
Journal of Nonlinear and Convex Analysis

Volume 7, Number 1, 2006, 115–122

ON CONVEX FUNCTIONS WITH VALUES IN CONLINEAR
SPACES

ANDREAS LÖHNE

Abstract. The following result of Convex Analysis is well–known, see e.g. [2]:
If the function f : X → [−∞, +∞] is convex and some x0 ∈ core (dom f)
satisfies f(x0) > −∞, then f never takes the value −∞. From a corresponding
statement for convex functions with values in conlinear spaces a variety of results
is deduced, among them the mentioned theorem, a theorem of Deutsch and Singer
on the single–valuedness of convex set–valued maps as well as a result on the
compact–valuedness of convex set–valued maps. We also discuss the possibility
of embedding the image points of such a convex function into a linear space.

1. Introduction

Conlinear structures (that means the structure of a convex cone, see [5]) natu-
rally occur in Optimization and Analysis. In many cases, conlinear structures can
considered being convex cones in linear spaces. However, the concept of a convex
cone is not appropriate in important cases because it is not possible to find a linear
space wherein the conlinear structure is a convex cone. Therefore, we start intro-
ducing the concept of a conlinear space. We define convexity and convex functions
with values in ordered conlinear spaces and we point out a basic principle for such
functions. Then we show that this principle is the common basis for a variety of
well–known assertions. Some other conclusions seem to be new.

We state a simple condition implying that the embedding of a conlinear space
into a linear space is not possible. However, the principle tells us that in the special
case of a convex set–valued map the image points are, essentially, part of a linear
structure. This is the basis of a duality theory of convex set–valued maps which is
based on the ordering relation “set inclusion”, see [9].

2. Preliminaries

The concept of a conlinear space and similar concepts were already considered,
for instance, by Godini [4] (almost linear spaces), Keimel and Roth [8] (cones) and
Hamel [5]. In some of the cited references the axioms slightly differ from our ones,
which are adopted to [5].

Let X be a set. On X let an addition + : X × X → X, a multiplication
· : R+ ×X → X by nonnegative real numbers and a neutral element 0X ∈ X be
defined such that for all x, u, z ∈ X and α, β ∈ R+ := {γ ∈ R| γ ≥ 0} the following
axioms are satisfied:

(C1) (x+ u) + z = x+ (u+ z);
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(C2) 0X + x = x;
(C3) x+ u = u+ x;
(C4) α · (β · x) = (αβ) · x;
(C5) 1 · x = x;
(C6) α · (x+ u) = α · x+ α · u;
(C7) 0 · x = 0X .

Then, X is called a conlinear space. Compare [1, page 141] for a special case and
note that the concept of an almost linear spaces of [4] and that of a semilinear space
in [5] additionally involve the multiplication by negative real numbers. The axioms
imply that the neutral element is unique and α · 0X = 0X for all α ≥ 0.

In the remainder of this section let X be a conlinear space. A subset C ⊆ X is
said to be convex if x, u ∈ C implies λ · x + (1 − λ) · u ∈ C for all λ ∈ [0, 1] and a
subset K ⊆ X is said to be a cone if x ∈ K implies α · x ∈ K for all α > 0.

Proposition 2.1. A subset {x} ⊆ X, consisting of exactly one element x ∈ X, is
convex if and only if the “second distributive law” holds, i.e.,

(C8) ∀α, β ∈ R+ : α · x+ β · x = (α+ β) · x.
Proposition 2.2. Let Xc ⊆ X be the set of all points of X satisfying the second
distributive law (C8). Then Xc is a convex cone in X with 0X ∈ Xc.

Examples of conlinear spaces. (1) Every linear space V .
(2) Every convex cone C ⊆ X of a conlinear space with 0X ∈ C.
(3) The collection P̂(X) (P(X)) of all (nonempty) subsets of X with the following

operations: A,B ∈ P̂(X), α ∈ R+, A + B := {a+ b| a ∈ A, b ∈ B}, α · A :=
{α · a| a ∈ A}, if α > 0, 0 ·A := {0X}, see Remark 2.3 below.

(4) Let V be a topological linear space. The space F̂(V ) (F(V )) of all (nonempty)
closed subsets of V , where the addition is defined by A+B := cl {a+b| a ∈ A, b ∈ B}
and the multiplication is as in the previous example.

