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INCREASING-ALONG-RAYS PROPERTY FOR VECTOR
FUNCTIONS

GIOVANNI P. CRESPI, IVAN GINCHEV, AND MATTEO ROCCA

Abstract. In this paper we extend to the vector case the notion of increasing-
along-rays function. The proposed definition is given by means of a nonlinear
scalarization through the so-called oriented distance function from a point to a
set.

We prove that the considered class of functions enjoys properties similar to
those holding in the scalar case, with regard to optimization problems, relations
with (generalized) convex functions and characterization in terms of Minty type
variational inequalities.

1. Introduction

The notion of increasing-along-rays (IAR) scalar function arises mainly in the
study of abstract convexity (see e.g. [22]) and can be viewed as a generalization
of the concept of quasiconvex function. Properties of IAR scalar functions have
been investigated in [6, 7]. Here, several properties of this class of functions with
regard to optimization problems have been pointed out and furthermore it has been
shown that IAR functions can be characterized by means of a generalized Minty
variational inequality [21]. In this paper we extend to the vector case the notion
of IAR function. In Section 2 we briefly recall the notion of scalar IAR functions
and its basic properties. Since the proposed definition of increasing-along-rays vec-
tor function is given using a nonlinear scalarization, namely the so-called oriented
distance function from a point to a set, introduced in [17], Section 3 presents some
basic facts on this concept and the main relations between a vector minimization
problem and its scalarized counterpart. In Section 4 the notion of vector IAR func-
tion is presented and some basic properties with respect to vector optimization are
pointed out. Sections 5,6 and 7 are finally devoted to the investigation of the newly
defined class of functions. We underline that the introduced notion depends on the
norm in the image space. This fact was not relevant in the scalar case and we regard
it as a special feature of vector setting. Being interested in conditions on f which
make this property independent of the norm in the image space, we prove that
this is the case when vector convex functions are considered. Vector quasiconvex
functions do not enjoy the norm-independence property, but we prove that these
functions enjoy the increasing-along-rays property for a suitable choice of the norm
in the image space. Further, we show that vector increasing-along-rays functions
can be characterized in terms of existence of a solution of a (scalar) generalized
Minty variational inequality.

Key words and phrases. generalized convexity, increasing-along-rays property, star-shaped set,
Minty variational inequality.
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2. Scalar increasing-along-rays functions

Throughout the paper we consider finite dimensional normed spaces X and Y .
We refer to the norm in the considered spaces by ‖ · ‖, since it will be clear from
the context to which of the normed spaces it applies. Further, K will denote a
nonempty subset of X.

In this section we recall the notion of scalar-valued IAR function and some of its
basic properties which further we extend to a general space Y .

Definition 2.1. Let the subset K ⊆ X be star-shaped at x0. A function ϕ de-
fined on K is called increasing-along-rays at x0 (for short, ϕ ∈ IAR(K, x0)), if its
restriction on the segment Rx0,x ∩K, with Rx0,x = {x0 + αx|α ≥ 0}, is increasing,
for each x ∈ K. (A function g of one real variable is increasing on the interval I if
t2 ≥ t1, t1, t2 ∈ I implies g(t2) ≥ g(t1).)

When K = X, the function is increasing along the whole ray Rx0,x. We refer to
such special case as IAR

(
x0
)
. It is clear that when X = R and K is an interval,

ϕ ∈ IAR(K, x0) if and only if it is quasiconvex with a global minimum over K
at x0. However the following example shows that when n ≥ 2 and K is a convex
set, the class of functions ϕ ∈ IAR(K, x0) is broader then the class of quasiconvex
functions with a global minimum at x0.

Example 2.1. Let ϕ(x1, x2) = x2
1x

2
2, and K = R2. Then, for x0 =

(
0 , 0

)
it is

easily seen that ϕ ∈ IAR(K, x0), but ϕ is not quasiconvex.

We consider the following problem:

P (ϕ, K) min ϕ(x), x ∈ K ⊆ X.

