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STRONG CONVERGENCE TO ZEROS OF ACCRETIVE
OPERATORS IN BANACH SPACES

KAZUHIDE NAKAJO

Abstract. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let A ⊂ E×
E be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I +λA).
Then, we consider a sequence {xn} generated by x ∈ C, xn = αnx + (1 −
αn)Jλnxn (∀n ∈ N), where {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and Jλn is the resolvent
of A and prove that if limn→∞ αn = limn→∞ αn/λn = 0, {xn} converges strongly
to some element of A−10. And we consider a sequence {xn} generated by x1 =
x ∈ C, xn+1 = αnx + (1− αn)Jλnxn (∀n ∈ N), where {αn} ⊂ [0, 1] and {λn} ⊂
(0,∞) and proved that if limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn−αn+1| < ∞,

lim infn→∞ λn > 0 and
∑∞

n=1 |λn −λn+1| < ∞, {xn} converges strongly to some

element of A−10.

1. Introduction

Throughout this paper, let E be a real Banach space with norm ‖ · ‖ and let
N be the set of all positive integers. Let A ⊂ E × E be an m-accretive operator
such that A−10 6= ∅. An m-accretive operator is equivalent to a maximal monotone
operator in a Hilbert space. Let x ∈ E and {λn} ⊂ (0,∞). At first, Rockafellar
[21] considered the proximal point algorithm, i.e. x1 = x, xn+1 = Jλnxn (∀n ∈ N)
where Jλn is the resolvent of A and proved weak convergence to an element of A−10
in a Hilbert space. But the strong convergence of the proximal point algorithm
failed; see Gűler [7]. So, Kamimura and Takahashi [10] considered a sequence {xn}
generated by Halpern type iteration [8], that is,

(1) x1 = x, xn+1 = αnx + (1− αn)Jλnxn (∀n ∈ N)

where {αn} ⊂ [0, 1] and they proved that {xn} converges strongly to an element
of A−10 if limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ λn = ∞. Then, Kamimura

and Takahashi [11, 12] extended this result to a Banach space, (see also [27]). And
Solodov and Svaiter [25], Bauschke and Combettes [2] and the author and Takahashi
[14] considered a sequence generated by Haugazeau’s hybrid method [9] and proved
strong convergence to an element of A−10 in a Hilbert space, (see also [15, 17]).
Then, Kamimura and Takahashi [13] and Ohsawa and Takahashi [19] extended
Solodov and Svaiter’s result to a Banach space, separately. And author, K. Shimoji
and W. Takahashi [18] considered a sequence {xn} generated by Browder type [3],
that is,

(2) xn = αnx + (1− αn)Jλnxn (∀n ∈ N)
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where {αn} ⊂ (0, 1) and proved strong convergence to an element of A−10 in a
Hilbert space when limn→∞ αn = limn→∞ αn/λn = 0.

In this paper, we extend the result [18] to a Banach space in section 3. Next, we
prove strong convergence to an element of A−10 by (1) under lim infn→∞ λn > 0 in
section 4.

2. Preliminaries and Lemmas

We write xn → x to indicate that a sequence {xn} converges strongly to x. Let
C be a subset of E and let T : C −→ E. T is called Lipschitzian if there exists
a nonnegative number k such that ‖Tx − Ty‖ ≤ k‖x − y‖ for all x, y ∈ C. T is
said to be a contraction if T is Lipschitzian with k < 1. T is called nonexpansive
if T is Lipschitzian with k = 1, that is, ‖Tx − Ty‖ ≤ ‖x − y‖ holds for each
x, y ∈ C. We denote by F (T ) the set of all fixed points of T . We define the
modulus of convexity of E δE as follows: δE is a function of [0, 2] into [0, 1] such
that δE(ε) = inf{1−‖x + y‖/2 : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε} for every ε ∈ [0, 2].
E is called uniformly convex if δE(ε) > 0 for each ε > 0. E is called strictly
convex if ‖x + y‖/2 < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. In a
strictly convex Banach space E, we have that if ‖x‖ = ‖y‖ = ‖λx + (1 − λ)y‖
for x, y ∈ E and λ ∈ (0, 1), then x = y. It is known that a uniformly convex
Banach space is strictly convex. Let G = {g : [0,∞) −→ [0,∞) : g(0) = 0, g :
continuous, strictly increasing, convex}. Xu [29] proved the following theorem: Let
E be a uniformly convex Banach space. Then, for every bounded subset B of E,
there exists gB ∈ G such that