(5) The spaces P̂c(X), Pc(X), F̂c(V ) and Fc(V ) (compare (3), (4), and Proposi-
tion 2.2).

(6) Let V be a separated topological linear space. The spaces Ĉ(V ) ⊆ F̂(V ),
(C(V ) ⊆ F(V )) of all (nonempty) compact subsets of V , where the operations are
defined as in (3).

(7) The spaces Ĉc(V ) ⊆ Ĉ(V ), (Cc(V ) ⊆ C(V )) of all (nonempty) convex compact
subsets of V , where the operations are defined as in (3).

(8) The space K(X) of all cones K ⊆ X with 0X ∈ K, and the space K̂(X) :=
K(X) ∪ {∅}, where the operations are defined as in (3).

(9) The space of extended real numbers R? := R∪{−∞}∪{∞} with the extended
operations: x+(−∞) = (−∞)+x = −∞ for all x ∈ R? \{∞}, x+∞ = ∞+x = ∞
for all x ∈ R?, α · ±∞ = ±∞ for all α > 0 and 0 · ±∞ = 0 (compare [14]).

(10) The space of extended real numbers R� := R∪{−∞}∪{∞} with the extended
operations: x+∞ = ∞+x = ∞ for all x ∈ R�\{−∞}, x+(−∞) = (−∞)+x = −∞
for all x ∈ R� and the multiplication as above.

Remark 2.3. In P̂(X) we use the convention 0 · ∅ = {0}, although in the literature
one usually sets 0 · ∅ = ∅. Our convention is a natural extension of the rules
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0 · (+∞) = 0 and 0 · (−∞) = 0, which are usually used in the extended real
numbers. A relationship between both conventions is given by the support function
in (4) below. By our convention, (4) also holds for A = ∅.

Note that a subset {x} ⊆ X consisting of exactly one element x ∈ X can be a
cone in X, even if x 6= 0X . Such an element x ∈ X with x = α · x for all α > 0
is called a conical element. Note that in [5] the term cone is used instead. This is
because of the following relationship [5]: A subset K ⊆ X is a cone in X if and only
if K is a conical element in P̂(X).

Of course, in every conlinear space X the neutral element 0X is a conical element,
therefore a conical element x 6= 0X is called nontrivial. Let A and B be two
nonempty subsets of a conlinear space X. We say A dominates B, in short A � B,
if a ∈ A , b ∈ B implies a + b ∈ A. If there is some x̂ ∈ X such that {x̂} � X,
then x̂ is called dominant in X. A dominant element of a conlinear space X, if it
exists, is a conical element and is uniquely defined. Indeed, let x̂ ∈ X be dominant
in X. If α ≥ 1 we have αx̂ = x̂ + (1 − α)x̂ = x̂. If α ∈ (0, 1), we have 1

α x̂ = x̂
and hence x̂ = αx̂. The uniqueness is obvious. Moreover, the union of all conical
elements is a convex cone in X. The following proposition underlines the advantage
of considering conlinear spaces instead of convex cones of linear spaces.

Proposition 2.4. A conlinear space having a nontrivial conical element cannot be
embedded into a linear space.

Proof. Suppose the contrary, i.e., there exists a linear space L such that X is a
convex cone in L with a conical element x̂ 6= 0X . Then there must be an inverse
element x̄ and we have x̂+x̄ = 0L. It follows 0L = x̄+x̂ = x̄+2 ·x̂ = (x̄+x̂)+x̂ = x̂,
which contradicts the assumption. �

The preceding proposition shows that a lot of important examples of conlinear
spaces, for instance, the spaces of Examples (3) to (10), cannot be treated as convex
cones in a linear space. A sufficient condition for embedding a conlinear space into
a linear space is discussed in Radström [12, Theorem 1].

In the following, let the conlinear space X be equipped with a partial ordering
≤ (i.e., a reflexive, transitive and antisymmetric relation on X). We say (X,≤)
(shortly X) is an ordered conlinear space if it holds

(1) x1 ≤ x2, x3 ≤ x4 ⇒ α · (x1 + x3) ≤ α · (x2 + x4)

for all x1, x2, x3, x4 ∈ X and all α ∈ R+.

Proposition 2.5. Let X be an ordered conlinear space. Then the largest (smallest)
element of X, if it exists, is a conical element.