A point x0 ∈ K is a (global) solution of P (ϕ, K) when ϕ(x)− ϕ(x0) ≥ 0, ∀x ∈ K.
The solution is strict if ϕ(x)−ϕ(x0) > 0, ∀x ∈ K\{x0}. We denote by argmin(ϕ, K)
the set of solutions of P (ϕ, K). Local solutions of P (ϕ, K) have a clear definition
and we omit it.

The properties which are stated in the following results motivate some of the
interest for the class IAR(K, x0) and are the core of the problems we present in the
following sections.

Proposition 2.1 ([6]). Let the subset K ⊆ X be star-shaped at x0 and ϕ ∈
IAR(K, x0). Then:

i) x0 is a solution of P (ϕ, K);
ii) no point x ∈ K, x 6= x0, can be a strict local solution of P (ϕ, K).
iii) argmin(ϕ, K) is star-shaped at x0.

Proposition 2.2 ([25]). Let the subset K ⊆ X be star-shaped at x0 and ϕ be a
function defined on K. Then ϕ ∈ IAR(K, x0) if and only if for each c ∈ R with
c ≥ ϕ(x0), the set lev≤cϕ = {x ∈ K : ϕ(x) ≤ c} is star-shaped at x0.

IAR functions can be, as well, characterized through some generalized variational
inequalities of Minty type (see e.g. [6, 7]). The following notions are classical and
are presented for the sake of completeness.
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Definition 2.2. Let the subset K ⊆ X be star-shaped at x0 and let ϕ be a function
defined on an open set containing K. The function ϕ is said to be radially lower
semicontinuous over K along rays starting at x0, if for each x ∈ K, the restriction
of ϕ on the interval Rx0,x ∩K is lower semicontinuous.

We write ϕ ∈ RLSC(K, x0) to denote that ϕ satisfies the previous definition.
For any real function ϕ defined on an open set containing K, the lower Dini direc-
tional derivative at the point x ∈ K in the direction u ∈ X is defined as an element
of R̄ := [−∞,+∞] by

ϕ′−(x, u) = lim inf
t→+0

ϕ(x + tu)− ϕ(x)
t

.

The problem of finding x0 ∈ K such that K is star-shaped at x0 and x0 satisfies
the inequalities

MV I(ϕ′−,K) ϕ′−(y, x0 − y) ≤ 0,∀y ∈ K

can be regarded as a generalized Minty variational inequality. This problem obvi-
ously reduces to the usual Minty variational inequality problem of differential type
(see e.g. [21]) when ϕ is differentiable on an open set containing K.

Theorem 2.1 ([6]). Let the subset K ⊆ X be star-shaped set at x0.
i) If x0 solves MV I(ϕ′−,K) and ϕ ∈ RLSC(K, x0), then ϕ ∈ IAR(K, x0).
ii) Conversely, if ϕ ∈ IAR(K, x0), then x0 is a solution of MV I(ϕ′−,K).

We recall furthermore that the importance of IAR functions in scalar optimiza-
tion is stressed by the fact that they also enjoy several well-posedness properties
(see e.g. [6]).

3. Oriented distance function and scalar characterizations of
vector optimality concepts

Let f be a function from X to Y and let C be a closed convex pointed cone in Y
with int C 6= ∅. We consider the vector optimization problem

V P (f,K) minC f(x), x ∈ K ⊆ X.

Usually, the solutions of problem V P (f,K) are called points of efficiency, but here
we prefer to call them minimizers. We say that the point x0 ∈ K is e-minimizer
(respectively w-minimizer) for V P (f,K) when f(x) − f(x0) 6∈ −C\{0} (f(x) −
f(x0) 6∈ −intC), for every x ∈ K. Further, a point x0 ∈ K is an ideal minimizer
when f(x) − f(x0) ∈ C. Recall that ideal minimizers are not likely to happen for
V P (f,K).

Given a set A ⊂ Y and a point y ∈ Y , the distance from y to A is given by the
function (depending on the norm chosen on Y ) dA(y) = infa∈A ‖y − a‖. In [17] the
author proposes a generalization of the distance notion, known as oriented distance.
The oriented distance from y to A is given by the function ∆A(y) = dA(y)−dY \A(y).
The main properties of ∆A are summarized in the next proposition.

