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LC-FUNCTIONS AND MAXIMAL MONOTONICITY

STEPHEN SIMONS

Abstract. In this paper, we consider LC–functions, a class of special convex
functions from the product of a reflexive Banach space and its dual into ]−∞,∞].
Using Fitzpatrick functions, we will show that the theory of LC–functions is a
proper extension of the theory of maximal monotone sets. Various versons of the
Fenchel duality theorem lead to a number of results on maximal monotonicity,
some of them new. In particular, we prove various surjectivity results, including
a generalization of a known “abstract Hammerstein theorem”, give sufficient con-
ditions for a sum of maximal monotone multifunctions to be maximal monotone,
and prove a generalization of the Brezis–Haraux theorem

1. Introduction

All normed spaces in the paper will be real. Let E be a nonzero reflexive Banach
space. This paper is about LC–functions, a class of special convex functions from
E × E∗ into ]−∞,∞] (see Definition 3.2).

We will see in Theorem 3.9 that any LC–function determines a maximal monotone
subset of E×E∗. If A is a maximal monotone subset of E×E∗ then the Fitzpatrick
function of A is an LC–function, but we will show in Theorem 4.1 and Example 3.5
that not every LC–function is the Fitzpatrick functions of some maximal monotone
set. So we could regard the theory of LC–functions as a proper extension of the
theory of maximal monotone sets.

One can obtain a number of interesting results on LC-functions by using the
Fenchel duality theorem in one of its forms, as we outline in the following remarks.
In each case, we trace the development of the results, starting with the relevant
form of the Fenchel duality theorem, then through the results on LC–functions, and
terminating with the results on maximal monotonicity.

Rockafellar’s version of the Fenchel duality theorem, a special case of which we
have stated in Theorem 2.1, leads to Theorem 3.8, (the rather surprising) Corollary
3.10 and Corollary 3.13. Corollary 3.13(e) leads in turn to Rockafellar’s surjectivity
theorem for maximal monotone multifunctions, which we state as Theorem 6.1(b).

The Attouch–Brezis version of the Fenchel duality theorem, which we have stated
as Theorem 2.2, leads to Theorem 3.14 and Corollary 3.15 for lower semicontinuous
LC–functions. Theorem 3.14 leads, in turn, to Theorem 6.2, a more general new
result on the surjectivity of the sum of maximal monotone multifunctions, while
Corollary 3.15 leads to Theorem 6.5, a generalization of known results which have
been applied to Hammerstein integral equations (see Remark 6.6).

The bivariate version of the Attouch–Brezis theorem proved in Lemma 2.4 and
Theorem 2.5 leads to Corollary 3.16, which leads in turn to a sufficient condition
for the sum of maximal monotone multifunctions to be maximal monotone in
Theorem 4.2.
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Section 5 is devoted to the fitzpatrification of a monotone multifunction. This is
an extension of a monotone multifunction that normally fails to be monotone, but
it does have a convex graph. Lemmas 5.3 and 7.1 are fundamental properties of
the fitzpatrification, which lead to a new surjectivity theorem in Theorem 6.3, and
a new sufficient condition for Brezis–Haraux approximation in Theorem 7.3. We
show how this leads to the classical sufficient conditions in Corollary 7.5.

Lower semicontinuous LC–functions are a subset of a class of functions considered
by Burachik and Svaiter in [4] and Penot and Zălinescu in [8], but we do not require
LC–functions to be lower semicontinuous (see Remark 3.3).

The author would like to acknowledge very helpful discussions with
Heinz Bauschke and Patrick Combettes during the early stage of preparation of
this paper. He would also like to thank Constantin Zălinescu for reading through a
later version of the paper, making a large number of constructive suggestions and
sending him copies of [8] and [16]. Finally, he would like to thank the anonymous
referee for a careful reading of the paper and a number of suggestions that have
improved the exposition.

2. Versions of the Fenchel duality theorem

If F is a normed space and f : F 7→ ]−∞,∞] then we write dom f :=
{x ∈ F : f(x) ∈ R}. f is said to be proper if dom f 6= ∅.

We start off by stating a result that is an immediate consequence of Rockafellar’s
version of the Fenchel duality theorem (see [10, Theorem 1, pp. 82–83] for the
original version and [15, Theorem 2.8.7, pp. 126–127] for more general results):

Theorem 2.1. Let F be a nonzero normed space, f : F 7→ ]−∞,∞] be proper and
convex, g : F 7→ R be convex and continuous, and f + g ≥ 0 on F . Then there
exists x∗ ∈ F ∗ such that f∗(x∗) + g∗(−x∗) ≤ 0.

Theorem 2.2 below was first proved by Attouch–Brezis
(
this follows from [1,

Corollary 2.3, pp. 131–132]
)

– there is a somewhat different proof in [12, Theorem
14.2, p. 51], and a much more general result was established in [15, Theorem 2.8.6,
pp. 125–126]:

Theorem 2.2. Let K be a nonzero Banach space, f, g : K 7→ ]−∞,∞] be convex
and lower semicontinuous,

⋃
λ>0 λ

[
dom f − dom g

]
be a closed subspace of K and

f + g ≥ 0 on K. Then there exists z∗ ∈ K∗ such that f∗(−z∗) + g∗(z∗) ≤ 0.

Notation 2.3. If E and F are nonzero Banach spaces, we define the dual of E×F
to be F ∗ × E∗ under the pairing b(x, y), (y∗, x∗)c := 〈x, x∗〉 + 〈y, y∗〉 (

(x, y) ∈
E × F, (y∗, x∗) ∈ F ∗ × E∗). We then define the projection maps π1, π2 and the
reflection maps ρ1, ρ2 on E × F by π1(x, y) := x, π2(x, y) := y, ρ1(x, y) := (−x, y)
and ρ2(x, y) := (x,−y).

Lemma 2.4 is a stepping–stone to Theorem 2.5.

Lemma 2.4. Let E and F be nonzero Banach spaces, a, b : E × F 7→ ]−∞,∞]
be convex and lower semicontinuous, L :=

⋃
λ>0 λ

[
π1 dom a− π1 dom b

]
be a closed

subspace of E and, for all (x, u, v) ∈ E × F × F , a(x, u) + b(x, v) ≥ 0. Then there
exists t∗ ∈ E∗ such that a∗(0,−t∗) + b∗(0, t∗) ≤ 0.
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Proof. For all (x, u, v) ∈ E×F ×F , let f(x, u, v) := a(x, u) and g(x, u, v) := b(x, v).
We first prove that

(2.4.1)
⋃

λ>0 λ
[
dom f − dom g

]
= L× F × F.

