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FIXED POINTS OF APPROXIMABLE OR KAKUTANI MAPS IN
GENERALIZED CONVEX SPACES

SEHIE PARK

Abstract. We study fixed point properties for various types of multimaps de-
fined on generalized convex spaces and mutual relations of those properties. We
obtain several fixed point theorems for approximable or Kakutani multimaps.
Our approach is based on the study of approachable maps initiated mainly by
Ben-El-Mechaiekh and on other results on generalized convex spaces.

1. Introduction

The celebrated Brouwer fixed point theorem in 1912 was generalized by Schauder
in 1930 to Banach spaces. In 1935, Schauder conjectured that his theorem might
hold for any topological vector spaces. Partial solutions to the conjecture were
given by Tychonoff in 1935, Hukuhara in 1950, Klee in 1960, Fan in 1962, Idzik in
1987, Nhu in 1996, Arandelović in 1996, and others. For references, see [41,43,48].
However, the following form of the Schauder conjecture is still open:

Conjecture 1. Let E be a Hausdorff topological vector space, C a convex subset
of E, and f a continuous function from C into C. If f is compact (that is, f(C)
is contained in a compact subset of C), then f has a fixed point x0 ∈ C, that is,
x0 = f(x0).

In 2001, Cauty [13] claimed the affirmativity of Conjecture 1. Later, it is known
that his proof has a gap.

On the other hand, in 1941, Kakutani extended the Brouwer theorem to an upper
semicontinuous (u.s.c.) multimap having nonempty compact convex values (which
will be called a Kakutani map). This was also generalized by Bohnenblust and
Karlin in 1950, Fan in 1952, Glicksberg in 1952, Himmelberg in 1972, Granas and
Liu in 1986, Idzik in 1988, Park in 1988, Okon in 2002, and others for particular
types of topological vector spaces; see [41,43,48]. However, the following is still
open:

Conjecture 2. Let X be a compact convex subset of a Hausdorff topological vector
space E. Then every Kakutani map T : X ( X has a fixed point x0 ∈ X, that is,
x0 ∈ T (x0).

Later there have appeared other types of useful multimaps on topological vector
spaces, for example, Fan-Browder maps, locally selectionable maps, approachable
maps, approximable maps, and many others; see [38-43,45-49].
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In this paper, we are mainly concerned with fixed point properties for various
types of multimaps defined on generalized convex spaces and mutual relations of
those properties. From some of the most general cases where Conjectures 1 and
2 are known to be affirmative, we deduce several general fixed point theorems for
approximable or Kakutani maps in topological vector spaces or in generalized convex
spaces. Our approach is based on the study of approachable maps initiated mainly
by Ben-El-Mechaiekh [3-11] and on other results on generalized convex spaces due
to the author.

In Section 2, as preliminaries, we review the concepts of admissible (in the sense of
Klee), weakly admissible, and convexly totally bounded (c.t.b.) subsets of topolog-
ical vector spaces. Moreover, we recall the concepts of generalized convex (simply,
G-convex) spaces, locally G-convex spaces, and LG-spaces. Note that these are
essential in order to establish general forms of fixed point theorems on topological
vector spaces.

Section 3 deals with basic fixed point theorems on Φ-maps (or Fan-Browder
maps) and locally selectionable maps having convex values. In Section 4, approach-
able multimaps defined on G-convex uniform spaces are considered. We obtain
several fixed point theorems for compact closed approachable multimaps on subsets
of topological vector spaces. Section 5 deals with Kakutani type multimaps defined
on certain type of G-convex spaces. We obtain some abstract forms of fixed point
theorems which include a large number of known results. Finally, in Section 6, some
results in previous sections are applied to condensing maps on topological vector
spaces.

2. Preliminaries

Let us say that a topological space X has the (compact) fixed point property
(simply, f.p.p.) if any (compact) continuous selfmap f : X → X has a fixed point
x0 ∈ X.

Throughout this paper, all topological spaces are Hausdorff otherwise explicitly
stated, a t.v.s. means a topological vector space E, and V denotes a basis of neigh-
borhoods of the origin 0 of E.

A nonempty subset K of a t.v.s. E is said to be locally convex if for each x ∈ K
there exists in K a basis of neighborhoods Ux of x such that Ux = Wx ∩K and Wx

is a convex subset of E.
Recall that a nonempty subset X of a t.v.s. E is said to be admissible (in the

sense of Klee) provided that, for every nonempty compact subset K of X and every
V ∈ V, there exists a continuous function h : K → X such that x − h(x) ∈ V for
all x ∈ K and h(K) is contained in a finite dimensional subspace L of E.