Proposition 3.1. i) ∆A is 1-Lipschitzian;
ii) ∆A(y) < 0 for every y ∈ intA, ∆A(y) = 0 for every y ∈ ∂A and ∆A(y) > 0

for every y ∈ int (Y \A);
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iii) if A is closed, then it holds A = {y : ∆A(y) ≤ 0};
iv) if A is convex, then ∆A is convex;
v) if A is a cone, then ∆A is positively homogeneous;
vi) if A is a closed convex cone, then ∆A is nonincreasing with respect to the

ordering relation induced on Y , i.e. the following is true: if y1, y2 ∈ Y then

y1 − y2 ∈ A =⇒ ∆A(y1) ≤ ∆A(y2)

If A has nonempty interior, then

y1 − y2 ∈ intA =⇒ ∆A(y1) < ∆A(y2)

When A = C is a closed convex cone, the following characterization holds (see
e.g. [14])

∆−C(y) = max{〈ξ, y〉, ξ ∈ C ′ ∩ S},
where C ′ = {ξ ∈ Y : 〈ξ, c〉 ≥ 0, ∀c ∈ C} denotes the positive polar of the cone of C
and S = {ξ ∈ Y : ‖ξ‖ = 1} is the unit sphere in Y . In the sequel we also denote by
B = {y ∈ Y : ‖y‖ ≤ 1} the unit ball in Y .
Let us observe the following generalization of lp norms. Let y ∈ Rn and C be a
polyhedral cone generated by n linearly independent vectors. Hence, also C ′ is a
polyhedral cone generated by n linearly independent vectors ξ1, ξ2, . . . , ξn. In this
case we can define on Rn, the norms

‖y‖ =

(
n∑

i=i

|〈ξi, y〉|p
) 1

p

, for 1 ≤ p < +∞

and
‖y‖ = max{|〈ξi, y〉|, i = 1, . . . , n}, for p = +∞.

We refer to these norms as lpC norms.
Recently, function ∆−C has been used (see e.g. [1, 5, 15, 16, 20, 25]) to scalarize

the vector optimization problem V P (f,K). The scalar problem is

P (ϕx0 ,K) min ϕx0(x), x ∈ K,

where x0 ∈ K and ϕx0(x) = ∆−C(f(x) − f(x0)). Relations among solutions of
P (ϕx0 ,K) and those of problem V P (f,K) are investigated in [15, 26]. For the
reader’s convenience, we quote here the characterization of the w-minimizers.

Theorem 3.1 ([15, 26]). The point x0 ∈ K is a w-minimizer for problem V P (f,K)
if and only if it is a solution of problem P (ϕx0 ,K).

Function ∆−C has been used in [12, 13] to obtain first and second-order optimal-
ity conditions in Lagrangian form for a constrained vector optimization problem.
In these papers the authors give necessary and sufficient optimality conditions by
means of Dini-type derivatives, for functions of class C0,1 (i.e. locally Lipschitz) and
C1,1 (i.e. with locally Lipschitz gradient). Further applications of function ∆−C

can be found in [20], where the well-posedness of problem V P (f,K) is related with
that of the scalar problem P (ϕx0 ,K).
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4. Vector increasing-along-rays functions

From now on, if not otherwise specified, K denotes a subset of X, star-shaped
at x0. We recall that in [18], the following definition of cone monotonic function is
given.

Definition 4.1 ([18]). Assume that the space X is partially ordered by a closed
convex pointed cone D. A function f : X → Y is said to be increasing at x0 ∈ X,
when

X ∩ (x0 −D) ⊆ {x ∈ X : f(x) ∈ f(x0)− C}

If we try to rephrase this definition in a radial context, we get that, if K is star-
shaped at x0, then f is increasing on K along the rays starting at x0 when , ∀x ∈ K
and ∀t1, t2, with t2 ≥ t1 ≥ 0, it holds f(x0 + t1(x− x0)) ∈ f(x0 + t2(x− x0))− C.
Anyway, this definition reveals to be too strong for our purposes, since, in such a
case it is easily seen that x0 is an ideal minimizer for f over K.