To this end, let (x, u, v) ∈ L × F × F . Then there exist λ > 0, (s, y) ∈ dom a and
(t, z) ∈ dom b such that x = λ(s− t). Thus

(x, u, v) = λ
[
(s, y, z + v/λ)− (t, y − u/λ, z)

] ∈ λ
[
dom f − dom g

]
.

This establishes “⊃” in (2.4.1), and (2.4.1) now follows since the inclusion “⊂” is
obvious. Also, for all (x, u, v) ∈ E × F × F , (f + g)(x, u, v) = a(x, u) + b(x, v) ≥
0. Since L × F × F is a closed subspace of E × F × F , Theorem 2.2 now gives
(t∗, u∗, v∗) ∈ E∗ × F ∗ × F ∗ such that

(2.4.2) f∗(−t∗,−u∗,−v∗) + g∗(t∗, u∗, v∗) ≤ 0.

So f∗(−t∗,−u∗,−v∗) < ∞, from which f∗(−t∗,−u∗,−v∗) = a∗(−u∗,−t∗) and v∗ =
0. Similarly, g∗(t∗, u∗, v∗) = b∗(v∗, t∗) and u∗ = 0. Thus (2.4.2) reduces to

a∗(0,−t∗) + b∗(0, t∗) ≤ 0. ¤

We end this section with a bivariate generalization of Theorem 2.2. Apart from
some minor changes of notation, this result was first proved in [14, Theorem 4.2,
pp. 9–10]. The hypothesis of Theorem 2.5 is that h(x, ·) is the inf–convolution of
f(x, ·) and g(x, ·), and the conclusion is that h∗(y∗, ·) is the exact inf–convolution of
f∗(y∗, ·) and g∗(y∗, ·). The proof given here using Lemma 2.4 is somewhat simpler
than that given in [14].

Theorem 2.5. Let E and F be nonzero Banach spaces, f, g : E×F 7→ ]−∞,∞] be
convex and lower semicontinuous,

⋃
λ>0 λ

[
π1 dom f−π1 dom g

]
be a closed subspace

of E and, for all (x, y) ∈ E × F ,

h(x, y) := inf
{
f(x, u) + g(x, v) : u, v ∈ F, u + v = y

}
> −∞.

Then, for all (y∗, x∗) ∈ F ∗ × E∗ = (E × F )∗,

h∗(y∗, x∗) = min
{
f∗(y∗, s∗) + g∗(y∗, t∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

Proof. h is convex and, since π1 dom f ∩ π1 dom g 6= ∅, h is proper. It is easy to see
that

h∗(y∗, x∗) ≤ inf
{
f∗(y∗, s∗) + g∗(y∗, t∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

So what we have to prove is that there exists t∗ ∈ E∗ such that

(2.5.1) f∗(y∗, x∗ − t∗) + g∗(y∗, t∗) ≤ h∗(y∗, x∗).

Since h is proper, h∗(y∗, x∗) > −∞, so we can and will suppose that h∗(y∗, x∗) ∈ R.
Define a, b : E ×F 7→ ]−∞,∞] by a(x, u) := h∗(y∗, x∗) + f(x, u)− 〈x, x∗〉 − 〈u, y∗〉
and b(x, v) := g(x, v)−〈v, y∗〉. Then, for all (x, u, v) ∈ E×F×F , the Fenchel–Young
inequality implies that

a(x, u) + b(x, v) = h∗(y∗, x∗) + f(x, u)− 〈x, x∗〉 − 〈u, y∗〉+ g(x, v)− 〈v, y∗〉
≥ h∗(y∗, x∗) + h(x, u + v)− 〈x, x∗〉 − 〈u + v, y∗〉 ≥ 0.
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Lemma 2.4 now gives t∗ ∈ E∗ such that a∗(0,−t∗) + b∗(0, t∗) ≤ 0. By direct
computation,

a∗(0,−t∗) = f∗(y∗, x∗ − t∗)− h∗(y∗, x∗) and b∗(0, t∗) = g∗(y∗, t∗),

which implies (2.5.1). ¤

3. LC–functions on E × E∗

From now on, E is a nonzero reflexive Banach space and E∗ is its topological
dual space. We norm E × E∗ by

∥∥(x, x∗)
∥∥ :=

√
‖x‖2 + ‖x∗‖2. Then

(
E × E∗, ‖ · ‖)∗ = (E × E∗, ‖ · ‖),

under the duality
⌊
(x, x∗), (y, y∗)

⌋
:= 〈x, y∗〉+ 〈y, x∗〉. We define q : E×E∗ 7→ R by

q(v) := 1
2bv, vc (v ∈ E×E∗). (“q” stands for “quadratic”.) Thus q(x, x∗) = 〈x, x∗〉

and
∣∣q(x, x∗)

∣∣ ≤ ‖x‖‖x∗‖ ≤ 1
2

(‖x‖2 + ‖x∗‖2
)

= 1
2

∥∥(x, x∗)
∥∥2. So

(3.0.1) v ∈ E × E∗ =⇒
∣∣q(v)

∣∣ ≤ 1
2

∥∥v
∥∥2

.

Clearly, v, u ∈ E × E∗ =⇒ bv, uc = bu, vc, and we also have the parallelogram
law

v, u ∈ E × E∗ =⇒ q(v) + q(u) = 1
2q(v + u) + 1

2q(v − u).
If v = (x, x∗) ∈ E × E∗ and u = (y, y∗) ∈ E × E∗ then

(3.0.2)

{
q(v − u) = 1

2bv − u, v − uc = 1
2bv, vc+ 1

2bu, uc − bv, uc
= 〈x, x∗〉+ 〈y, y∗〉 − 〈x, y∗〉 − 〈y, x∗〉 = 〈x− y, x∗ − y∗〉.

The following result appears in [4, Theorem 3.1, pp. 2381–2382] and [7, Propo-
sition 4

(
h)=⇒(a), pp. 860–861]. See also [5, Section 2].