A nonempty subset K of E is said to be Klee approximable if for any V ∈ V,
there exists a continuous function h : K → E such that x− h(x) ∈ V for all x ∈ K
and h(K) is contained in a finite dimensional subspace L of E. Especially, for a
subset X of E, K is said to be Klee approximable into X whenever the range h(K)
is contained in a polytope in X.

Examples. Any compact locally convex subset of a t.v.s. is Klee approximable.
Every nonempty convex subset of a locally convex t.v.s. is admissible. Examples of
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admissible t.v.s. are lp, Lp, the Hardy spaces Hp for 0 < p < 1, the space S(0, 1)
of equivalence classes of measurable functions on [0, 1], and others. Moreover, any
locally convex subset of an F -normable t.v.s. and any compact convex locally convex
subset of a t.v.s. is admissible. Note that an example of a nonadmissible nonconvex
compact subset of the Hilbert space l2 is known. For details, see Hadžić [19], Weber
[61,62], and references therein.

In 1996, Nguyen To Nhu [30] defined the notion of weakly admissible compact
convex subsets of a metrizable t.v.s. and showed that such subsets have the f.p.p.
Arandelović [2] extended the notion of weak admissibility to arbitrary t.v.s. and
gave a non-metrizable version of Nhu’s result.

Let X be a nonempty closed convex subset of a t.v.s. E. We say that X is weakly
admissible [2] if for every V ∈ V there exist closed convex subsets X1, X2, . . . , Xn of
X with X = co (

⋃n
i=1 Xi) and continuous functions fi : Xi → X∩L, i = 1, 2, . . . , n,

where L is a finite dimensional subspace of E, such that
∑n

i=1(fi(xi)− xi) ∈ V for
every xi ∈ Xi and i = 1, 2, . . . , n.

In 1988, Idzik [23] introduced the notion of convexly totally bounded subsets of a
t.v.s. and established some (almost) fixed point theorems for Kakutani maps having
relatively compact and convexly totally bounded ranges.

A subset B of a t.v.s. E is said to be convexly totally bounded (simply, c.t.b.) if
for every V ∈ V, there exist a finite subset {xi}n

i=1 ⊂ B and a finite family of convex
subsets {Ci}n

i=1 of V such that B ⊂
⋃n

i=1(xi + Ci).

Examples. Idzik [23] and others gave examples of c.t.b. sets as follows:
1. Every compact set in a locally convex t.v.s.
2. Any compact set which is locally convex.
3. Every compact convex subset of E = lp, 0 < p < 1.
4. More generally, every compact convex subset of a t.v.s. E on which E∗

separates points.
For more examples, see [16,61,62].

A generalized convex space or a G-convex space (X, D; Γ) consists of a topological
space X, a nonempty subset D of X, and a multimap Γ : 〈D〉 ( X such that for
each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a continuous function
φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).

Here, 〈D〉 denotes the set of all nonempty finite subsets of D, ∆n the stan-
dard n-simplex with vertices {ei}n

i=0, and ∆J the face of ∆n corresponding to
J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik} ⊂ A, then
∆J = co{ei0 , ei1 , . . . , eik}. It is possible to assume Γ(A) = φA(∆n). We may write
ΓA = Γ(A) for each A ∈ 〈D〉 and (X; Γ) = (X, X; Γ). A subset C of X is said to
be Γ-convex if for each A ∈ 〈D〉, A ⊂ C implies ΓA ⊂ C. For details on G-convex
spaces, see [42-47,50-53], where basic theory was extensively developed and lots of
examples of G-convex spaces were given.

A well-known subclass of G-convex spaces due to Horvath [21,22] can be gener-
alized as follows:

A G-convex space (X, D; Γ) is called a C-space (or an H-space) if each ΓA is
ω-connected (that is, n-connected for all n ≥ 0) and ΓA ⊂ ΓB for A ⊂ B in 〈D〉.
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The following is introduced in [47]:
A locally G-convex space is a G-convex space (X, D; Γ) such that X is a uniform

space with a basis U for the symmetric entourages, D is dense in X, and for each
U ∈ U and each x ∈ X,

U [x] = {x′ ∈ X : (x, x′) ∈ U}
is Γ-convex.

We can also define a locally C-convex space as above.
A G-convex space (X, D; Γ) is called an LG-space if X is a uniform space with a

basis U such that D is dense in X, and for each U ∈ U , {x ∈ X : C ∩ U [x] 6= ∅} is
Γ-convex whenever C ⊂ X is Γ-convex.

Similarly, we can define a LC-space (X, D; Γ) if it is a C-space; for the case
X = D, see [22], where a large number of examples were given.