This consideration leads us to introduce the following notion of vector increasing
along rays (VIAR) function.

Definition 4.2. Let K ⊆ X be star-shaped at x0. A function f : K → Y is said to
be increasing-along-rays starting at x0 (for short f ∈ V IAR(K, x0)), when function
ϕx0(x) ∈ IAR(K, x0).

The previous definition has a clear geometrical meaning and reduces to the notion
of IAR function when f : X → R. The VIAR property is a monotonicity (along
rays) property, defined through the oriented distance function and not through the
order induced on Y by the cone C. The oriented distance function clearly depends
on the norm considered on the space Y and hence one would expect that the VIAR
property depends also on it. This is the case, as the following simple examples show.

Example 4.1. i) Consider the function f : R → R2, defined as f(x) =
(x, g(x)), where g(x) = 2x if x ∈ [0, 1] and g(x) = −1

4x + 9
4 if x ∈ (1,+∞)

and let C = R2
+, K = R+ and x0 = 0. Then it is easy to show that func-

tion f ∈ V IAR(K, x0) if R2 is endowed with the Euclidean norm l2, but
f 6∈ V IAR(K, x0) if R2 is endowed with the norm l∞.

ii) Consider the function f : R2 → R3, defined as f (x1, x2) = (x1, g (x1) , 0),
where g(x) is defined in the previous point i). Let C ⊂ R3 be the polyhedral
cone generated by the linearly independent vectors ξ1 = (−1/30, 1, 0),
ξ2 = (1, 1/30, 0) and ξ3 = (0, 0, 1) (hence it is easily seen that C ′ = C).
Let K = R2

+ and x0 = 0. Then f ∈ V IAR
(
K, x0

)
if R3 is endowed with

the Euclidean norm l2, while f 6∈ V IAR
(
K, x0

)
if R3 is endowed by the l∞C

norm.

Investigating the VIAR property, we are also interested in conditions on f , which,
like in the scalar case, make this property independent on the (equivalent) norms
that can be introduced on Y . For C-convex functions such independence is shown
in Theorem 5.1 below. The next propositions give some basic properties of VIAR
functions which should be compared with those in Section 2.
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Proposition 4.1. Let the subset K ⊆ X be star-shaped at x0. If f ∈ V IAR(K, x0),
then

(1) f(x0 + t2(x− x0))− f(x0 + t1(x− x0)) 6∈ −intC,

∀t2 ≥ t1 > 0 and ∀x ∈ K.

Proof. Omitted as immediate. �

The reversal of Proposition 4.1 does not hold, as the next example shows.

Example 4.2. Let X = R, Y = R2 endowed with the l∞ norm, K = R+, C = R2
+

and x0 = 0. Consider the function f : K → R2, defined as f(x) = (2x−x2, x2−2x).
Then f fulfills condition (1), but f 6∈ V IAR(R+, x0).

Proposition 4.2. Let the subset K ⊆ X be star-shaped at x0. Then f ∈
V IAR(K, x0) if and only if for every x ∈ K and ε > 0 such that f(x) ∈ f(x0) −
C + εB, it holds f(x0 + t(x− x0)) ∈ f(x0)− C + εB, for every t ∈ [0, 1].

Proof. The proof is immediate, observing that

{x ∈ K : f(x) ∈ f(x0)− C + εB} = {x ∈ K : ϕx0(x) ≤ ε} = lev≤εϕx0

and recalling Proposition 2.2. �

Proposition 4.3. Let the subset K ⊆ X be star-shaped at x0. Then:
i) x0 is a w-minimizer of f over K.
ii) The set f−1(f(x0)) is star-shaped at x0.

Proof. i) Since ϕx0 ∈ IAR(K, x0), then x0 is a minimizer of ϕx0 over K and
hence a w-minimizer of f .

ii) The set f−1(f(x0)) is the set of global minimizers of ϕx0 and hence the
result follows from Proposition 1 in [6]. �

Remark 4.1. We wish to observe, similarly to the scalar case, that if f ∈
V IAR(K, x0), then f is C-quasiconnected [2, 20]. It follows that, similarly to
the scalar case, V IAR functions enjoy some well-posedness properties. For more
details on this topic we refer to [20].