Lemma 3.1. If f : E×E∗ 7→ ]−∞,∞] is proper and convex and f ≥ q on E×E∗

then the set M(f) :=
{
v ∈ E ×E∗ : f(v) = q(v)

}
is a monotone subset of E ×E∗.

Proof. Let v, u ∈ M(f). Then, from the parallelogram law and the convexity of f ,
1
2q(v − u) = q(v) + q(u)− 1

2q(v + u) ≥ f(v) + f(u)− 2f
(

1
2(v + u)

) ≥ 0,

and the result follows from (3.0.2). ¤
Definition 3.2. We say that h : E × E∗ 7→ ]−∞,∞] is an LC–function if h is
proper and convex and

(3.2.1) h∗ ≥ h ≥ q on E × E∗.

“LC” stands for “larger conjugate”.

Remark 3.3. There is an extensive discussion in [4] and [8] of lower semicontinuous
convex functions h : E × E∗ 7→ ]−∞,∞] such that h ≥ q and h∗ ≥ q on E × E∗.
Clearly, any lower semicontinuous LC–function has this property. As we will see,
the class of LC–functions has a very rich theory. For instance, it will be proved
in Theorem 3.9 and Corollary 3.10 that if f : E × E∗ 7→ ]−∞,∞] is an LC–
function then M(f) = M(f∗) and M(f) is a maximal monotone subset of E ×
E∗. Furthermore, it is not necessary to assume

(
as was done in [4, Theorem 3.1]

)
that f is lower semicontinuous. (However, it was pointed out to the author by
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Constantin Zălinescu that this restriction can easily be removed using the argument
of [8, Proposition 2.4].) We will indicate when results on LC–functions can be
deduced from known results. By and large, the proofs in the LC–function case are
somewhat simpler.

The motivation for Definition 3.4 below will become clear in Theorem 4.1.

Definition 3.4. We say that h : E × E∗ 7→ ]−∞,∞] is an SLC–function if h is
proper and convex, h ≥ q on E × E∗ and

(3.4.1) u ∈ E × E∗ =⇒ h(u) = supv∈M(h)

[bu, vc − q(v)
]
.

Since

sup
v∈M(h)

[bu, vc − q(v)
]

= sup
v∈M(h)

[bu, vc − h(v)
] ≤ sup

v∈E×E∗

[bu, vc − h(v)
]

=: h∗(u),

an SLC–function is automatically an LC–function. (3.4.1) also implies that an SLC–
function is automatically lower semicontinuous. “SLC” stands for “strongly larger
conjugate”.

If S : E ⇒ E∗ is a multifunction then we use the standard notation

G(S) :=
{
(x, x∗) ∈ E × E∗ : x∗ ∈ Sx

}
.

Example 3.5. Define j : E ×E∗ 7→ R by j := 1
2‖ · ‖2. It is well known that j∗ = j

on E × E∗, thus (3.0.1) implies that j is an LC–function. Furthermore,

(x, x∗) ∈ M(j) ⇐⇒ 1
2‖x‖2 + 1

2‖x∗‖2 = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(J),

where J : E ⇒ E∗ is the duality map. The above equivalence tells us that J is the
subdifferential of the continuous convex function defined on E by x 7→ 1

2‖x‖2, but we
will not use this fact. Now let z ∈ E and ‖z‖ = 1. Then, for all v = (x, x∗) ∈ M(j),
q(v) = 〈x, x∗〉 = ‖x∗‖2 and so

b(z, 0), vc − q(v) = 〈z, x∗〉 − 〈x, x∗〉 ≤ ‖x∗‖ − ‖x∗‖2 ≤ 1
4 .

Since j
(
(z, 0)

)
= 1

2 , j is not an SLC–function.

Lemma 3.6 on translating an LC–function by an element of E ×E∗ will be used
explicitly in Theorem 3.8, Theorem 3.9, Theorem 3.14, and Lemma 4.4.

Lemma 3.6. Let h : E ×E∗ 7→ ]−∞,∞] be an LC–function and u ∈ E ×E∗. We
define hu : E × E∗ 7→ ]−∞,∞] by hu := h(· + u) − b·, uc − q(u). Then hu is an
LC–function, dom hu = dom h− u, M(hu) = M(h)− u and M(hu

∗) = M(h∗)− u.

Proof. For all v ∈ E × E∗,

hu
∗(v) = supw∈E×E∗

[bw, vc+ bw, uc+ q(u)− h(w + u)
]

= supt∈E×E∗
[bt− u, v + uc+ q(u)− h(t)

]

= supt∈E×E∗
[bt, v + uc − bu, vc − h(t)

]− q(u) = h∗(v + u)− bu, vc − q(u).

It follows that hu
∗(v) ≥ h(v + u)− bv, uc − q(u) =: hu(v) and

hu(v) := h(v + u)− bv, uc − q(u) ≥ q(v + u)− bv, uc − q(u) = q(v).
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Consequently, hu is an LC–function. It is obvious that domhu = dom h−u. Further,
since

v ∈ M(hu) ⇐⇒ h(v + u)− bv, uc − q(u) = q(v)

⇐⇒ h(v + u) = q(v + u) ⇐⇒ v + u ∈ M(h)

and

v ∈ M(hu
∗) ⇐⇒ h∗(v + u)− bu, vc − q(u) = q(v)

⇐⇒ h∗(v + u) = q(v + u) ⇐⇒ v + u ∈ M(h∗),

we have M(hu) = M(h)− u and M(hu
∗) = M(h∗)− u, as required. ¤

Lemma 3.7 will be used in Corollary 3.16 and the sum theorem, Theorem 4.2.
Lemma 3.7 can also be deduced from [8, Corollary 3.7].

Lemma 3.7. Let E be a nonzero reflexive Banach space, f, g : E×E∗ 7→ ]−∞,∞]
be lower semicontinuous LC–functions,

⋃
λ>0 λ

[
π1 dom f − π1 dom g

]
be a closed

subspace of E and, for all (x, x∗) ∈ E × E∗,

(3.7.1) h(x, x∗) := inf
{
f(x, s∗) + g(x, t∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

Then h is an LC–function, and (x, x∗) ∈ M(h∗) if, and only if,

there exist s∗, t∗ ∈ E∗ such that (x, s∗) ∈ M(f∗), (x, t∗) ∈ M(g∗) and s∗+ t∗ = x∗.