3. Locally selectionable maps

A multimap (simply, a map) T : X ( Y is a function from X into the power set
2Y of Y. T (x) is called the value of T at x ∈ X and T−(y) := {x ∈ X : y ∈ T (x)}
the fiber of T at y ∈ Y . Let T (A) :=

⋃
{T (x) : x ∈ A} for A ⊂ X.

For topological spaces X and Y , a map T : X ( Y is said to be closed if its
graph Gr(T ) := {(x, y) : x ∈ X, y ∈ T (x)} is closed in X × Y , and compact if its
range T (X) is contained in a compact subset of Y .

For any subset X of a t.v.s., a map T : X ( X is called a Browder map if it has
nonempty convex values and open fibers. The well-known Fan-Browder fixed point
theorem states that a Browder map from a compact convex subset of a t.v.s. (not
necessarily Hausdorff) into itself has a fixed point [12].

For any topological space Y and a G-convex space (X, D; Γ), a map T : Y ( X
is called a Φ-map (or a Fan-Browder map) if there exists a map S : Y ( D such
that

(i) for each y ∈ Y , M ∈ 〈S(y)〉 implies ΓM ⊂ T (y); and
(ii) Y =

⋃
{IntS−(x) : x ∈ D}.

If X is a subset of a t.v.s. E, then Condition (i) can be replaced by the following:
(i)′ for each y ∈ Y, co S(y) ⊂ T (y).

The concept of Φ-maps is originated from Horvath [21] and motivated by the
works of Fan and Browder; see [12,40,42,43,46].

A G-convex space (X, D; Γ) is called a Φ-space if X is a uniform space and for
each entourage U there is a Φ-map T : X ( X such that Gr(T ) ⊂ U . This concept
is originated from Horvath [21], where a number of examples are given.

For a subset X of a t.v.s. E, X is a Φ-space if for each neighborhood V of 0 in
E, there is a Φ-map T : X ( X such that T (x) ⊂ x + V for each x ∈ X.

The following gives some of the most general partial solutions of Conjectures 1
and 2:

Lemma 1. Let X be a convex subset of a t.v.s. E and F : X ( X a Kakutani map.
Then F has a fixed point whenever one of the following holds:

(1) (Idzik [23]) F (X) is a compact c.t.b. subset of X.
(2) (Okon [33-35]) X is compact and weakly admissible.
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(3) (Park [49]) F (X) is a compact Klee approximable subset of X.

Recall that Lemma 1 contains a large number of previously known partial solu-
tions of Conjectures 1 and 2, see [2,19,21,24,25,30,41,43,48].

For Φ-maps, we have the following strengthened form of the selection theorem in
our previous work [42]:

Lemma 2. (1) Let Y be a normal space, (X, D; Γ) a G-convex space, and S : Y (
D a map such that Y =

⋃
{IntS−(z) : z ∈ A} for some A ∈ 〈D〉. Then there exists

a continuous function s : Y → ΓA such that s(y) ∈ Γ(A ∩ S(y)) for all y ∈ Y . In
fact, if |A| = n + 1, then s = φA ◦ p, where φA : ∆n → ΓA and p : Y → ∆n are
continuous functions.

(2) Let Y be a paracompact space, (X, D; Γ) a C-space, and T : Y ( X a Φ-map.
Then T has a continuous selection f : Y → X (that is, f(y) ∈ T (y) for all y ∈ Y ).

Lemma 3. (1) An LG-space (X, D; Γ) is locally G-convex if every singleton is
Γ-convex (that is, Γ{x} = {x} for each x ∈ D).

(2) Every locally G-convex space is a Φ-space.
(3) For a subset X of a t.v.s. E, if X is a Φ-space, then it is admissible.

Proof. (1) For each symmetric entourage U and any x ∈ X,

U [x] = {x′ ∈ X : (x, x′) ∈ U}
= {x′ ∈ X : x ∈ U [x′]}
= {x′ ∈ X : {x} ∩ U [x′] 6= ∅}.

Since {x} is Γ-convex and (X, D; Γ) is an LG-space, U [x] is Γ-convex. Therefore,
(X, D; Γ) is locally G-convex.