5. Classes of VIAR functions

In the scalar case, it is known that quasiconvex functions are in the class
IAR(K, x0), where x0 is a minimizer for f over the convex set K. We are going to
see that in the vector case some differences arise. Namely, let x0 be w-minimizer
for a function f : X → Y ; we will see that if f is C-convex, then f ∈ V IAR(K, x0),
whatever the norm we choose on the space Y . On the contrary, if f is C-quasiconvex,
then it possesses the V IAR property only for suitable choices of the norm in Y .

Definition 5.1 ([18]). Let K be a convex subset of X.
i) The function f : X → Y is C-convex on K if for every x1, x2 ∈ K and for

every t ∈ [0, 1] it holds

f((1− t)x1 + tx2)− (1− t)f(x1)− tf(x2) ∈ −C



INCREASING-ALONG-RAYS PROPERTY FOR VECTOR FUNCTIONS 45

ii) The function f : X → Y is C-quasiconvex on K if for every y ∈ Y , the
(level) set

{x ∈ K : f(x) ∈ y − C}
is convex.

Remark 5.1. We wish to recall that a function f is C-convex if and only if the
scalar function 〈ξ, f〉 is convex for every ξ ∈ C ′. The same result does not hold for
C-quasiconvex functions [18]. Anyway, we remind that when Y = Rn and C = Rn

+,
then f is C-quasiconvex if and only if every component of f is quasiconvex. The
case when Y = Rn and C is a polyhedral cone generated by n linearly independent
vectors has been treated in [4]. Since also C ′ is generated by n linearly independent
vectors ξ1, . . . , ξn, it is known that f is C-quasiconvex if and only if 〈ξi, f〉 is quasi-
convex for every i = 1, . . . , n. Finally in [3] the case of general (i.e. non polyhedral)
cones is also developed. For a complete and updated reference on the topic we refer
to [19].

Theorem 5.1. Let K be a convex subset of X and let f be C-convex on K. If x0

is a w-minimizer of f over K, then f ∈ V IAR(K, x0), whatever the norm chosen
in Y .

Proof. f is C-convex if and only if the scalar function 〈ξ, f(x)〉, is convex for every
ξ ∈ C ′. Hence, whatever the norm chosen in Y , function ϕx0(x) is the maximum of
convex functions, hence is convex. �

Now we turn our attention to C-quasiconvex functions. We claim that if f is a C-
quasiconvex function and x0 is w-minimizer of f over K, then we can always choose
a norm on Y , such that f ∈ V IAR(K, x0). To prove it we need some preliminary
concepts and results. We recall that a convex set A ⊆ C is a base for the cone C
when 0 6∈ A and for every k ∈ C, k 6= 0, there are unique elements a ∈ A and t > 0,
such that k = ta.

Lemma 5.1 ([18]). Let k ∈ intC, α > 0 and consider the hyperplane Hα = {y ∈
Y : 〈k, y〉 = α}. Then the set Gα = Hα ∩ C ′ is a compact base for C ′.

Given the set G1, let B̃1 = conv {G1 ∪ (−G1)} (here conv A denotes the convex
hull of the set A). Since B̃1 is a balanced, convex, absorbing and bounded set, with
0 ∈ int B̃1, the Minkowsky functional γB̃1

(y) := inf
{

λ , λ > 0, y ∈ λB̃1

}
is a norm

on Y (see e.g. [23]).
We denote the norm defined by function γB̃1

as ‖ · ‖C,k, to stress the dependence
on both the ordering cone and the given k ∈ intC.

Theorem 5.2. Let K be a convex set, let f be C-quasiconvex on K and let x0 be
w-minimizer for f over K. Then, whatever k ∈ intC, if Y is endowed with the
norm ‖ · ‖C,k, then f ∈ V IAR(K, x0).