Proof. Let x̂ be the largest element of X, i.e., x ≤ x̂ for all x ∈ X. For given
α > 0, condition (1) yields α · x ≤ α · x̂ for all x ∈ X. Given some u ∈ X, we have
x := 1/α · u ∈ X. Hence for all α > 0 and all u ∈ X it holds u ≤ α · x̂, i.e., α · x̂
is the largest element of X. Since the largest element of a partially ordered set is
uniquely defined we get α · x̂ = x̂ for all α > 0. The proof for the smallest element
is analogous. �
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Since a linear space has no nontrivial conical element, the preceding result means
that a partially ordered linear space cannot be order complete (a partially ordered
set is said to be order complete if every subset has supremum and infimum [15]).
However, every Dedekind complete ordered conlinear space (a partially ordered set
is said to be Dedekind complete if every subset which is bounded above (below)
has a supremum (infimum) [15]) can be extended to an order complete ordered
conlinear space. To see this extend the space by a new element defined to be the
largest (smallest) one and being dominant in the extended space. After this, extend
the space by a second new element defined to be the smallest (largest) one and
being dominant in the extended space (compare Examples (9) and (10)).

Examples of ordered conlinear spaces. (11) Every partially ordered linear
space.

(12) The spaces of Examples (3) to (8) equipped with the partial orderings ⊆
and ⊇.

(13) The extended real numbers of Examples (9) and (10) with the usual ≤
relation.

Now we are able to give the definition of a convex function. Let (Y,≤) be an
ordered conlinear space and C ⊆ X. The set epi f := {(x, y) ∈ C × Y | f(x) ≤ y} is
called epigraph of f . A function f : C → (Y,≤) is said to be convex if its epigraph
epi f is a convex subset of X × Y . In this case, C must be convex. It is an easy
task to show that a function f : C → (Y,≤) is convex if and only if for all λ ∈ [0, 1]
and all x, u ∈ C it holds

f(λ · x+ (1− λ) · u) ≤ λ · f(x) + (1− λ) · f(u).

A convex function f : C → Y , defined on a subset C ⊆ X, can be extended to the
whole space X, if (Y,≤) has a largest element ŷ which is simultaneously dominant
in Y . In this case, the extension f̂ : X → Y , defined by f̂(x) := f(x) if x ∈ C

and f̂(x) = ŷ elsewhere, is convex. Moreover, the set dom f := {x ∈ C| f(x) 6= ŷ}
is called the effective domain of f . In the spaces of Examples (3) to (8), equipped
with the relation ⊇, we have ŷ = ∅, if the empty set belongs to the space. If we
take the relation ⊆ instead, we have ŷ = X (respectively ŷ = V ) if the empty set
does not belong to the space.

It is well–known that in the special case of a function f : U → (P(V ),⊇),
where U and V are linear spaces, f is convex if and only if its ”graph” G(f) :=
{(u, v) ∈ U × V | v ∈ f(u)} is a convex subset of U × V .

3. A basic principle and its conclusions

The following theorem is the essential part of a lot of assertions concerning convex
functions (and maps). It states that under certain assumptions to the conlinear
structure and to the ordering structure, a convex function cannot attain values in
a certain cone of its ordered conlinear image space.

In this section, let X be a linear space and C ⊆ X. The core or the algebraic
interior of a subset A ⊆ X is denoted by coreA (compare [6]). As usual, for
f : C → (Y,≤) and A ⊆ C we define f(A) := {y ∈ Y | ∃x ∈ A : y = f(x)}.
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Theorem 3.1. Let (Y,≤) be an ordered conlinear space, S ⊆ Y a cone, f : C →
(Y,≤) a convex function and A ⊆ C such that S � f(A). If there exists x0 ∈ coreA
such that f(x0) 6≤ s for all s ∈ S, then f(x) 6∈ S for all x ∈ C.

Proof. Assume f(x) ∈ S. Since x0 ∈ coreA, we find some x′ ∈ A such that
x0 = λx′ + (1 − λ)x for some λ ∈ (0, 1). The convexity of f yields f(x0) ≤
λ · f(x′) + (1 − λ) · f(x) =: s. Since S is a cone in Y and λ > 0, S � f(A)
implies S � λ · f(A). Consequently, we have s ∈ S. Hence f(x0) ≤ s and s ∈ S
contradicting the assumption. This means f(x) 6∈ S for all x ∈ C. �

The first corollary is a classical result for convex functions with values in the
extended reals R? of Example (9). Note that, for instance, in [13] other calculus
rules in the extended reals are used, but the same result is valid.