(3) ‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)gB(‖x− y‖)

for all x, y ∈ B and 0 ≤ λ ≤ 1. E is said to be smooth if the limit

(4) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for every x, y ∈ S(E), where S(E) = {x ∈ E : ‖x‖ = 1}. And the norm of E
is said to be uniformly Gâteaux differentiable if for each y ∈ S(E), (4) is attained
uniformly for x ∈ S(E). It is known that the duality mapping J : E −→ 2E∗ is
single valued and norm to weak∗ uniformly continuous on bounded subsets of E
if E has a uniformly Gâteaux differentiable norm. Let µ be a continuous, linear
functional on l∞. We call µ a Banach limit [1] when µ satisfies ‖µ‖ = µ(1) = 1
and µn(an+1) = µn(an) for all {an} ∈ l∞. We know that lim infn→∞ an ≤ µn(an) ≤
lim supn→∞ an for every {an} ∈ l∞. We have the following from [28]; see also [5].

Lemma 2.1. Let C be a convex subset of E whose norm is uniformly Gâteaux
differentiable and let z ∈ C. Let {xn} ⊂ E be a bounded sequence and let µ be
a Banach limit. Then, µn‖xn − z‖2 = miny∈C µn‖xn − y‖2 if and only if µn(y −
z, J(xn − z)) ≤ 0 for all y ∈ C.

Let C be a convex subset of E and let K be a nonempty subset of C. Let P be
a retraction of C onto K, that is, Px = x for every x ∈ K. P is said to be sunny if
P (Px + t(x− Px)) = Px whenever Px + t(x− Px) ∈ C for x ∈ C and t ≥ 0. We
know the following [4, 20].
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Lemma 2.2. Let C be a convex subset of a smooth Banach space and let K be a
nonempty subset of C. Let P be a retraction of C onto K. Then, P is sunny and
nonexpansive if and only if (x − Px, J(y − Px)) ≤ 0 for every x ∈ C and y ∈ K.
Hence, there is at most one sunny, nonexpansive retraction of C onto K.

An operator A ⊂ E×E is called accretive if for (x1, y1), (x2, y2) ∈ A, there exists
j ∈ J(x1 − x2) such that (y1 − y2, j) ≥ 0, where J is the duality mapping of E. An
accretive operator A is said to satisfy the range condition if D(A) ⊂ R(I + λA) for
all λ > 0, where D(A) is the domain of A, R(I + λA) is the range of I + λA and
D(A) is the closure of D(A). And an accretive operator A is said to be m-accretive
if R(I + λA) = E for every λ > 0. If A is accretive, then we can define, for each
r > 0, a mapping Jr : R(I + rA) −→ D(A) by Jr = (I + rA)−1. Jr is called the
resolvent of A. We know that Jr is nonexpansive and A−10 = F (Jr) for every r > 0.
We also define the Yosida approximations Ar by Ar = (I − Jr)/r; see [26, 27] for
more details. We have the following result for the resolvents [16], see also [26, 27].

Lemma 2.3. Let A ⊂ E × E be an accretive operator which satisfies the range
condition. Then, 1

λ‖(I − Jλ)Jrx‖ ≤ 1
r‖(I − Jr)x‖ holds for every r, λ > 0 and

x ∈ R(I + rA).

And we have the following [6], see also [26, 27].

Lemma 2.4. Let A ⊂ E ×E be an accretive operator. Then, for each r, λ > 0 and
x ∈ R(I + rA) ∩R(I + λA), ‖Jλx− Jrx‖ ≤ |λ−r|

λ ‖x− Jλx‖ holds.