Proof. Recall that, since Y is endowed with the norm ‖ · ‖C,k, we have C ′ ∩ S =
{ξ ∈ C ′ : 〈ξ, k〉 = 1}. For ε > 0, we have

{x ∈ K : ϕx0(x) ≤ ε} = {x ∈ K : max
ξ∈C′∩S

〈ξ, f(x)− f(x0)〉 ≤ ε}
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= {x ∈ K : max
ξ∈C′∩S

〈ξ, f(x)− f(x0)〉 ≤ ε max
ξ∈C′∩S

〈ξ, k〉}

= {x ∈ K : max
ξ∈C′∩S

〈ξ, f(x)− f(x0)− εk〉 ≤ 0} = {x ∈ K : f(x) ∈ f(x0) + εk − C}.

Since f is C-quasiconvex on K, this last set is convex for every ε > 0 and so the level
set of ϕx0 , {x ∈ K : ϕx0(x) ≤ ε} is convex too. It follows that ϕx0 is quasiconvex
with x0 as minimizer over K and hence is in the class IAR(K, x0). �

The next example shows that also for C-quasiconvex functions, the V IAR prop-
erty depends on the norm chosen on the space Y .

Example 5.1. Let K ⊂ R = [0,+∞) and consider the function f : K → R2,
f = (f1, f2), defined as f1(x) = −1

2x, if x ∈ [0, 1], f1(x) = −1
2x3, if x ∈ (1,+∞)

and f2(x) = x. Further, let C = R2
+, x0 = 0. If we fix k = (1, 1) ∈ intC, we

obtain that the norm ‖ · ‖C,k coincides with the l1 norm on R2, so that ϕx0(x) =
max{f1(x), f2(x)} (see e.g. [14]). Clearly, x0 is a w-minimizer and by Theorem 5.2,
if R2 is endowed with the l1 norm, f ∈ V IAR(K, x0), which it is also easily seen
directly.
Assume now that R2 is endowed with a different norm, constructed as follows.
Consider the set A = {(x1, x2) ∈ R2|x2 = −x1 + 3, x1 ∈ [1, 2]} and let Ã =
conv (A∪ (−A)). The Minkowsky functional of the set Ã defines a norm on R2 and
direct calculations show that when this norm is considered, ϕx0 6∈ IAR(K, x0) and
hence f 6∈ V IAR(K, x0).

When Y = Rn and C = Rn
+ Theorem 5.2 holds for the most common lp norms.

Proposition 5.1. Let Y = Rn, C = Rn
+ and let f be a C-quasiconvex function.

If x0 is w-minimizer for f over K (K convex) and Y is endowed with a lp norm
(1 ≤ p ≤ +∞), then f ∈ V IAR(K, x0).

Proof. From the representation ∆−C(y) = max{〈ξ, y〉, ξ ∈ C ′ ∩ S}, with easy cal-
culations we obtain thet if Rn is endowed with a lp norm (1 ≤ p ≤ +∞), then
∆−Rn

+
(y) = max{

∑
i∈I+(y) ξiyi , ξ ∈ Rn

+ ∩ S}, where I+(y) = {i = 1, . . . , n : yi > 0}.
Now, without loss of generality assume that f(x0) = 0, take any x ∈ K, consider
the ray Rx0,x and observe that the restriction of every function fi (a component
of f) on this ray is quasiconvex. To show that f ∈ V IAR(K, x0), consider any
two numbers t1, t2 > 0 , with t2 > t1. If fi(x + t1(x − x0)) > 0, then it cannot
be fi(x0 + t2(x − x0)) < fi(x + t1(x − x0)). In fact, if this happens, the level set,
{t : fi(x0 + t(x−x0)) ≤ max{0, fi(x0 + t2(x−x0))}} is not convex, since t1 does not
belong to this set. From these considerations, it follows readily that the function
ϕx0(x) ∈ IAR(K, x0), which completes the proof. �

The proof of the next result follows along the lines of Proposition 5.1 and we
omit it.