(2) See [45, Lemma 4].
(3) For each symmetric neighborhood V of the origin 0, there exist multimaps

S : X ( X and T : X ( X such that
(i) for each x ∈ X, co S(x) ⊂ T (x);
(ii) X =

⋃
{IntS−(y) : y ∈ X}; and

(iii) T (x) ⊂ x + V for each x ∈ X.
Let K be a nonempty compact subset of X. Then, it follows from Lemma 2(1) that
T |K has a continuous selection h : K → X such that

(iv) h(K) ⊂ co N for some N ∈ 〈X〉 with |N | = n + 1; and
(v) there exist continuous functions p : K → ∆n and φN : ∆n → co N such that

h = φN ◦ p.
Moreover, h(x) ∈ T (x) for all x ∈ K implies

(vi) x− h(x) ∈ x− T (x) ⊂ V for all x ∈ K.
Therefore, X is admissible. �

For topological spaces X and Y , a multimap T : X ( Y is said to be selectionable
if it has a continuous selection f : X → Y , and locally selectionable if for each
x0 ∈ X, there exist an open neighborhood V0 of x0 and a continuous function
f0 : V0 → Y such that f0(x) ∈ T (x) for all x ∈ V0; see [42].
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Any continuous function is selectionable and there are lots of examples of selec-
tionable maps due to Michael and others. Any selectionable map is locally selec-
tionable.

The following is given [42, Theorems 4 and 5]:

Lemma 4. Let X be a paracompact topological space and Y a convex subset of a
t.v.s. E. Then

(1) any Φ-map T : X ( Y is locally selectionable; and
(2) any locally selectionable map T : X ( Y having convex values is selection-

able.

We say that a G-convex space (X, D; Γ) has the (compact) Φ-fixed point property
(simply, Φ-f.p.p.) if any (compact) Φ-map T : X ( X has a fixed point.

The following is given in [40]:

Theorem 5. (1) A compact G-convex space (X, D; Γ) has the Φ-f.p.p.
(2) If a paracompact C-space (X, D; Γ) has the f.p.p., then it has the Φ-f.p.p.

It is known that the converse of (2) is not true. Note that (2) follows from Lemma
2(2) and generalizes a result of Komiya [26].

We say that a nonempty subset X of a t.v.s. has the (compact) L-fixed point
property (simply, L-f.p.p.) if any (compact) locally selectionable map T : X ( X
having convex values has a fixed point.

Theorem 6. Let E be a t.v.s. whose nonempty paracompact convex subsets have the
compact f.p.p. Then any nonempty convex subset X of E has the compact L-f.p.p.

Proof. Let T : X ( X be a compact and locally selectionable map having convex
values. Since T (X) is a compact subset of a convex set X, L :=co T (X) is a
paracompact convex subset of X by the well-known Fournier-Granas argument [17].
In fact, since T (X) is compact, as in [17], L :=co T (X) is a σ-compact subset of X
and hence L is Lindelöf. Since L is regular as a subset of a t.v.s., we know that L is
paracompact. By Lemma 4(2), T |L : L ( L is selectionable and has a continuous
selection s : L → L. Since s(L) ⊂ T (L) ⊂ T (X) ⊂ L, s is compact and has a fixed
point x0 ∈ L ⊂ X such that x0 = s(x0) ∈ T (x0). This completes our proof. �

Remarks. 1. If Conjecture 1 is true, the hypothesis is satisfied. Moreover, Lemma 1
gives several particular cases of Theorem 6.

2. For the Φ-f.p.p. instead of L-f.p.p., Theorem 6 is obtained in [40].
3. For the Φ-f.p.p., a particular form of Theorem 6 was appeared in [36,37] when-

ever X is closed and E is locally convex.

4. Approachable maps on G-convex spaces

In 1992, Ben-El-Mechaiekh et al. [6] introduced the class A of approachable mul-
timaps as follows:

Let X and Y be uniform spaces (with respective bases U and V of symmetric
entourages). A multimap T : X ( Y is said to be approachable whenever T admits
a W -approximative continuous selection s : X → Y for each W in the basis W of
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the product uniformity on X × Y ; that is, Gr(s) ⊂ W [Gr(F )], where

W [A] :=
⋃
z∈A

W [z] = {z′ ∈ X × Y : W [z′] ∩A 6= ∅}

for any A ⊂ X × Y , and

W [z] := {z′ ∈ X × Y : (z, z′) ∈ W ]

for z ∈ X × Y .
A multimap T : X ( Y is said to be approximable if its restriction T |K to any

compact subset K of X is approachable.
The following is due to Ben-El-Mechaiekh et al. [6, Proposition 3.9]:

Lemma 7. Let (X,U) and (Y,V) are uniform spaces. If either
(i) X is paracompact and (Y, D; Γ) is an LC-space; or
(ii) X is compact and (Y, D; Γ) is an LG-space,

then every u.s.c. map F : X ( Y with nonempty Γ-convex values is approachable.

We adopt the following definitions from [10,11]:
Let X and Y be subsets of t.v.s. E and F , respectively, and T : X ( Y a

multimap. Given two open neighborhoods U and V of the origin 0 of E and F , re-
spectively, a (U, V )-approximative continuous selection of T is a continuous function
s : X → Y satisfying

s(x) ∈ (T [(x + U) ∩X] + V ) ∩ Y for every x ∈ X.