3. Browder Type

Using an idea of [23] (see also [24]), we get the following.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let A ⊂ E×E
be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I + λA). Let
{xn} be a sequence generated by (2), where x ∈ C, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞).
If limn→∞ αn = limn→∞

αn
λn

= 0, {xn} converges strongly to z ∈ A−10. Further if
Px := limn→∞ xn (∀x ∈ C), P is a sunny nonexpansive retraction of C onto A−10.

Proof. Let Tny = αnx + (1 − αn)Jλny for every n ∈ N and y ∈ C. We have
Tn : C −→ C and Tn is a contraction for all n ∈ N since Jλn is nonexpansive and
0 < αn < 1. So, for each n ∈ N, there exists a unique element xn ∈ C such that
xn = αnx + (1− αn)Jλnxn. Let z0 ∈ A−10. We get

‖xn − z0‖ = ‖αn(x− z0) + (1− αn)(Jλnxn − z0)‖
≤ αn‖x− z0‖+ (1− αn)‖Jλnxn − z0‖
≤ αn‖x− z0‖+ (1− αn)‖xn − z0‖

for every n ∈ N. So, we obtain ‖xn − z0‖ ≤ ‖x − z0‖ for all n ∈ N which implies
{xn} is bounded. Further, we have

‖xn − Jλnxn‖ = αn‖x− Jλnxn‖ ≤ αn(‖x− z0‖+ ‖Jλnxn − z0‖) ≤ 2αn‖x− z0‖
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for each n ∈ N. As limn→∞ αn = limn→∞ αn/λn = 0, we get

(5) lim
n→∞

‖xn − Jλnxn‖ = lim
n→∞

1
λn
‖xn − Jλnxn‖ = 0.

Let r > 0. We obtain

‖xn − Jrxn‖ ≤ ‖xn − Jλnxn‖+ ‖Jλnxn − JrJλnxn‖+ ‖JrJλnxn − Jrxn‖

≤ 2‖xn − Jλnxn‖+
r

λn
‖xn − Jλnxn‖

for every n ∈ N by Lemma 2.3. Therefore, we have

(6) lim
n→∞

‖xn − Jrxn‖ = 0

for all r > 0 from (5). Since Aλn is accretive, we get

αn(x− z0, J(xn − z0)) = αn(xn − z0, J(xn − z0))

+ (1− αn)((xn − Jλnxn)− (z0 − Jλnz0), J(xn − z0))

≥ αn‖xn − z0‖2

for every n ∈ N and z0 ∈ A−10. So, we obtain

(7) ‖xn − z0‖2 ≤ (x− z0, J(xn − z0))

for all n ∈ N. And we have

(xn − x, J(xn − z0)) =
1− αn

αn
(Jλnxn − xn, J(xn − z0))(8)

=
1− αn

αn
{(Jλnxn − z0, J(xn − z0))− (xn − z0, J(xn − z0))}

=
1− αn

αn
{(Jλnxn − z0, J(xn − z0))− ‖xn − z0‖2} ≤ 0

for each n ∈ N and z0 ∈ A−10. Let {xni} be a subsequence of {xn} and let µ be a
Banach limit. Let g be a real valued function on C defined by g(y) = µi‖xni − y‖2

for every y ∈ C. By [23, Proposition 2], we get g is continuous and convex, and g
satisfies lim‖y‖→∞ g(y) = ∞. So, there exists x0 ∈ C such that g(x0) = infy∈C g(y).
Let y1, y2 ∈ C with y1 6= y2 such that g(y1) = g(y2) = infy∈C g(y) and let B be a
bounded subset of E containig {xni − y1} and {xni − y2}. There exists gB ∈ G such
that ∥∥∥xni −

y1 + y2

2

∥∥∥2
=

∥∥∥1
2
(xni − y1) +

1
2
(xni − y2)

∥∥∥2

≤ 1
2
‖xni − y1‖2 +

1
2
‖xni − y2‖2 − 1

4
gB(‖y1 − y2‖)

which implies

g
(y1 + y2

2

)
≤ 1

2
g(y1) +

1
2
g(y2)−

1
4
gB(‖y1 − y2‖) < inf

y∈C
g(y).