Proposition 5.2. Let Y = Rn and let C ′ be a polyhedral cone generated by n
linearly independent vectors ξ1, . . . , ξn. If f is C-quasiconvex on the convex set
K ⊆ X, x0 is a w-minimizer for f over K and Y is endowed with a lpC norm, then
f ∈ V IAR(K, x0) .
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6. VIAR functions and variational inequalities

In the scalar case, a function f ∈ IAR(K, x0) is characterized by Theorem 2.1 by
means of a Minty variational inequality problem. The study of vector optimization
problems by means of Minty-type variational inequalities has been first presented
in [11] and has been deepened in [24]. This approach is based on a vector-valued
variational inequality. Let f : K ⊆ X → Y be a function of class C1 on an open
set containing the convex set K. The vector variational inequality of Minty type is
defined as the problem of finding a point x0 ∈ K such that

MV V I(f ′,K) f ′(y)(x0 − y) ∩ C =
{
0
}
, ∀y ∈ K.

If it holds

MV V Iw(f ′,K) f ′(y)(x0 − y) ∩ intC = ∅, ∀y ∈ K

then x0 ∈ K is a weak solution of MV V I(f ′,K). However, it can be shown that if x0

is a solution (or a weak solution) of MV V I(f ′,K), then differently from the scalar
case, f does not necessarily belong to the class V IAR(K, x0) (see e.g. Example 1 in
[8]). The former gap can be filled in by relating to V IAR functions suitable scalar
variational inequality problems.

Definition 6.1 ([18]). Let f be a function defined on a set K ⊆ X. We say that
f is C-continuous at x̄ when for every neighborhood U of x̄ ∈ X, there exists a
neighborhood V of f(x̄) ∈ Y , such that

f(x) ∈ V + C, ∀x ∈ U ∩K.

We say that f is C-continuous on K, when f is C-continuous at any point of K.

Definition 6.2 ([18]). Let {h(x, t) : t ∈ T} be a family of scalar-valued functions
on K, where T is a nonempty parameter set. We say that this family is lower
equi-semicontinuous at x̄ ∈ K when for every ε > 0, there exists a neighborhood U
of x̄, such that

h(x, t) ≥ h(x̄, t)− ε, ∀x ∈ U ∩K and t ∈ T.

We recall the following result.

Proposition 6.1 ([18]). f is C-continuous at a point x̄ ∈ K if and only if the
family G = {〈ξ, f〉 : ξ ∈ C ′ ∩ S} is lower equi-semicontinuous at that point.

The proof of the next proposition comes immediately from the previous result.

Proposition 6.2. Let f : X → Y be C-continuous on K and let x0 ∈ K. Then
function ϕx0(x) is lower semicontinuous on K.

The previous definitions and results can be rephrased in a radial sense.

Definition 6.3. Let K ⊆ X be star-shaped at x0 and let f be a function defined
on an open set containing K. The function f is said to be C-radially continuous in
K along the rays starting at x0 (for short, f ∈ C-RC(K, x0)), if for every x ∈ K,
the restriction of f on the interval Rx0,x ∩K is C-continuous.

Proposition 6.3. Let f ∈ C-RC(K, x0). Then ϕx0(x) is radially lower semicon-
tinuous in K along the rays starting at x0 (ϕx0 ∈ RLSC(K, x0)).
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So, we can give the following result, which characterizes V IAR functions in terms
of a suitable variational inequality.

Proposition 6.4. Let K ⊆ X be star-shaped at x0. Assume that f is a function
defined on an open set containing K.

i) Let f ∈ C-RC(K, x0). If x0 solves MV I((ϕx0)′−,K), then f ∈ V IAR(K, x0).
ii) conversely, if f ∈ V IAR(K, x0), then x0 solves MV I((ϕx0)′−,K).

Proof. The proof follows recalling Proposition 6.3 and Theorem 2.1. �

Similarly to the scalar case, the assumption f ∈ C-RC(K, x0) appears in only
one of the two opposite implications. The next example shows that this assumption
cannot be dropped at all.