Proof. Since f ≥ q and g ≥ q on E×E∗, (3.7.1) implies that, for all (x, x∗) ∈ E×E∗,

h(x, x∗) ≥ inf
{〈x, s∗〉+ 〈x, t∗〉 : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
= 〈x, x∗〉 > −∞,

and then Theorem 2.5 and the fact that f∗ ≥ f and g∗ ≥ g on E × E∗ give

h∗(x, x∗) = min
{
f∗(x, s∗) + g∗(x, t∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.(3.7.2)

≥ inf
{
f(x, s∗) + g(x, t∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
= h(x, x∗).

Thus h is an LC–function, and the required characterization of M(h∗) is immediate
from (3.7.2). ¤

Theorem 3.8, Theorem 3.9 and Corollary 3.10 below contain subtler property of
LC–functions. To put Theorem 3.8 in context, it is not obvious at this point that
if f is an LC–function then f∗ is proper. The argument of Theorem 3.8 will be
used in Theorem 3.9, Corollary 3.13 and Theorem 3.14. Theorem 3.9, which gives a
connection between LC–functions and maximal monotonicity, and (the unexpected
result) Corollary 3.10 will both be used in the later results in this section and the
characterization of Fitzpatrick functions in Theorem 4.1.

Theorem 3.8. Let E be a nonzero reflexive Banach space, f : E×E∗ 7→ ]−∞,∞]
be an LC–function and g : E × E∗ 7→ R be a continuous LC–function. Then:

(3.8.1) M(f∗) + ρ2 M(g∗) = E × E∗.

Proof. Let u be an arbitrary element of E × E∗. From Lemma 3.6, fu is an LC–
function and so

(3.8.2) v ∈ E × E∗

=⇒ fu(v) + g ◦ ρ1(v) = fu(v) + g
(
ρ1(v)

) ≥ q(v) + q
(
ρ1(v)

)
= 0.
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Thus, from Theorem 2.1, there exists w ∈ E×E∗ such that fu
∗(w)+(g ◦ ρ1)∗(−w) ≤

0. Now, by direct computation, (g ◦ ρ1)∗(−w) = g∗
(
ρ1(w)

)
, thus fu

∗(w) +
g∗

(
ρ1(w)

) ≤ 0. Since fu
∗ ≥ fu and g∗ ≥ g on E × E∗, it follows by combining

this last inequality with (3.8.2) that fu
∗(w) = q(w) and g∗

(
ρ1(w)

)
= q

(
ρ1(w)

)
, that

is to say w ∈ M(fu
∗) and ρ1(w) ∈ M(g∗), from which −w = ρ2 ◦ ρ1(w) ∈ ρ2 M(g∗).

From Lemma 3.6,

0 = w − w ∈ M(fu
∗) + ρ2 M(g∗) = M(f∗)− u + ρ2 M(g∗).

Since this holds for any u ∈ E × E∗, we have proved (3.8.1). ¤

Theorem 3.9(b) below also follows from [14, Theorem 1.4(a), p. 4] or [8, Propo-
sition 2.1].

Theorem 3.9. Let E be a nonzero reflexive Banach space and f : E × E∗ 7→
]−∞,∞] be an LC–function.

(a) Suppose that u ∈ E × E∗, and

(3.9.1) v ∈ M(f∗) =⇒ q(v − u) ≥ 0,

(i.e., u is “monotonically related” to M(f∗)). Then u ∈ M(f∗).
(b) M(f∗) is a maximal monotone subset of E × E∗.

Proof. (a) The argument of Theorem 3.8 and Lemma 3.6 (with g := j) give
w ∈ M(fu

∗) = M(f∗) − u such that ρ1(w) ∈ M(j∗). It follows from (3.9.1) that
q(w) ≥ 0. Thus 1

2

∥∥ρ1(w)
∥∥2 = j∗

(
ρ1(w)

)
= q

(
ρ1(w)

)
= −q(w) ≤ 0. Consequently,

ρ1(w) = 0, from which w = 0. Thus 0 ∈ M(f∗)−u, and so u ∈ M(f∗), as required.
(b) This is immediate from Lemma 3.1 and (a). ¤

Corollary 3.10. Let E be a nonzero reflexive Banach space and f : E × E∗ 7→
]−∞,∞] be an LC–function. Then M(f) = M(f∗).

Proof. Let u ∈ M(f) and v ∈ M(f∗). Then, from the Fenchel–Young inequality,

q(v − u) = q(v) + q(u)− bu, vc = f∗(v) + f(u)− bu, vc ≥ 0.

Thus (3.9.1) is satisfied, and we obtain from Theorem 3.9(a) that M(f) ⊂ M(f∗).
The result now follows since it is obvious from (3.2.1) that M(f∗) ⊂ M(f). ¤

The following simple lemma will be useful in our work on the surjectivity of
various multifunctions. The idea goes back to [12, Theorem 10.7, p. 38].

Lemma 3.11. Let E be a nonzero reflexive Banach space and B, C ⊂ E × E∗.
Then:

(a) If B +ρ2 C = E×E∗ and x ∈ E then there exist (y, y∗) ∈ B and (z, y∗) ∈ C
such that y + z = x.

(b) If B+ρ1 C = E×E∗ and x∗ ∈ E∗ then there exist (y, y∗) ∈ B and (y, z∗) ∈ C
such that y∗ + z∗ = x∗.

Proof. In (a), there exist (y, y∗) ∈ B and (z, z∗) ∈ C such that (y, y∗) + (z,−z∗) =
(x, 0), and (a) follows since this implies that z∗ = y∗. The proof of (b), is similar. ¤

Lemma 3.12 will be used in the three results following it.
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Lemma 3.12. Let g : E × E∗ 7→ ]−∞,∞] be an LC–function and h : E × E∗ 7→
]−∞,∞] be defined by h(u) := g(−u). Then h is an LC–function, dom h = −dom g
and M(h) = −M(g).

Proof. Immediate. ¤
Corollary 3.13 will be used in Theorem 6.1, which contains Rockafellar’s surjec-

tivity theorem.

