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ON THE SIZE OF THE SET OF POINTS WHERE THE METRIC
PROJECTION IS DISCONTINUOUS∗

JAKUB DUDA

Abstract. We show that the set of points where the metric projection onto a
closed set in a separable Hilbert space is single-valued but discontinuous can be
covered by countably many d.c.-hypersurfaces. As a corollary, we get a similar
result for the metric projection onto a Čebyšev set. This complements a result
of Konyagin.

1. Introduction

Let X be real a Banach space and let ∅ 6= M ⊂ X be a closed set. Then we
define the distance function as

dist(x,M) = inf{‖x−m‖ : m ∈ M}

for any x ∈ X. The metric projection is a multi-valued mapping from X to P(X),
which is defined for any x ∈ X as

PM (x) = {m ∈ M : ‖x−m‖ = dist(x,M)}.

We will say that PM is continuous at x ∈ X provided PM (x) = {m} for some
m ∈ M and whenever xn → x and yn ∈ PM (xn), then yn → m. We say that M is
Čebyšev provided PM (x) is a singleton for every x ∈ X.

De Blasi and Myjak [DM] proved that if X is a Hilbert space, and A ⊂ X closed,
then the minimization problem (‖ · ‖, A, x) is well posed for all x outside some σ-
porous set (the problem (‖ · ‖, A, x) is well posed provided PA(x) = {y}, and yn → y
whenever yn ∈ A are such that ‖yn − x‖ → dist(x,A)). Zaj́ıček [Z4] showed that
the distance function to a closed set in a Banach space is Fréchet differentiable
outside an angle small set, provided the Banach space has a separable dual and
has a uniformly Fréchet differentiable norm. Matoušková [M] showed that if X is
a Banach space such that its norm is uniformly Fréchet differentiable, and its dual
norm is Fréchet differentiable, A ⊂ X is closed, then the set of points x ∈ X, where
(‖ · ‖, A, x) is not well posed, can be covered by a union of a σ-cone supported set
and a cone small set. It follows from [F, Corollary 3.5] that if the norm of X is
Fréchet differentiable, and if the norm of X∗ is Fréchet differentiable, then the set
of points of continuity of PA (for a closed A ⊂ X) in the above sense coincides with
the set of points x where (‖ · ‖, A, x) is well posed. See a recent survey article [Z2]
for more information about small sets in approximation theory. For various notions
of smoothness of norms, see e.g. [DGZ].
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Our main result is Theorem 3, which states that the set of points, where the
metric projection onto a closed set in a separable Hilbert space is single-valued but
discontinuous, can be covered by countably many d.c.-hypersurfaces. It is a well
known open problem whether a Čebyšev subset of the separable Hilbert space is
convex – see e.g. [V, BV] for a detailed account of this problem. Konyagin [K]
(see also [BV]) proved that if the set of discontinuity of the metric projection to a
Čebyšev set in a Hilbert space is nonempty, then it cannot be covered by finitely
many graphs of C1,1-functions (which are d.c. by [VZ, Proposition 1.11]). As a
corollary to Theorem 3, we obtain Corollary 4, which states that the set of points
of discontinuity of the metric projection onto a Čebyšev set in a separable Hilbert
space can be covered by countably many d.c.-hypersurfaces. This complements
Konyagin’s result.

In the proof of Theorem 3 we use a result of Fitzpatrick (see Theorem 1) which
provides a relationship between the differentiability of the distance function and
continuity of the metric projection in spaces with a sufficiently smooth norm. We
also apply two results due to Zaj́ıček: Theorem 2, which says that in spaces that
allow an equivalent Hilbert norm, the distance function to a closed set is locally d.c.
on the complement of that set; and [Z3, Theorem 2] which shows that the set of
points of Gâteaux non-differentiability of a convex function on a separable Banach
space can be covered by countably many d.c.-hypersurfaces.