T is said to be approachable if it admits a (U, V )-approximative continuous selec-
tion for every U and V as above; and T approximable if its restriction T |K to any
compact subset K of X is approachable.

Note that an approachable map is always approximable. Recall that Ben-El-
Mechaiekh et al. [3-11] established a large number of properties and examples of
approachable or approximable maps.

Examples. We give some examples of approachable maps T : X → Y as follows:
1. Any selectionable multimap is approximable.
2. A locally selectionable map T with convex values is approximable whenever

Y is a convex subset of a t.v.s.
3. An u.s.c. map T with nonempty convex values is approachable whenever

X is paracompact and Y is a convex subset of a locally convex t.v.s.; see
Lemma 7(1).

4. An u.s.c. map T with nonempty compact contractible values is approach-
able whenever X is a finite polyhedron.

5. An u.s.c. map T with nonempty compact values having trivial shape (that
is, contractible in each neighborhood in Y ) is approachable whenever X is
a finite polyhedron.

For 1 and 2, see Section 2; and for 3-5, see [5].
Let A(X, Y ) denote the class of all u.s.c. approachable maps T : X ( Y with

compact values, Aκ(X, Y ) the class of all u.s.c. approximable maps T : X ( Y
with compact values, and Aκ

c (X, Y ) the class of all finite compositions T : X ( Y
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of u.s.c. approximable maps with compact values, where the intermediate spaces
are uniform ones. As usual, C(X, Y ) denotes the class of all continuous functions
f : X → Y . Recall that the class Aκ

c is an example of the admissible class Aκ
c and

the better admissible class Bκ due to the author [41,43].
We say that a uniform space X has the (compact) approachable fixed point prop-

erty (simply, A-f.p.p.) if any (compact) map T ∈ A(X, X) has a fixed point; and
the approximable fixed point property (simply, Aκ-f.p.p.) if any map T ∈ Aκ(X, X)
has a fixed point. Similarly, the Aκ

c -f.p.p. can be defined.

Theorem 8 (Park [45]). A Φ-space (X, D; Γ) has the compact A-f.p.p.

Since every single-valued continuous function is approachable, we have the fol-
lowing:

Corollary 8.1. A Φ-space (X, D; Γ) has the compact f.p.p.

This was first obtained by Horvath [21, Section 4, Theorem 4] for a C-space (X; Γ)
and applied to fixed point and coincidence problems, the Ky Fan type minimax
inequality, and the von Neumann-Sion type minimax equality. In the end of [21],
its author generalized Ky Fan’s extension of the Tychnoff fixed point theorem. Note
that this can be done also for G-convex spaces.

Theorem 9. For a subset X of a t.v.s. E, the following are equivalent:
(1) X has the compact f.p.p.
(2) X has the compact A-f.p.p.

Further, if X is paracompact and convex, then (1) and (2) are equivalent to the
following:

(3) X has the compact L-f.p.p.

Proof. (1) ⇒ (2): For any U ∈ V, there exists a V ∈ V such that V + V ⊂ U . Let
T ∈ A(X, X) be a compact map. Then we have a continuous function s : X → X
satisfying

s(x) ∈ T [(x + V ) ∩X] + V for every x ∈ X.

We may assume that V is symmetric and that s(x) ∈ T (X) for all x ∈ X. [Other-
wise, by the regularity of E, we may have [s(x)−U ]∩ T [(x + U)∩X] = ∅ for some
U ∈ V.] Therefore, s has a fixed point x0 ∈ X by (1). Then

x0 = s(x0) ∈ T [(x0 + V ) ∩X] + V,

and hence there exist yU ∈ T [(x0 + V )∩X] and xU ∈ (x0 + V )∩X such that yU ∈
T (xU ) and x0 ∈ yU +V . Then we have xU −yU ∈ (x0 +V )−(x0−V ) = V +V ⊂ U .
Since {yU : U ∈ V} is a net in the compact set T (X), it has a subnet converging to
some x̂ ∈ T (X). Then {xU : U ∈ V} has a corresponding subnet converging to x̂.
Since the graph of T is closed and (xU , yU ) ∈ Gr(T ), we have (x̂, x̂) ∈ Gr(T ). This
completes our proof.

(2) ⇒ (1): Every single-valued continuous function is approachable.
(1) ⇒ (3): If X is paracompact and convex, Lemma 4(2) with X = Y works.
(3)⇒ (1): Every single-valued map is locally selectionable with convex values. �

From Theorem 9 and its proof, we have the following:
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Corollary 9.1. A convex subset X of a t.v.s. E has the compact A-f.p.p. whenever
one of the following holds:

(1) X is admissible (in the sense of Klee).
(2) Every compact subset of X is c.t.b.
(3) X is compact and weakly admissible.