Corollary 3.13. Let E be a nonzero reflexive Banach space, f : E×E∗ 7→ ]−∞,∞]
be an LC–function and g : E × E∗ 7→ R be a continuous LC–function. Then:

(a) M(f) + ρ2 M(g) = E × E∗ and M(f) + ρ1 M(g) = E × E∗.
(b) If x ∈ E then there exist (y, y∗) ∈ M(f) and (z, y∗) ∈ M(g) such that

y + z = x.
(c) If x∗ ∈ E∗ then there exist (y, y∗) ∈ M(f) and (y, z∗) ∈ M(g) such that

y∗ + z∗ = x∗.
(d) M(f) + G(−J) = E × E∗.
(e) If x∗ ∈ E∗ then there exist (y, y∗) ∈ M(f) and (y, z∗) ∈ G(J) such that

y∗ + z∗ = x∗.

Proof. (a) is immediate from Theorem 3.8, Corollary 3.10 and Lemma 3.12, (b,c)
follow from (a) and Lemma 3.11, and (d,e) are immediate from (a,c) with g := j. ¤

The remaining results in this section depend on Theorem 2.2 rather than Theorem
2.1. (Theorem 3.14 and Corollary 3.15 should be compared with Corollary 3.13.)
Theorem 3.14 will be used in the surjectivity result, Theorem 6.2. Corollary 3.15
will be used in the surjectivity result, Theorem 6.4. Finally, Corollary 3.16 will be
used in the sum theorem, Theorem 4.2. Theorem 3.14 is very close to [16, Corollary
7].

Theorem 3.14. Let E be a nonzero reflexive Banach space and f, g : E × E∗ 7→
]−∞,∞] be lower semicontiuous LC–functions. Then:

(a) int
[
M(f) + ρ2 M(g)

]
= int

[
dom f + ρ2 dom g

]
.

(b) int
[
M(f) + ρ1 M(g)

]
= int

[
dom f + ρ1 dom g

]
.

Proof. Let u be an arbitrary element of int
[
dom f + ρ2 dom g

]
. From Lemma 3.6,

0 ∈ int
[
dom fu + ρ2 dom g

]
= int

[
dom fu − dom (g ◦ ρ1)

]
.

Arguing as in Theorem 3.8, but using Theorem 2.2 instead of Theorem 2.1, and then
appealing to Corollary 3.10, we see that u ∈ M(f∗) + ρ2 M(g∗) = M(f) + ρ2 M(g).
Thus we have proved that int

[
dom f + ρ2 dom g

] ⊂ M(f) + ρ2 M(g), which clearly
implies that int

[
dom f + ρ2 dom g

] ⊂ int
[
M(f) + ρ2 M(g)

]
. (a) now follows since

the opposite inclusion is immediate, and Lemma 3.12 gives (b). ¤
Corollary 3.15. Let E be a nonzero reflexive Banach space and f, g : E × E∗ 7→
]−∞,∞] be lower semicontiuous LC–functions such that π2 dom g = E∗ and, for
some w∗ ∈ E∗, E × {w∗} ⊂ dom f . Then:

(a) M(f) + ρ2 M(g) = E × E∗ and M(f) + ρ1 M(g) = E × E∗.
(b) If x ∈ E then there exist (y, y∗) ∈ M(f) and (z, y∗) ∈ M(g) such that

y + z = x.
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(c) If x∗ ∈ E∗ then there exist (y, y∗) ∈ M(f) and (y, z∗) ∈ M(g) such that
y∗ + z∗ = x∗.

Proof. (a) Let (x, x∗) be an arbitrary element of E × E∗. Since π2 dom g = E∗,
there exists y ∈ E such that (y, w∗ − x∗) ∈ dom g. The choice of w∗ now implies
that (x− y, w∗) ∈ dom f . But then

(x, x∗) = (x−y, w∗)+(y, x∗−w∗) = (x−y, w∗)+ρ2(y, w∗−x∗) ∈ dom f +ρ2 dom g.

Thus we have proved that dom f + ρ2 dom g = E × E∗. Theorem 3.14 now implies
that M(f) + ρ2 M(g) = E ×E∗, and Lemma 3.12 that M(f) + ρ1 M(g) = E ×E∗.

(b, c) These follow from (a) and Lemma 3.11. ¤
Corollary 3.16 below can also be deduced from [8, Corollary 3.7].

Corollary 3.16. Let E be a nonzero reflexive Banach space, f, g : E × E∗ 7→
]−∞,∞] be lower semicontinuous LC–functions and

⋃
λ>0 λ

[
π1 dom f − π1 dom g

]
be a closed subspace of E. Then

{
(x, s∗ + t∗) : (x, s∗) ∈ M(f), (x, t∗) ∈ M(g)

}
is

a maximal monotone subset of E × E∗

Proof. This is immediate from Lemma 3.7, Theorem 3.9 and Corollary 3.10. ¤

4. Fitzpatrick functions

Let E be a nonzero reflexive Banach space. In this section, we define the Fitz-
patrick function of a nonempty subset of E×E∗, characterize which convex functions
on E × E∗ are the Fitzpatrick functions of a maximal monotone set, and use Fitz-
patrick functions and Corollary 3.16 to give a sufficient condition for the sum of
maximal monotone multifunctions to be maximal monotone.

Let A be a nonempty subset of E × E∗. We define the Fitzpatrick function
ϕA : E × E∗ 7→ ]−∞,∞] associated with A by

(4.0.1) ϕA(u) := sup
a∈A

[bu, ac − q(a)
]
.

(
The function ϕA was introduced by Fitzpatrick in [5, Definition 3.1, p. 61].

)
From

(3.0.2), A is monotone ⇐⇒ for all u, a ∈ A, q(u − a) ≥ 0 ⇐⇒ for all u, a ∈
A, bu, ac − q(a) ≤ q(u) ⇐⇒ ϕA ≤ q on A.

(
This and many subtler criteria for

monotonicity in terms of Fitzpatrick functions can be found in [7, Proposition 4,
pp. 860–861] and [6, Proposition 2, p. 25].

)
Consequently, if A is monotone then

A ⊂ dom ϕA and so, since dom ϕA is convex,

(4.0.2). A ⊂ coA ⊂ dom ϕA,

where “co” stands for “convex hull”. In fact, domϕA can be much larger than A.
For instance, let A = G(J). It is easily verified that ϕA ≤ 1

2‖ · ‖2 =: j on E × E∗,
and consequently domϕA = E × E∗.