This is a contradiction. So, we obtain y1 = y2. Therefore, there exists a unique
element y0 of C such that g(y0) = infy∈C g(y). We suppose y0 /∈ A−10. Let r > 0
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and let B be a bounded subset of E containing {xni − y0} and {xni − Jry0}. We
have∥∥∥xni −

Jry0 + y0

2

∥∥∥2
≤ 1

2
‖xni − y0‖2 +

1
2
‖xni − Jry0‖2 − 1

4
gB(‖y0 − Jry0‖)

≤ 1
2
‖xni − y0‖2 +

1
2
{‖xni − Jrxni‖+ ‖Jrxni − Jry0‖}2 − 1

4
gB(‖y0 − Jry0‖)

≤ 1
2
‖xni − y0‖2 +

1
2
{‖xni − Jrxni‖+ ‖xni − y0‖}2 − 1

4
gB(‖y0 − Jry0‖)

=
1
2
‖xni − y0‖2 +

1
2
{‖xni − Jrxni‖2 + 2‖xni − Jrxni‖ · ‖xni − y0‖

+ ‖xni − y0‖2} − 1
4
gB(‖y0 − Jry0‖)

for some gB ∈ G which implies

g
(Jry0 + y0

2

)
≤ 1

2
g(y0) +

1
2
g(y0)−

1
4
gB(‖y0 − Jry0‖) < inf

y∈C
g(y)

by (6). This is a contradiction. So, we get y0 ∈ A−10. It follows from (7) and Lemma
2.1 that µi‖xni − y0‖2 ≤ µi(x − y0, J(xni − y0)) ≤ 0. There exists a subsequence
{xnij

} of {xni} such that

lim
j→∞

‖xnij
− y0‖2 = 0

because

lim
j→∞

‖xnij
− y0‖2 = lim inf

i→∞
‖xni − y0‖2 ≤ µi‖xni − y0‖2 ≤ 0.

On the other hand, let {xni} and {xnj} be sebsequences of {xn} such that xni →
z1 ∈ A−10 and xnj → z2 ∈ A−10. By (8), we obtain (xni − x, J(xni − z2)) ≤ 0 for
all i ∈ N and (xnj − x, J(xnj − z1)) ≤ 0 for each j ∈ N. Since

|(xni − x, J(xni − z2))− (z1 − x, J(z1 − z2))|
≤ |(xni − x, J(xni − z2))− (z1 − x, J(xni − z2))|

+ |(z1 − x, J(xni − z2))− (z1 − x, J(z1 − z2))|
≤ ‖xni − z1‖ · ‖xni − z2‖+ |(z1 − x, J(xni − z2))− (z1 − x, J(z1 − z2))|

for every i ∈ N and J is norm to weak∗ uniformly continuous on bounded subsets
of E, we have (z1−x, J(z1− z2)) ≤ 0. Similarly, (z2−x, J(z2− z1)) ≤ 0. So, we get
‖z1 − z2‖2 = (z1 − z2, J(z1 − z2)) ≤ 0, that is, z1 = z2. Therefore, {xn} converges
strongly to some element of A−10. Hence, we can define a mapping P of C onto
A−10 by Px = limn→∞ xn because x is an arbitrary point of C. By the argument
above, we obtain (Px− x, J(Px− z0)) ≤ 0 for all x ∈ C and z0 ∈ A−10. So, P is a
sunny nonexpansive retraction from Lemma 2.2. �

The following generalizes the result of [18, Theorem 4.2].

Theorem 3.2. Let E be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable and let A ⊂ E × E be an m-accretive operator such that
A−10 6= ∅. Let {xn} be a sequence generated by (2), where x ∈ E, {αn} ⊂ (0, 1)
and {λn} ⊂ (0,∞). If limn→∞ αn = limn→∞

αn
λn

= 0, {xn} converges strongly to
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z ∈ A−10. Further if Px := limn→∞ xn (∀x ∈ E), P is a sunny nonexpansive
retraction of E onto A−10.