2. Points of discontinuity of the metric projection

Let X be a Banach space. We say that D ⊂ X is a d.c.-hypersurface provided
there exists a 1-codimensional closed subspace Y ⊂ X, 0 6= v ∈ X, and continuous
convex functions f, g : Y → R such that D = {y + (f − g)(y) · v : y ∈ Y }. We
say that a subset M ⊂ X can be covered by countably many d.c.-hypersurfaces (or
“(c− c)-hypersurfaces” in the terminology of [Z3]) provided there exist Dj (j ∈ N)
such that each Dj is a d.c.-hypersurface and M ⊂

⋃
j Dj . For basic information

about d.c. functions (i.e. those function that can be written as a difference of two
continuous convex functions), see [VZ].

If ∅ 6= G ⊂ X is open, f : G → R, and x ∈ G. We say that f is Gâteaux
differentiable at x, provided limt→0 t−1(f(x + tv) − f(x)) =: T (v) exists for each
v ∈ X, and T is a continuous linear functional on X. If f is Gâteaux differentiable
at x, then we will denote Df(x) := T .

We will need the following theorem of S. Fitzpatrick:

Theorem 1 ([F], Corollary 3.6). Suppose that M is a closed subset of a Banach
space E such that the norm of E is both Fréchet differentiable and uniformly Gâteaux
differentiable and the norm of E∗ is Fréchet differentiable.

The following are equivalent for a point x of E \M :
(i) the function ϕ = dist(·,M) is Fréchet differentiable at x;
(ii) the function ϕ = dist(·,M) is Gâteux differentiable at x, and the norm of

Dϕ(x) is 1;
(iii) the metric projection onto M is continuous at x.

Zaj́ıček in [Z1] proved the following:
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Theorem 2 ([Z1], Theorem 5). Let X be a Banach space such that the Fréchet
derivative of the norm ‖ · ‖ is C-Lipschitz on SX , F ⊂ X is closed. Suppose that
on X there exists an equivalent Hilbert norm ‖ · ‖h. Then dist(·, F ) is locally d.c.
on X \ F .

Now we can prove the main theorem:

Theorem 3. Let H be the separable Hilbert space and F be a closed nonempty
subset of H. Then the set of points x where PF (x) = {y} for some y ∈ H, but PF

is not continuous at x, can be covered by countably many d.c. hypersurfaces.

Proof. Let ϕ(z) = dist(z, F ). Suppose that PF (x) = {y} and PF is not continuous
at x. If x = y, then x ∈ F and PF is continuous at x – a contradiction. Now suppose
that x 6∈ F . It means that ϕ(x) > 0. By Theorem 2 and by separability of H, we can
find open convex sets Un and Lipschitz convex functions fn, gn : Un → R, so that
H \F =

⋃
n Un and ϕ = fn− gn on Un. It is easily seen that fn, gn can be extended

to continuous convex functions defined on the whole space H – call the extensions
again fn, gn, and by [Z3, Theorem 2] there exist countably many d.c.-hypersurfaces
Dj so that points of Gâteaux non-differentiability of all fn and gn are contained in⋃

j Dj .
Without any loss of generality, we can (and do) assume that x = 0, ‖y‖ = 1, and

that ϕ is Gâteaux differentiable at 0. Then

lim
t→0

ϕ(ty)− ϕ(0)−Dϕ(0)ty
t

= 0

implies that Dϕ(0)y = −1 (because ϕ(ty) = 1 − t for 0 ≤ t < 1). This implies
that ‖Dϕ(0)‖ = 1 and that is a contradiction with condition (ii) of Theorem 1. It
follows that ϕ is not Gâteaux differentiable at x. As x ∈ Un for some n, it follows
that at least one of the functions fn or gn is not Gâteaux differentiable at x (as
a sum of two Gâteaux differentiable functions is again Gâteaux differentiable). So
x ∈

⋃
j Dj . �

Theorem 3 gives the following interesting corollary for Čebyšev sets, which com-
plements Konyagin’s result.

Corollary 4. Let M be a Čebyšev set in a separable Hilbert space. Then the set
of points where PM fails to be continuous can be covered by countably many d.c.-
hypersurfaces.
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[VZ] L. Veselý, L. Zaj́ıček, Delta-convex mappings between Banach spaces and applications, Dis-
sertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp.

[V] L. P. Vlasov, Approximative properties of sets in normed linear spaces, Uspekhi Mat. Nauk
28 (1973), 3–66; English transl. in Russian Math. Surveys 28 (1973).
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