Proof. For (1) and (3), X has the compact f.p.p. by Lemma 1(2),(3).
(2) As in the proof of Theorem 9, s(X) ⊂ T (X) and hence s(X) is c.t.b. There-

fore, by Lemma 1(1), s has a fixed point. By following the proof of Theorem 9, we
have the conclusion. �

Remark. For a locally convex t.v.s. E, a particular form of Corollary 9.1(1)-(3)
appeared in [4, Theorem 2.4], [9, Corollary 3.4], [10, Corollary 7.3]. The following
is another generalization:

Recall that a subset X of a t.v.s. E is said to be almost convex if for each
U ∈ V and for any finite subset {x1, x2, . . . , xn} of X, there exists a finite subset
{z1, z2, . . . , zn} of X such that zi − xi ∈ U for all i and co {zi}n

i=1 ⊂ X.

Corollary 9.2. An almost convex subset X of a locally convex t.v.s. E has (1) the
compact f.p.p. and (2) the compact A-f.p.p.

Remarks. 1. (1) is given by Park and Tan [55].
2. It is known that, if X is convex, then it has the compact Aκ-f.p.p.; see [3].

From the definition, every approximable map with compact domain is approach-
able. Hence, we have the following:

Corollary 9.3. A compact convex subset X of a t.v.s. E has the Aκ-f.p.p. whenever
one of the following holds:

(1) X has the f.p.p.
(2) X is c.t.b.
(3) X is weakly admissible.

For approximable maps having compact domains, we have some new results. We
need the following:

Lemma 10. [10] Let X be a compact subset of a t.v.s., Y a subset of a t.v.s., and
Γ a closed subset of X × Y . Then the following statements are equivalent:

(i) Gr(f) ∩ Γ 6= ∅ for each f ∈ C(X, Y );
(ii) Gr(T ) ∩ Γ 6= ∅ for each T ∈ Aκ

c (X, Y ).

From Lemma 10, we have a generalization of Corollary 9.3(1) as follows:

Theorem 11. Let X be a compact subset of a t.v.s. E. Then X has the f.p.p. if
and only if it has the Aκ

c -f.p.p.

Proof. Let X = Y and Γ = {(x, x) : x ∈ X} be the diagonal of X ×X in Lemma
10. Since any f ∈ C(X, X) has a fixed point, Condition (i) of Lemma 10 holds and
hence so does (ii). The converse is clear. This completes our proof. �

Remark. For a locally convex t.v.s., Theorem 11 generalizes [9, Corollary 3.6] and
[10, Corollary 7.6].
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Corollary 11.1. Let X be a finite polyhedron. Then any map T : X ( X satisfying
one of the following conditions has a fixed point:

(i) locally selectionable with convex values;
(ii) an u.s.c. map with nonempty compact contractible values;
(iii) an u.s.c. map with nonempty compact values having trivial shape.

Proof. Note that X can be imbedded in a t.v.s. and has the f.p.p. Since any map
of type (i)-(iii) is approximable, Theorem 11 works. �

Remark. It is well-known that contractibility in (ii) can be extended to acyclicity
in view of the Lefschetz fixed point theorem for acyclic maps.

5. The Kakutani maps on G-convex spaces

In this section, we obtain fixed point theorems for general Kakutani type mul-
timaps defined on particular types of G-convex spaces.

Let Y be a topological space and (X, D; Γ) a G-convex space. A map T : Y ( X
is called a Kakutani map (or a K-map) if T is u.s.c. with nonempty compact Γ-
convex values. Let K(Y, X) denote the class of all Kakutani maps T : Y ( X.

We say that a G-convex space (X, D; Γ) has the (compact) Kakutani fixed point
property (simply, K-f.p.p.) if any (compact) Kakutani map T : X ( X has a fixed
point.

Theorem 12 (Park [47]). An LG-space (X, D; Γ) has the compact K-f.p.p. More-
over, if singletons are Γ-convex (that is, {x} = Γ{x} for x ∈ D), then it has the
compact f.p.p.

Lemma 13 (Komiya [26]). If a paracompact LG-space (X, D; Γ) has the Φ-f.p.p.,
then it has the K-f.p.p.

From Theorem 12 and Lemma 2(2), we have

Theorem 14. Let (X, D; Γ) be a paracompact LC-space such that every singleton
is Γ-convex. Then X has (1) the compact f.p.p., (2) the compact Φ-f.p.p., and (3)
the compact K-f.p.p.

