1] and αn + βn + λn ∈ [0, 1] for all
n ≥ 1, and

∑∞
n=1 γn < ∞,

∑∞
n=1 µn < ∞,

∑∞
n=1 λn < ∞. If

(i) 0 < min{lim infn→∞ αn, lim infn→∞ βn} ≤ lim supn→∞(αn + βn + λn) < 1
and lim supn→∞ an < 1 or

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞(αn+βn+λn) < 1 and 0 < lim infn→∞ bn ≤
lim supn→∞(bn + cn + µn) < 1,

then the sequences {xn}, {yn} and {zn} defined by the iterative scheme (1.1) con-
verge strongly to a fixed point of T.

Proof. It follows from Lemma 2.1(i) that {xn} is bounded. Again by Lemma 2.1 ,
we have

lim
n→∞ ‖Tyn − xn‖ = 0,

lim
n→∞ ‖Tzn − xn‖ = 0,(2.16)

lim
n→∞ ‖Txn − xn‖ = 0.

Since T is completely continuous and {xn} is bounded, there exists a subsequence
{xnk

} of {xn} such that {Txnk
} converges. Hence, by limn→∞ ‖Txn − xn‖ = 0, it

follows that {xnk
} converges. Let limn→∞ xnk

= q. By continuity of T and (2.16)
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we have that Tq = q, so q is a fixed point of T . By Lemma 2.1 (i), limn→∞ ‖xn− q‖
exists. But limk→∞ ‖xnk

− q‖ = 0, so limn→∞ ‖xn − q‖ = 0. By (2.16), we have

‖yn − xn‖ = ‖P (bnTzn + cnTxn

+ (1− bn − cn − µn)xn + µnvn)− P (xn)‖
≤ bn‖Tzn − xn‖+ cn‖Txn − xn‖+ µn‖vn − xn‖
→ 0 (as n →∞),

and ‖zn − xn‖ = ‖P (anTxn + (1− an − γn)xn + γnun)− P (xn)‖
≤ an‖Txn − xn‖+ γn‖un − xn‖
→ 0 (as n →∞).

It follows that limn→∞ yn = q and limn→∞ zn = q . ¤

If T is a self-mapping, then the iterative scheme (1.1) reduces to that of (1.3)
and the following result is directly obtained by Theorem 2.2.

Theorem 2.3. Let X be a uniformly convex Banach space, and C a nonempty
closed convex subset of X. Let T be a completely continuous nonexpansive self-
mapping of C with F (T ) 6= ∅. Let {an}, {bn}, {cn}, {αn}, {βn} be sequences of real
numbers in [0, 1] with bn + cn ∈ [0, 1] and αn + βn ∈ [0, 1] for all n ≥ 1 . If

(i) 0 < min{lim infn→∞ αn, lim infn→∞ βn} ≤ lim supn→∞(αn + βn + λn) < 1
and lim supn→∞ an < 1 or

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞(αn+βn+λn) < 1 and 0 < lim infn→∞ bn ≤
lim supn→∞(bn + cn + µn) < 1,

then the sequences {xn}, {yn} and {zn} defined by the iterations (1.3) converge
strongly to a fixed point of T.

When cn = βn = γn = µn = λn ≡ 0 in Theorem 2.2 , the following result is
obtained.

Theorem 2.4. Let X be a uniformly convex Banach space, and let C be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let
T : C → X be a completely continuous nonexpansive nonself-mapping with F (T ) 6=
∅. Let {an}, {bn}, {αn} be real sequences in [0, 1] satisfying

(i) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1, and
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

For a given x1 ∈ C, define

zn = P (anTxn + (1− an)xn)

yn = P (bnTzn + (1− bn)xn), n ≥ 1

xn+1 = P (αnTyn + (1− αn)xn).

Then {xn}, {yn} and {zn} converge strongly to a fixed point of T .

When an = cn = βn = γn = µn = λn ≡ 0 in Theorem 2.2 , we obtain the
following result.
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Theorem 2.5. Let X be a uniformly convex Banach space, and let C be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let
T : C → X be a completely continuous nonexpansive nonself-mapping with F (T ) 6=
∅. Let {bn}, {αn} be a real sequences in [0, 1] satisfying

(i) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1, and
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

For a given x1 ∈ C, define

yn = P (bnTzn + (1− bn)xn)

xn+1 = P (αnTyn + (1− αn)xn), n ≥ 1.

Then {xn} and {yn} converge strongly to a fixed point of T .

In the next result, we prove weak convergence of the iterations scheme (1.1)
for nonexpansive nonself-mapping in a uniformly convex Banach space satisfying
Opial’s condition.

Theorem 2.6. Let X be a uniformly convex Banach space which satisfies Opial’s
condition, and C a nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let T : C → X be a nonexpansive nonself-mapping with
F (T ) 6= ∅. Let {an}, {bn}, {cn}, {αn}, {βn}, {µn}, {λn} be sequences of real numbers
in [0, 1] with an + γn, bn + cn + µn and αn + βn + λn are in [0, 1] for all n ≥ 1, and∑∞

n=1 γn < ∞,
∑∞

n=1 µn < ∞,
∑∞

n=1 λn < ∞. If
(i) 0 < min{lim infn→∞ αn, lim infn→∞ βn} ≤ lim supn→∞(αn + βn + λn) < 1

and lim supn→∞ an < 1 or
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞(αn+βn+λn) < 1 and 0 < lim infn→∞ bn ≤

lim supn→∞(bn + cn + µn) < 1,

then the sequences {xn}, {yn} and {zn} defined by the iterative scheme (1.1) con-
verge weakly to a fixed point of T.

Proof. It follows from Lemma 2.1 that limn→∞ ‖Txn−xn‖ = 0 and limn→∞ ‖Tzn−
xn‖ = 0. Since X is uniformly convex and {xn} is bounded, we may assume that
xn → u weakly as n → ∞, without loss of generality. By Lemma 1.3, we have
u ∈ F (T ). Suppose that subsequences {xnk

} and {xmk
} of {xn} converge weakly

to u and v, respectively. From Lemma 1.3, u, v ∈ F (T ). By Lemma 2.1 (i),
limn→∞ ‖xn−u‖ and limn→∞ ‖xn−v‖ exist. It follows from Lemma 1.4 that u = v.
Therefore {xn} converges weakly to a fixed point u of T . Since ‖yn − xn‖ ≤
bn‖Tzn − xn‖ + cn‖Txn − xn‖ + µn‖vn − xn‖ → 0 (as n → ∞) and ‖zn − xn‖ ≤
an‖Txn− xn‖+ γn‖un− xn‖ → 0 (as n →∞) and xn → u weakly as n →∞, it
follows that yn → u and zn → u weakly as n →∞. ¤
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