Example 6.1. Let K = R, x0 = 0, C = R2
+ and consider the function f : R → R2

defined as f(x) = (g(x), g(x)), with

g(x) =
{

1, if x 6= 2
3, if x = 2

and assume that R2 is endowed with the norm l∞. Then f 6∈ C-RC(K, x0) and it
holds (ϕx0)

′
−(y, x0 − y) ≤ 0, ∀y ∈ R, but f 6∈ V IAR(K, x0).

Corollary 6.1. Let x0 ∈ ker K and let f ∈ C − RC(K, x0). If x0 solves
MV I((ϕx0)′−,K), then x0 is w-minimizer for f over K.

We close this section with some comparisons between problem MV I((ϕx0)′−,K)
and the vector variational inequality problem MV V I(f ′,K), assuming that f is
a function of class C1 on an open set containing K. In [9] it has been observed
that every solution of MV I((ϕx0)′−,K) is also a weak solution of MV V I(f ′,K),
regardless of the norm introduced in the space Y . The converse does not necessarily
hold as shown by Example 2 in [9]. Anyway, Theorem 9 in [9] ensures that if f is a
C-convex function on the convex set K, then any x0 ∈ K which is a weak solution
of MV V I(f ′,K) solves also MV I((ϕx0)′−,K) (regardless of the norm in Y ). The
next example shows that the coincidence of the two concepts of solution cannot be
extended to C-quasiconvex functions.

Example 6.2. Let Y = R2, C = R2
+ X = R, K = [0, π + 3

√
2] and consider the

function f : R+ → R2 defined as f(x) = (f1(x), f2(x)), where

f1(x) =
{

0, 0 ≤ x ≤ π
(π − x)3, x > π

and

f2(x) =
{

cos x− 1, 0 ≤ x ≤ π
−2, x > π

Then f is of class C1 and C-quasiconvex on K. It is easily seen that x0 = 0 is a weak
solution of MV V I(f ′,K), but x0 is not a solution of MV I((ϕx0)

′
−,K), whatever

the norm in Y , since x0 is not w-minimizer of f over K (recall Corollary 6.1).
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It is worth mentioning also that when f is of class C1, then ϕx0 is subdifferentiable
(see e.g. [10]) and it can be proved that problem MV I((ϕx0)′−,K) is equivalent to
the more popular Minty generalized variational inequality for the set-valued map
∂ϕx0(·) (the subdifferential), which requires to find a point x0 ∈ K such that the
inequality

〈v, x0 − y〉 ≤ 0

is satisfied for every v ∈ ∂ϕx0(y) and y ∈ K.

7. The case f is C-quasiconvex

The main reason to introduce a variational inequality is to define an alternative
approach to the underlying optimization problem. The best opportunity is to have
coincidence of solutions sets. In our case, if f ∈ C-RC(K, x0), any solution of
MV I((ϕx0)′,K) is a w-minimizer for V P (f,K). The following example shows that
the converse is not true in general.

Example 7.1. Let X = K = Y = R2, C = R2
+, k = (1, 1) and assume that Y is

endowed with the norm ‖ · ‖C,k (which coincides with the l1 norm). Let f(x1, x2) =
(x2

1x
2
2,−x2

1x
2
2). Then the set of the w-minimizers is R2, but any point x0 = (0, x2)

is not a solution of MV I((ϕx0)′−,K). This can be seen since ϕx0(x1, x2) = x2
1x

2
2.

The next theorem proves that when f is assumed to be C-quasiconvex, the coin-
cidence of the solution sets of MV I((ϕx0)′−,K) and V P (f,K) is guaranteed.

Theorem 7.1. Assume that Y is endowed with the norm ‖ · ‖C,k. Let K ⊆ X be a
convex set and f : K → Y be C-quasiconvex. Then x0 is a w-minimizer of f over
K if and only if is a solution of MV I((ϕx0)′−,K).

Proof. Let x0 ∈ K be a w-minimizer. Then, Theorem 5.2 applies and hence f ∈
V IAR(K, x0). Proposition 6.4 completes the proof. �

Remark 7.1. If Y = Rn and C = Rn
+ (or C is a polyhedral cone generated by n

linearly independent vectors), then in the previous result, the norm ‖ · ‖C,k can be
replaced by the lp norm (the lpC norm).
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