Proof. Since (X, D; Γ) is an LG-space, Condition (3) holds by Theorem 12 (or
[6, Corollary 4.7] or [45, Theorem 5]). Condition (1) follows from (3). Finally,
Condition (2) follows from (1) by Lemma 2(2). �

Remark. Tarafdar [60, Theorem 2.1 and Corollary 2.2] showed that (1) holds for an
LC-metric space (X, d; Γ). A particular form of Theorem 14 was given by Horvath
[22].

Moreover, from Lemma 1 and Theorem 9, we have

Theorem 15. Let X be a convex subset of a t.v.s. E. If X is admissible or c.t.b.,
then X has (1) the compact f.p.p., (2) the compact A-f.p.p., and (3) the compact
K-f.p.p.

Corollary 15.1. Let X be a convex subset of a locally convex t.v.s. E. Then X has
(1) the compact f.p.p., (2) the compact A-f.p.p., and (3) the compact K-f.p.p.
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Remarks. 1. Recall that (1) is due to Hukuhara, (2) to Ben-El-Mechaiekh, and (3)
to Himmelberg; see [41,43]. In fact, X has the compact Aκ-f.p.p.; see [3].

2. More generally, if X is an almost convex subset of a locally convex t.v.s. E,
then X has (1)-(3); see Corollary 9.2 and [56].

A metric space (H, d) is said to be hyperconvex if for any collection of points {xα}
of H and for any collection {rα} of nonnegative reals such that d(xα, xβ) ≤ rα + rβ,
we have ⋂

α

B(xα, rα) 6= ∅,

where B(x, r) denotes the closed ball with center x ∈ H and radius r > 0.
For any nonempty bounded subset A of H, its convex hull Co A is defined by

Co A =
⋂
{B : B is a closed ball containing A}.

Let A(H) = {A ⊂ H : A = Co A}; that is, A ∈ A(H) iff A is an intersection of
closed balls.

The following is known by Horvath [22]:

Lemma 16. Any hyperconvex metric space (H, d) is a complete metric LC-space
(H; Γ) with ΓA = CoA for each A ∈ 〈H〉.

From Lemma 2(2), Theorems 8 and 14, and Lemma 16, we have the following:

Corollary 16.1. Let (H, d) be a hyperconvex metric space. Then X has (1) the com-
pact f.p.p., (2) the compact A-f.p.p., (3) the compact Φ-f.p.p., and (4) the compact
K-f.p.p.

Remark. Recall that (1) and (4) are due to Park; see [45].

Since any subset A ∈ A(H) of a hyperconvex metric space H is hyperconvex, we
have the following:

Corollary 16.2. Let (H, d) be a hyperconvex metric space and X ∈ A(H). Then X
has (1) the compact f.p.p., (2) the compact A-f.p.p., (3) the compact Φ-f.p.p., and
(4) the compact K-f.p.p.

Theorem 17. Let (X, D; Γ) be a compact G-convex uniform space such that any
singleton is Γ-convex. Consider the following conditions:

(1) X has the f.p.p.
(2) X has the Aκ

c -f.p.p.
(3) X has the K-f.p.p.

Then (3) ⇒ (1) ⇔ (2).

Proof. (3) ⇒ (1): Any continuous function f : X → X is a Kakutani map since
f(x) is Γ-convex for each x ∈ X.

(1) ⇒ (2): Let F ∈ Aκ
c (X, X). Then we may assume F ∈ A(X, X). Then for

each W in the basis W of the product uniformity on X × X, there exists a W -
approximative continuous selection s : X → X of F ; that is, Gr(s) ⊂ W [Gr(F )].
By (1), s has a fixed point xW ∈ X and hence (xW , xW ) ∈ Gr(s). Then (xW , xW ) ∈
W [Gr(F )] and zW := (xW , xW ) ∈ W [z] for some z := (x, y) ∈ Gr(F ). Hence,



12 SEHIE PARK

(z, zW ) ∈ W . Since X×X is compact, we may assume that the net {zW } converges
to a point z0 := (x0, x0) in the diagonal ∆ of X, and hence the corresponding net
{z} also converges to z0. Since z ∈ Gr(F ) and Gr(F ) is closed, we have z0 ∈ Gr(F )
and hence x0 ∈ F (x0).

(2) ⇒ (1): Clear. �

Remarks. 1. Note that the part (1) ⇔ (2) of Theorem 17 is comparable to Lemma
10.

2. There is an example of a compact G-convex space without f.p.p.; see [54].
3. We know that X has the Φ-f.p.p.; see Theorem 5(1).

Corollary 17.1. Let (X, D; Γ) be a compact LG-space such that any singleton is
Γ-convex. Then X has (1) the f.p.p., (2) the Aκ

c -f.p.p., and (3) the K-f.p.p.