Suppose now that A is maximal monotone. Then (4.0.1) implies that

(4.0.3) ϕA ≥ q on E × E∗and M(ϕA) = A(
see [5, Corollary 3.9, p. 62]

)
. Combining this with (4.0.1), we derive that ϕA(u) :=

supa∈M(ϕA)

[bu, ac − q(a)
]
, in other words,

(4.0.4) ϕA is an SLC–function



132 STEPHEN SIMONS

(see Definition 3.4). Example 3.5 provides an example of an LC–function that is
not the Fitzpatrick function of some maximal monotone set A.

Theorem 4.1 below can also be deduced from [5, Theorem 3.8, p. 62].

Theorem 4.1. Let E be a nonzero reflexive Banach space. Then the mapping
A 7→ ϕA is a bijection from the maximal monotone subsets of E × E∗ onto the
SLC-functions on E × E∗. The inverse mapping is M(·).
Proof. It is clear from (4.0.3) and (4.0.4) that the mapping A 7→ ϕA is an injection
from the maximal monotone subsets of E ×E∗ into the SLC-functions on E ×E∗.
Suppose, conversely, that f : E × E∗ 7→ ]−∞,∞] is an SLC–function. Then, from
Theorem 3.9 and Corollary 3.10, M(f) is a maximal monotone subset of E × E∗,
and Definition 3.4 implies that ϕM(f) = f , so M(·) is an injection from the SLC–
functions on E × E∗ into the maximal monotone subsets of E × E∗. The result is
now immediate. ¤
Theorem 4.2. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
maximal monotone and

⋃
λ>0 λ

[
π1 dom ϕG(S) − π1 dom ϕG(T )

]
be a closed subspace

of E. Then S + T is maximal monotone.

Proof. This is immediate from (4.0.4) and Corollary 3.16, with f := ϕG(S) and
g := ϕG(T ). ¤
Remark 4.3. Theorem 4.2 can be bootstrapped into the following result. See [14,
Theorem 5.5, p. 13]. Let E be a reflexive Banach space and S, T : E ⇒ E∗
be maximal monotone. Suppose there exists a closed subspace F of E such that
D(S) − D(T ) ⊂ F ⊂ ⋃

λ>0 λ
[
π1 dom ϕG(S) − π1 dom ϕG(T )

]
. Then S + T is max-

imal monotone. Furthermore, for all ε > 0, D(S) − D(T ) ⊂ π1 dom ϕG(S) −
π1 dom ϕG(T ) ⊂ (1 + ε)

[
D(S) − D(T )

]
, and

⋃
λ>0 λ

[
π1 dom ϕS − π1 dom ϕG(T )

]
=⋃

λ>0 λ
[
D(S)−D(T )

]
.

We end this section with a simple result that will be used in Lemma 7.1.

Lemma 4.4. If A is a maximal monotone subset of E × E∗ and u ∈ E × E∗ then
ϕA−u =

(
ϕA

)
u
, and consequently dom ϕA−u = dom ϕA − u.

Proof. Immediate, from Lemma 3.6. ¤

5. The fitpatrification of a monotone multifunction

If S : E ⇒ E∗ is a multifunction then we use the standard notation

D(S) := {x ∈ E : Sx 6= ∅} = π1 G(S) and R(S) :=
⋃

x∈E Sx = π2 G(S).

(4.0.2) implies that if S is monotone then G(S) ⊂ co G(S) ⊂ dom ϕG(S), from which
D(S) ⊂ co D(S) ⊂ π1 dom ϕG(S) and R(S) ⊂ co R(S) ⊂ π2 dom ϕG(S).

Definition 5.1. Let S : E ⇒ E∗ be a nontrivial monotone multifunction.
The fitpatrification of S is the multifunction SF : E ⇒ E∗ defined by G

(
SF

)
=

dom ϕG(S). It is clear from (4.0.2) that G(S) ⊂ G
(
SF

)
. It is also clear that

π1 dom ϕG(S) = D
(
SF

)
and π2 dom ϕG(S) = R

(
SF

)
. The discussion following (4.0.2)

tells us that G
(
SF

)
can be a much larger set than G(S), since G

(
JF

)
= E ×E∗. It

is this observation that makes Lemmas 5.3 and 7.1 below rather surprising.
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Lemma 5.2. Let E be a nonzero reflexive Banach space and S, T : E ⇒ E∗ be
nontrivial and monotone. Then R

(
SF + TF

) ⊂ R
(
(S + T )F

)
.

Proof. Let x∗ be an arbitrary element of R
(
SF + TF

)
. Then there exist x ∈ E,

p∗ ∈ SF (x) and q∗ ∈ TF (x) such that p∗+ q∗ = x∗. Consequently, ϕG(S)(x, p∗) < ∞
and ϕG(T )(x, q∗) < ∞. If (y, y∗) is an arbitrary element of G(S + T ) then there
exist s∗ ∈ Sy and t∗ ∈ Ty such that s∗ + t∗ = y∗. But then

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉 = 〈x, s∗ + t∗〉+ 〈y, p∗ + q∗〉 − 〈y, s∗ + t∗〉
=

[〈x, s∗〉+ 〈y, p∗〉 − 〈y, s∗〉] +
[〈x, t∗〉+ 〈y, q∗〉 − 〈y, t∗〉]

≤ ϕG(S)(x, p∗) + ϕG(T )(x, q∗).

It follows by taking the supremum over (y, y∗) ∈ G(S + T ) that

ϕG(S+T )(x, x∗) ≤ ϕG(S)(x, p∗) + ϕG(T )(x, q∗) < ∞,

and so x∗ ∈ (S + T )F x ⊂ R
(
(S + T )F

)
. ¤

Lemma 5.3 below can also be deduced from [8, Corollary 3.7]. As pointed out
in [13], it actually goes back to [12, Theorem 18.3, p. 67] and [14, Remark 5.6, pp.
13–14].

Lemma 5.3. Let E be a nonzero reflexive Banach space and U : E ⇒ E∗ be
maximal monotone. Then intD(U) = intD

(
UF

)
and intR(U) = intR

(
UF

)
.

Proof. This follows from [13, Theorem 2.2], applied to S := U and S := U−1. ¤

Corollary 5.4 below is actually a partial result. The full result appears in
Theorem 7.2.

Corollary 5.4. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
monotone, and S +T be maximal monotone. Then intR

(
SF +TF

)
= intR(S +T ).