4. Halpern Type Iteration

Using the method employed in [22], we get the following.

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let A ⊂ E×E
be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I + λA). Let
{xn} be a sequence generated by (1), where x ∈ C, {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞).
If limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn − αn+1| < ∞, lim infn→∞ λn > 0

and
∑∞

n=1 |λn − λn+1| < ∞, {xn} converges strongly to z ∈ A−10. Further, if
Px := limn→∞ xn (∀x ∈ C), P is a sunny nonexpansive retraction of C onto A−10.

Proof. Let z0 ∈ A−10. We have ‖xn − z0‖ ≤ ‖x − z0‖ for every n ∈ N. In fact,
suppose that ‖xn − z0‖ ≤ ‖x− z0‖ for some n ∈ N. We get

‖xn+1 − z0‖ = ‖αn(x− z0) + (1− αn)(Jλnxn − z0)‖
≤ αn‖x− z0‖+ (1− αn)‖xn − z0‖ ≤ ‖x− z0‖.

So, {xn} is bounded. From Lemma 2.4, we obtain

‖xn+1 − xn‖ = ‖(αn − αn−1)x + (1− αn)Jλnxn − (1− αn−1)Jλn−1xn−1‖
= ‖(αn − αn−1)x + (1− αn)(Jλnxn − Jλn−1xn−1) + (αn−1 − αn)Jλn−1xn−1‖
≤ |αn − αn−1| · ‖x− Jλn−1xn−1‖

+ (1− αn){‖Jλnxn − Jλnxn−1‖+ ‖Jλnxn−1 − Jλn−1xn−1‖}
≤ |αn − αn−1| · ‖x− Jλn−1xn−1‖

+ (1− αn)
{
‖xn − xn−1‖+

|λn − λn−1|
λn

‖xn−1 − Jλnxn−1‖
}

≤ (|αn − αn−1|+ |λn − λn−1|) ·M0 + (1− αn)‖xn − xn−1‖
for every n = 2, 3, · · · , where M0 = sup

n=2,3,···
{‖x−Jλn−1xn−1‖+‖xn−1−Jλnxn−1‖/λn}.

Let m,n ∈ N. We have

‖xn+m+1 − xn+m‖
≤ (|αn+m − αn+m−1|+ |λn+m − λn+m−1|)M0 + (1− αn+m)‖xn+m − xn+m−1‖
≤ (|αn+m − αn+m−1|+ |λn+m − λn+m−1|)M0

+ (1− αn+m){(|αn+m−1 − αn+m−2|+ |λn+m−1 − λn+m−2|)M0

+ (1− αn+m−1)‖xn+m−1 − xn+m−2‖}
≤ {(|αn+m − αn+m−1|+ |λn+m − λn+m−1|) + (|αn+m−1 − αn+m−2|

+ |λn+m−1 − λn+m−2|)}M0 + (1− αn+m)(1− αn+m−1)‖xn+m−1 − xn+m−2‖
≤ · · ·

≤ M0 ·
{n+m−1∑

k=m

(|αk+1 − αk|+ |λk+1 − λk|)
}

+
{n+m−1∏

k=m

(1− αk+1)
}
‖xm+1 − xm‖.
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Hence, we get

lim sup
n→∞

‖xn+1 − xn‖ = lim sup
n→∞

‖xn+m+1 − xn+m‖

≤ M0 ·
{ ∞∑

k=m

(|αk+1 − αk|+ |λk+1 − λk|)
}

for each m ∈ N. By
∞∑

k=1

(|αk+1 − αk|+ |λk+1 − λk|) < ∞, limn→∞ ‖xn+1 − xn‖ = 0.