Corollary 3.2. Let f : C → (R?,≤) be a convex function. If some point x0 ∈
core (dom f) satisfies f(x0) > −∞, then f never takes the value −∞.

Proof. S = {−∞}, A = dom f . �

In the following result, we set levf (α) = {x ∈ C| f(x) = α}.

Corollary 3.3. Let f : C → R be a convex function. If x0 ∈ core levf (0), then
f(x) ≥ 0 for all x ∈ C.

Proof. S = {y ∈ R| y < 0}, A = levf (0). �

With the aid of the principle it is easy to obtain a vector–valued variant of the
preceding assertion. Therein, bdK = clK \ intK denotes the boundary of K.

Corollary 3.4. Let (Y,≤K) be a separated topological linear space partially ordered
by a closed pointed (i.e., K ∩−K = {0Y }) convex cone K ⊆ Y having a nonempty
interior, f : C → (Y,≤K) a convex function. If f takes values in −bdK on an
algebraically open subset of C, then f never takes values in −intK.

Proof. S = −intK, A = f−1(−bdK) �

In vector optimization optimality conditions of the following type occur [7, The-
orem 7.6]: If x̄ ∈ D is a weakly minimal solution of the vector optimization problem
minx∈D f(x) of [7, page 153] and if f : D → (Y,≤K) has a directional variation
f ′(x̄) : D − {x̄} → (Y,≤K) at x̄ with respect to −coreK (i.e., whenever there is
x ∈ D with x 6= x̄ and f ′(x̄)(x − x̄) ∈ −coreK, then there exists λ̄ > 0 with
x̄+λ(x− x̄) ∈ D for all λ ∈ (0, λ̄] and 1

λ (f(x̄+ λ(x− x̄))− f(x̄)) ∈ −coreK for all
λ ∈ (0, λ̄], [7, Definition 2.14]), then

(2) ∀x ∈ D : f ′(x̄)(x− x̄) 6∈ −coreK.

If the directional variation f ′(x̄) : D − {x̄} → (Y,≤K) is convex and takes values
in −bdK on an algebraically open set, and if intK 6= ∅ (in particular this implies
coreK = intK), then, by Corollary 3.4, the optimality condition (2) is satisfied.

The following corollary is a result by Deutsch and Singer [3] on the single–
valuedness of a convex set–valued map. In [3] a further conclusion, namely f must
be affine on dom f , is drawn and applications to metric projections and adjoints of
set–valued maps are discussed.
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Corollary 3.5. Let V be a linear space and let f : C → (P̂(V ),⊇) be convex. If f is
single–valued in some point of x0 ∈ core (dom f), then f is single–valued everywhere
in dom f .

Proof. S = {”nonsingletons”}, A = dom f . �

Corollary 3.6. Let V be a separated topological linear space and f : C → (F̂(V ),⊇)
be convex. If f is compact–valued at some point x0 ∈ core (dom f), then f is
compact–valued everywhere on dom f .

Proof. S = {”noncompacts”}, A = dom f . �

The following result by Zamfirescu [16] was published in the framework of a
generalization of the mentioned result of Deutsch and Singer to so–called star–
shaped functions. The same generalization could be done for all the assertions given
here.

Corollary 3.7. Let V = Rn and let f : C → (P̂(V ),⊇) be convex. Then dim f(x),
as a function of x, is constant on core (dom f) and not larger elsewhere.

Proof. Let x0 ∈ core (dom f) with dim f(x0) = k, S = {v ⊆ V | dim v > k}, A =
dom f . Then the theorem yields dim f(x) ≤ k for all x ∈ C. Now suppose there is
some x1 ∈ core (dom f) such that dim f(x1) = m < k. Applying the theorem again
we obtain dim f(x) ≤ m < k for all x ∈ C contradicting dim f(x0) = k. �

It follows a result on cone–valued maps.

Corollary 3.8. Let Z be a conlinear space and let f : C → (K̂(Z),⊇) be convex.
Then f is constant on core (dom f).