Proof. The inclusion “⊃” is immediate since G(SF ) ⊃ G(S) and G(TF ) ⊃ G(T ),
and the inclusion “⊂” follows from Lemmas 5.2 and 5.3. ¤

6. Surjectivity results

In this section, we prove various surjectivity results, including Rockafellar’s sur-
jectivity theorem (Theorem 6.1) and an abstract Hammerstein theorem (Theorem
6.5).

Compare the proof of Theorem 6.1 below with that of [12, Theorem 10.6, p. 37].
There is an extensive discussion the issues raised following that reference and in [12,
Remark 10.8, pp. 38–39]. Theorem 6.1(b) is “Rockafellar’s surjectivity theorem”
— see [11, Proposition 1, p. 77] for the original proof depending ultimately on
Brouwer’s fixed–point theorem and an Asplund renorming. The proof given here
is a simplification of that given in [14, Theorem 3.1(b), p. 8]. We note that this
reference also provides the exact value of min

{‖x‖ : x ∈ E, (S +J)x 3 0
}

in terms
of ϕG(S).

Theorem 6.1. Let E be a nonzero reflexive Banach space and S : E ⇒ E∗ be
monotone. Then:
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(a) S is maximal monotone ⇐⇒ G(S) + G(−J) = E × E∗.
(b) If S is maximal monotone then S + J is surjective.

Proof. (a)(⇐=) is immediate (and is valid even when E is not reflexive), and
(a)(=⇒) and (b) follow from (4.0.4), (4.0.3) and Corollary 3.13(d,e) with f :=
ϕG(S). ¤

Since G
(
JF

)
= E×E∗, the following result generalizes Theorem 6.1(b). We note

that it ultimately uses Theorem 2.2, which is a much harder result than Theorem
2.1. It can also be deduced from [16, Theorem 3 and Corollary 4].

Theorem 6.2. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
maximal monotone and G

(
SF

)
+ ρ1 G

(
TF

)
= E × E∗. Then S + T is surjective.

Proof. This follows from (4.0.4), Theorem 3.14(b), (4.0.3) and Lemma 3.11(b), with
f := ϕG(S) and g := ϕG(T ). ¤

In Theorem 6.3, we relax the condition of maximal monotonicity for S and T ,
and assume it instead for S + T .

Theorem 6.3. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
monotone, S + T be maximal monotone and SF + TF be surjective. Then S + T is
surjective.

Proof. This is immediate from Corollary 5.4. ¤

We now reverse the direction of T .

Theorem 6.4. Let E be a nonzero reflexive Banach space and S : E ⇒ E∗ and
T : E∗ ⇒ E be maximal monotone. Suppose that D

(
TF

)
= E∗ and

⋂
x∈E SF (x) 6=

∅. Then:
(a) If IE is the identity map on E, (IE + TS)(E) = E.
(b) If IE∗ is the identity map on E∗, (IE∗ + ST )(E∗) = E∗.

Proof. Let f := ϕG(S) and g(x, x∗) := ϕG(T )(x∗, x), so that π2 dom g = E∗.
(a) Let x be an arbitrary element of E. From (4.0.4) and Corollary 3.15(b),

there exist (y, y∗) ∈ M(f) and (z, y∗) ∈ M(g) such that y + z = x. From
(4.0.3), (y, y∗) ∈ G(S) and (y∗, z) ∈ G(T ), so z ∈ Ty∗ ⊂ TSx and x = y + z ∈
(IE + TS)(y) ⊂ (IE + TS)(E).

(b) Let x∗ be an arbitrary element of E∗. From (4.0.4) and Corollary 3.15(c),
there exist (y, y∗) ∈ M(f) and (y, z∗) ∈ M(g) such that y∗ + z∗ = x∗. From
(4.0.3), (y, y∗) ∈ G(S) and (z∗, y) ∈ G(T ), so y∗ ∈ Sy ⊂ STz∗ and x∗ = z∗ + y∗ ∈
(IE∗ + ST )(E∗)(z∗) ⊂ (IE∗ + ST )(E∗). ¤

The next result is a considerable generalization of [17, Theorem 32.O, p. 909]
which, in turn, was applied to Hammerstein integral equations. See Remark 6.6
below.

Theorem 6.5. Let E be a nonzero reflexive Banach space, S : E ⇒ E∗ and
T : E∗ ⇒ E be maximal monotone. Suppose that either D

(
TF

)
= E∗ and⋂

x∈E SF (x) 6= ∅ or D
(
SF

)
= E and

⋂
x∗∈E∗ TF (x∗) 6= ∅. Then (IE + TS)(E) = E.
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Proof. The first case has already been established in Theorem 6.4(a), while the
second case follows from Theorem 6.4(b), with E replaced by E∗ and the roles of S
and T interchanged. ¤
Remark 6.6. We now compare Theorem 6.5 and [17, Theorem 32.O]. [17] assumes
that E is a Hilbert space, while Theorem 6.5 assumes that E is a reflexive Banach
space. Lemma 5.3 tells us that the assumptions D(T ) = E∗ (D(S) = E, re-
spectively) of [17] are equivalent to the assumptions D

(
TF

)
= E∗ (D

(
SF

)
= E,

respectively) of Theorem 6.5. Finally, [17] assumes that
⋂

x∈E SF (x) ⊃ R(S)(⋂
x∗∈E∗ TF (x∗) ⊃ R(T ), respectively

)
while Theorem 6.5 makes the weaker as-

sumption that
⋂

x∈E SF (x) 6= ∅ (⋂
x∗∈E∗ TF (x∗) 6= ∅, respectively).

7. Brezis–Haraux approximation

Let E be a nonzero reflexive Banach space and S : E ⇒ E∗ and T : E ⇒ E∗ be
monotone. In this section, we consider when we cas assert that R

(
S + T

)
is close

to R(S) + R(T ) in the sense of the Brezis–Haraux condition:

(7.0.1) intR(S + T ) = int
[
R(S) + R(T )

]
and R(S + T ) = R(S) + R(T ).

Lemma 7.1. Let E be a nonzero reflexive Banach space and U : E ⇒ E∗ be
maximal monotone. Then

(7.1.1) R
(
UF

) ⊂ R(U).

In fact, R(U) = R
(
UF

)
and (by considering U−1), D(U) = D

(
UF

)
.