So, we obtain

(9) lim
n→∞

‖xn − Jλnxn‖ = 0

since ‖xn−Jλnxn‖ ≤ ‖xn−xn+1‖+‖xn+1−Jλnxn‖ ≤ ‖xn+1−xn‖+αn‖x−Jλnxn‖
and limn→∞ αn = 0. By Lemma 2.3, we have

‖xn − Jλmxn‖ ≤ ‖xn − Jλnxn‖+ ‖Jλnxn − JλmJλnxn‖+ ‖JλmJλnxn − Jλmxn‖

≤ 2‖xn − Jλnxn‖+
λm

λn
‖xn − Jλnxn‖

for all m,n ∈ N. Hence, from (9) and lim infn→∞ λn > 0, we get

(10) lim
n→∞

‖xn − Jλmxn‖ = 0

for every m ∈ N. Let {βm} ⊂ (0, 1) with limm→∞ βm = 0 and let {ym} be a
sequence of C such that ym = βmx+(1−βm)Jλmym for every m ∈ N. By Theorem
3.1, limm→∞ ym = z ∈ A−10. Let µ be a Banach limit. It follows from (10) and

‖xn − Jλmym‖2 ≤ ‖xn − Jλmxn‖2 + ‖xn − ym‖2 + 2‖xn − Jλmxn‖ · ‖xn − ym‖

for each n ∈ N that

(11) µn‖xn − Jλmym‖2 ≤ µn‖xn − ym‖2

for all m ∈ N. Since

(1− βm)(xn − Jλmym) = (xn − ym)− βm(xn − x),

we obtain

(1− βm)2‖xn − Jλmym‖2 ≥ ‖xn − ym‖2 − 2βm(xn − x, J(xn − ym))

= (1− 2βm)‖xn − ym‖2 + 2βm(x− ym, J(xn − ym))

for every m,n ∈ N. Hence, we have

(1− βm)2µn‖xn − Jλmym‖2

≥ (1− 2βm)µn‖xn − ym‖2 + 2βmµn(x− ym, J(xn − ym))

for all m ∈ N. By (11),

(1− βm)2µn‖xn − ym‖2

≥ (1− 2βm)µn‖xn − ym‖2 + 2βmµn(x− ym, J(xn − ym)),
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that is,

(12)
βm

2
µn‖xn − ym‖2 ≥ µn(x− ym, J(xn − ym))

for each m ∈ N. Let ε > 0. As J is norm to weak∗ uniformly continuous on bounded
subsets of E and ym → z, there exists m1 ∈ N such that for every m ≥ m1,

|(x− z, J(xn − z))− (x− z, J(xn − ym))| < ε

3
|(x− z, J(xn − ym))− (x− ym, J(xn − ym))| < ε

3
for all n ∈ N. And from (12) and βm → 0, there exists m2 ∈ N such that

µn(x− ym, J(xn − ym)) <
ε

3
for each m ≥ m2. Hence, there exists m0 ∈ N such that for every m ≥ m0,

µn(x− z, J(xn − z)) = {µn(x− z, J(xn − z))− µn(x− z, J(xn − ym))}
+ {µn(x− z, J(xn − ym))− µn(x− ym, J(xn − ym))}
+ µn(x− ym, J(xn − ym))

≤ ε

3
+

ε

3
+

ε

3
= ε.

Since ε is arbitrary,
µn(x− z, J(xn − z)) ≤ 0.

Further, by ‖xn+1 − xn‖ → 0, we get

|(x− z, J(xn − z))− (x− z, J(xn+1 − z))| → 0.

Therefore, we obtain

(13) lim sup
n→∞

(x− z, J(xn − z)) ≤ 0

by [22, Proposition 2]. From

(1− αn)(Jλnxn − z) = (xn+1 − z)− αn(x− z),

we have

(1− αn)2‖Jλnxn − z‖2 ≥ ‖xn+1 − z‖2 − 2αn(x− z, J(xn+1 − z))

for all n ∈ N. Let ε > 0. By (13), there exists n0 ∈ N such that

‖xn+1 − z‖2 ≤ (1− αn)2‖Jλnxn − z‖2 + 2αn(x− z, J(xn+1 − z))