Proof. Let x0 ∈ core (dom f) with f(x0) = k0, S = {k ∈ K(Z)| k 6⊆ k0}, A = dom f .
Then the theorem yields f(x) ⊆ k0 for all x ∈ C. Now suppose there is some
x1 ∈ core (dom f) with f(x1) = k1 ( k0. Applying the theorem again we obtain
f(x) ⊆ k1 ( k0 for all x ∈ C contradicting f(x0) = k0. �

Let V be a locally convex space and V ∗ its topological dual. As usual, δ∗( · |A ) :
V ∗ → R�, δ∗(v∗|A ) = sup {〈v∗, a〉 | a ∈ A} is the support function of a convex set
A ⊆ V . For A,B ∈ F̂c(V ) (compare Example (5) and note that F̂c(V ) is the space
of closed convex subsets of V ) it holds

(3) ∀v∗ ∈ V ∗ : δ∗(v∗|A+B ) = δ∗(v∗|A ) + δ∗(v∗|B ),

and for A ∈ F̂c(V ) and α ≥ 0 we have

(4) ∀v∗ ∈ V ∗ : δ∗(v∗|α ·A ) = α · δ∗(v∗|A ).

Hence, the map which assigns every A ∈ Fc(V ) its support function is a homomor-
phism into the conlinear space Ψ of all functions ψ : V ∗ → R ∪ {∞}, where the
conlinear operations are defined pointwise. Using a separation theorem, for instance
[11, page 25], it can easily be seen that this homomorphism is injective, i.e., we have
an embedding. Moreover, it is clear that a family of all functions ψ : V ∗ → R∪{∞}
having a certain fixed effective domain can considered to be a linear space L. Let
A ⊆ Fc(V ) such that the support functions of all members A of A have the same
effective domain. Then A can be embedded into a linear space.
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The following corollary tells us that the support functions of the values of a
convex function f : C → (F̂(V ),⊇) have essentially the same effective domain.

Corollary 3.9. Let f : C → (F̂(V ),⊇) be convex. Then x 7−→ dom δ∗( · | f(x) ) is
constant on core (dom f).

Proof. The convexity of f implies f(x) ⊇ λf(x)+(1−λ)f(x) for all λ ∈ [0, 1]. Hence
f(x) is a convex subset of V for all x ∈ dom f . Define K0 := dom δ∗( · | f(x0) ) for
some x0 ∈ core (dom f), S := {w ∈ Fc(V )| dom δ∗( · |w ) 6⊇ K0} and A := dom f .
Obviously, S is a cone in F(V ).

Let s ∈ S and w ∈ f(A). Then we have dom δ∗( · | s ) 6⊇ K0 and since w 6= ∅
we have δ∗( · |w ) > −∞. Since s and w are nonempty, (3) is valid and it follows
s+ w ∈ S, i.e., the assumption S � f(A) is satisfied.

For all s ∈ S we have f(x0) 6⊇ s. Indeed, assuming that s̄ ⊆ f(x0) for some s̄ ∈ S
we obtain δ∗( · | s̄ ) ≤ δ∗( · | f(x0) ) and hence dom δ∗( · | s̄ ) ⊇ dom δ∗( · | f(x0) ) = K0.
This contradicts the definition of S. The theorem yields f(x) 6∈ S for all x ∈ C.
This means dom δ∗( · | f(x) ) ⊇ K0 for all x ∈ C.

Assuming that dom δ∗( · | f(x1) ) = K1 ) K0 for some x1 ∈ core (dom f) and
applying the same procedure as above we get dom δ∗( · | f(x) ) ⊇ K1 for all x ∈ C,
in particular, dom δ∗( · | f(x0) ) ⊇ K1 ) K0 contradicting the definition of K0.
Hence x 7−→ dom δ∗( · | f(x) ) is constant on core (dom f). �

From the previous corollary and the considerations above, we may conclude that
the set f(core (dom f)) ⊆ F(V ) can be embedded into a linear space L, even though
F(V ) cannot be embedded (compare Proposition 2.4). Note that for different func-
tions f : C → F̂(V ) with the same X, C ⊆ X and V the linear space L can
be different, in particular, the neutral element of L does not coincides with the
neutral element of F̂(V ), in general. In [9] we have shown that (at least in a fi-
nite dimensional context), if G(f) is additionally closed, even the set f(dom f) can
be embedded into a linear space. Note further that the assertions involving the
ordering relation ⊇ do not remain valid for ⊆.
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[9] Löhne, A.: Optimization with set relations, Ph.D.–thesis, Martin–Luther–Universität Halle–

Wittenberg, 2005



122 ANDREAS LÖHNE
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