Proof. By virtue of Lemma 4.4, it suffices to prove that 0 ∈ R
(
UF

)
=⇒ 0 ∈ R(U).

Let 0 ∈ R
(
UF

)
and ε ∈ (0, 1). Choose z ∈ E such that ϕG(U)(z, 0) < ∞, and let

M ≥ ϕG(U)(z, 0) and M ≥ ‖z‖ ≥ 0. Choose λ > 0 so that

(7.1.2) λM < ε2/5 < 1.

Since U/λ is also maximal monotone, from Theorem 6.1(a), G(U/λ) + G(−J) 3
0, hence there exists (u, u∗) ∈ G(U) such that 〈u, u∗/λ〉 = −‖u∗/λ‖2, and so
−〈u, u∗〉 = ‖u∗‖2/λ. We also have 〈z, u∗〉 ≥ −‖z‖‖u∗‖ ≥ −M‖u∗‖. The defini-
tion of ϕG(U) gives

(7.1.3) 〈z, u∗〉 − 〈u, u∗〉 ≤ ϕG(U)(z, 0) ≤ M.

Substituting in for the two expressions on the left hand side of (7.1.3), we obtain
‖u∗‖2 − λM‖u∗‖ − λM ≤ 0. (7.1.2) now implies that

‖u∗‖ ≤ 1
2

(
λM +

√
λ2M2 + 4λM

) ≤ √
λ2M2 + 4λM

=
√

λM(λM + 4) <
√

(ε2/5)(1 + 4) = ε.

This establishes that 0 ∈ R(U), and completes the proof of (7.1.1). The rest is
immediate from (7.1.1) and the fact that R(U) ⊂ R

(
UF

)
. ¤

Theorem 7.2. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
monotone, and S + T be maximal monotone. Then

intR(S + T ) = intR
(
SF + TF

)
and R(S + T ) = R

(
SF + TF

)
.
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Proof. The first equality has already been established in Corollary 5.4, and the
second follows in like fashion from Lemmas 5.2 and 7.1. ¤

Theorem 7.3. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
monotone, S +T be maximal monotone and R(S)+R(T ) ⊂ R

(
SF +TF

)
. Then the

Brezis–Haraux condition, (7.0.1), is satisfied.

Proof. It follows from Lemma 5.2 that R(S)+R(T ) ⊂ R
(
(S +T )F

)
, and then from

Lemmas 5.3 and 7.1 that int
[
R(S) + R(T )

] ⊂ intR
(
(S + T )F

)
= intR(S + T ) and

R(S) + R(T ) ⊂ R
(
(S + T )F

)
= R(S + T ). The reverse inclusions in (7.0.1) are

clear since R(S + T ) ⊂ R(S) + R(T ). ¤

Definition 7.4. We say that a monotone multifunction S : E ⇒ E∗ is rectangular
if

D(S)×R(S) ⊂ G
(
SF

)
.

It is easily seen that S is rectangular ⇐⇒ S is “3*–monotone” in the sense of [17,
Definition 32.40(c), p. 901] ⇐⇒ S satisfies property “(∗∗)” of [3, p. 166] (when
E is a Hilbert space). It follows from [17, Proposition 32.41, p. 902] that if S is
monotone with bounded range, or monotone and strongly coercive, or there exists a
proper convex function f : E 7→ ]−∞,∞] such that S = ∂f , then S is rectangular.
This last observation can also be seen directly from the result that appears in [2,
Proposition 2.1] that dom f × dom f∗ ⊂ dom ϕ∂f . Now if E is reflexive and S is
maximal monotone then, from Lemmas 5.3 and 7.1,

intG
(
SF

) ⊂ intD
(
SF

)× intR
(
SF

)
= intD(S)× intR(S) ⊂ int

[
D(S)× (R(S)

]

and
G

(
SF

) ⊂ D
(
SF

)×R
(
SF

)
= D(S)×R(S) = D(S)×R(S)

So, in this case, if S is rectangular then G
(
SF

)
is almost a rectangle.

The fact that either (7.5.1) or (7.5.2) implies (7.0.1) in Corollary 7.5 below was
proved by Brezis and Haraux in Hilbert spaces in [3], with applications to Ham-
merstein integral equations, partial differential equations with nonlinear boundary
conditions, and nonlinear periodic equations of evolution. These results were ex-
tended by Reich in [9, Theorem 2.2, p. 315] to the case where E is a nonzero reflexive
Banach space. In Corollary 7.5, we do not need to use an Asplund renorming, in
contrast to the proofs of the results quoted above.

Corollary 7.5. Let E be a nonzero reflexive Banach space, S, T : E ⇒ E∗ be
monotone, and S + T be maximal monotone. If either

(7.5.1) S and T are both rectangular,

or

(7.5.2) D(S) ⊂ D(T ) and T is rectangular,

then R(S) + R(T ) ⊂ R
(
SF + TF

)
. Consequently, from Theorem 7.3, the Brezis–

Haraux condition, (7.0.1), is satisfied.
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Proof. Let x∗ be an arbitrary element of R(S) + R(T ). Then there exist s∗ ∈
R(S) and t∗ ∈ R(T ) such that s∗ + t∗ = x∗. If (7.5.1) is satisfied then, since
S + T is maximal monotone, there exists x ∈ D(S) ∩ D(T ), from which (x, s∗) ∈
D(S) × R(S) ⊂ G

(
SF

)
and (x, t∗) ∈ D(T ) × R(T ) ⊂ G

(
TF

)
, so x∗ = s∗ + t∗ ∈(

SF + TF

)
(x) ⊂ R

(
SF + TF

)
. If (7.5.2) is satisfied then we choose x ∈ E so

that (x, s∗) ∈ G(S) ⊂ G
(
SF

)
, from which x ∈ D(S) ⊂ D(T ), and so (x, t∗) ∈

D(T )×R(T ) ⊂ G
(
TF

)
, giving x∗ ∈ R

(
SF + TF

)
again. ¤

Added in proof. The author is very grateful to Professor Juan–Enrique Mart́ınez–
Legaz for pointing out that Theorem 4.1 of this paper appeared in Theorem 2 of the
joint paper A convex representation of maximal monotone operators that he wrote
with Michel Théra, and which appeared in: J. Nonlinear Convex Anal. 2 (2001),
243–247.
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