≤ (1− αn)‖xn − z‖2 + {1− (1− αn)}ε

for every n ≥ n0. Hence,

‖xn+1 − z‖2

≤ (1− αn){(1− αn−1)‖xn−1 − z‖2 + (1− (1− αn−1))ε}+ {1− (1− αn)}ε
= (1− αn)(1− αn−1)‖xn−1 − z‖2 + {1− (1− αn)(1− αn−1)}ε
≤ · · ·
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≤ (1− αn)(1− αn−1) · · · (1− αn0)‖xn0 − z‖2

+ {1− (1− αn)(1− αn−1) · · · (1− αn0)}ε

for each n ≥ n0. Therefore, lim supn→∞ ‖xn+1 − z‖2 ≤ ε. Since ε is arbitrary,
we get xn → z ∈ A−10. Hence, we can define a mapping P of C onto A−10 by
Px = limn→∞ xn. From Theorem 3.1, P is a sunny nonexpansive retraction of C
onto A−10. �

We get the following result.

Theorem 4.2. Let E be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable and let A ⊂ E × E be an m-accretive operator such that
A−10 6= ∅. Let {xn} be a sequence generated by (1), where x ∈ E, {αn} ⊂ [0, 1]
and {λn} ⊂ (0,∞). If limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn − αn+1| < ∞,

lim infn→∞ λn > 0 and
∑∞

n=1 |λn−λn+1| < ∞, {xn} converges strongly to z ∈ A−10.
Further, if Px := limn→∞ xn (∀x ∈ E), P is a sunny nonexpansive retraction of E
onto A−10.

5. Application

Let βi ∈ (0, 1) (i = 1, 2, · · · , r) such that
∑r

i=1 βi = 1 and let C be a nonempty
closed convex subset of a strictly convex Banach space E. Let T1, T2, · · · , Tr be
nonexpansive mappings of C into itself with ∩r

i=1F (Ti) 6= ∅ and let T =
∑r

i=1 βiTi.
Then, T is nonexpansive of C into itself and F (T ) = ∩r

i=1F (Ti). In fact,
∩r

i=1F (Ti) ⊂ F (T ) is trivial. Let z ∈ F (T ) and u ∈ ∩r
i=1F (Ti). We get

‖z − u‖ = ‖β1(T1z − u) + β2(T2z − u) + · · ·+ βr(Trz − u)‖
≤ β1‖T1z − u‖+ β2‖T2z − u‖+ · · ·+ βr‖Trz − u‖
≤ β1‖z − u‖+ β2‖z − u‖+ · · ·+ βr‖z − u‖ = ‖z − u‖

which implies ‖T1z − u‖ = ‖T2z − u‖ = · · · = ‖Trz − u‖ = ‖z − u‖. Since E
is strictly convex, T1z = T2z = · · · = Trz = z. So, let A = I − T . We know
A ⊂ E × E is an accretive operator such that C = D(A) ⊂ ∩λ>0R(I + λA) and
A−10 = F (T ). Further, for λ > 0, x ∈ R(I + λA) and y ∈ D(A), we have
y = Jλx ⇐⇒ y = 1

1+λx + λ
1+λTy. So, we obtain the following by Theorem 4.1.

Theorem 5.1. Let C be a nonempty closed convex subset of a uniformly convex Ba-
nach space E whose norm is uniformly Gâteaux differentiable and let βi ∈ (0, 1) (i =
1, 2, · · · , r) such that

∑r
i=1 βi = 1. Let T1, T2, · · · , Tr be nonexpansive mappings of

C into itself such that ∩r
i=1F (Ti) 6= ∅ and let T =

∑r
i=1 βiTi. Let {xn} be a sequence

generated by x1 = x ∈ C, yn = 1
1+λn

xn + λn
1+λn

Tyn, xn+1 = αnx+(1−αn)yn (∀n ∈
N), where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞). If limn→∞ αn = 0,

∑∞
n=1 αn = ∞,∑∞

n=1 |αn − αn+1| < ∞, lim infn→∞ λn > 0 and
∑∞

n=1 |λn − λn+1| < ∞, {xn} con-
verges strongly to z ∈ ∩r

i=1F (Ti). Further, if Px := limn→∞ xn (∀x ∈ C), P is a
sunny nonexpansive retraction of C onto ∩r

i=1F (Ti).
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