Proof. Note that (3) holds by Theorem 12 or by Theorem 5(1) and Lemma 13. �

Examples. Let X be a compact convex subset of a t.v.s. E. We give known cases
when (1)-(3) of Theorem 17 hold as follows; for the references, see [43,45,47,48].

1. For a Euclidean space E, (1) is due to Brouwer and (1) ⇒ (3) to Kakutani by
a different method.

2. For a normed vector space E, (1) is due to Schauder and (3) to Bohnenblust
and Karlin.

3. For a locally convex t.v.s. E, (1) is due to Tychonoff, (2) to Ben-El-Mechaiekh,
and (3) to Fan and Glicksberg, independently.

4. For a t.v.s. E having sufficiently many linear functionals, (1) is due to Fan
and (3) to Granas and Liu.

5. For an admissible set X, (1) is due to Hahn and Pötter and (2) and (3) to
Park.

6. If X is locally convex, (1) is due to Rzepecki and (3) to Idzik.
7. For a c.t.b. set X, (1) and (3) are particular cases of a result of Idzik [23].
8. Further if X is a Φ-space, (1) is due to Horvath and (2) to Park; see Theorem

8.
9. For a weakly admissible set X, (1) is due to Nhu [30] and Arandelović [2], and

(3) to Okon [33,35].
Recall that all Roberts spaces – that is, compact convex sets with no extreme

points constructed by Roberts’ method of needle point spaces – have the fixed
point property; see Nhu et al. [29,31].

10. For a Roberts space X, (1) is due to Nhu et al. [29] and (3) to Okon [33-35].

Remark. All examples 1-10 are for (3) ⇒ (1) ⇔ (2) in Theorem 17. Examples 1-4
are for Corollary 17.1.

6. Condensing approximable maps

Various types of condensing maps are variants of compact maps. For such type
of maps, we need the following:

Lemma 18. Let X be a closed convex subset of a t.v.s. E with x0 ∈ X and T :
X ( X a map such that

(C) A ⊂ X, A = co ({x0} ∪ T (A)) implies A is compact.
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Then there exists a compact convex subset C0 of X such that T (C0) ⊂ C0.

Proof. The proof is standard, but for completeness we give here. Let H be the
family of all closed convex subsets C of X with x0 ∈ C such that T (C) ⊂ C. Note
that H is not empty since X ∈ H. Let C0 :=

⋂
{C : C ∈ H}. Then C0 is a

nonempty closed convex subset of X such that T (C0) ⊂ C0. It remains to show
that C0 is compact. Let

C1 := co ({x0} ∪ T (C0)).
Note that x0 ∈ C0, T (C0) ⊂ C0, and C0 is closed and convex. So we have C1 ⊂ C0.
Moreover, T (C1) ⊂ T (C0) ⊂ C1. Therefore C1 ∈ H and so C0 ⊂ C1. Hence,

C0 = C1 = co ({x0} ∪ T (C0)),

whence C0 is compact by condition (C). �

From Lemmas 4(2) and 18 and Theorem 17, we have the following:

Theorem 19. Let E be a t.v.s. whose nonempty compact convex subsets have the
f.p.p., and X a closed convex subsets of E with x0 ∈ X such that Condition (C)
holds. Then X has (1) the f.p.p., (2) the L-f.p.p., and (3) the Aκ

c -f.p.p.

Proof. For any multimap T : X ( X, by Lemma 18, there exists a compact convex
subset C0 of X such that T (C0) ⊂ C0. Then

(1) C0 has the f.p.p. by the hypothesis.
(2) For any locally selectionable map T : X ( X having convex values, T |C0 has

a continuous selection s : C0 → C0 by Lemma 4(2). Then s has a fixed point.
(3) For the compact convex subset C0, (3) is equivalent to (1) by Theorem 17.
This completes our proof. �

Remarks. 1. Any locally convex t.v.s. E and any t.v.s. E on which E∗ separates
points on E are examples of t.v.s. satisfying the hypothesis.

2. A result similar to Theorem 19(2) for the case E on which E∗ separates points
on E appeared in [1, Theorem 4.2]. For a Φ-map T : X ( X, Theorem 19(2) was
appeared in [28,36,37] under the restriction that E is locally convex.

Let X be a closed convex subset of a t.v.s. E and C a lattice with a least element,
which is denoted by 0. A function Ψ : 2X → C is called a measure of noncompactness
on X provided that the following conditions hold for any A,B ∈ 2X :

(1) Ψ(A) = 0 if and only if A is relatively compact;
(2) Ψ(co A) = Ψ(A); and
(3) Ψ(A ∪B) = max{Ψ(A),Ψ(B)}.

It follows that A ⊂ B implies Ψ(A) ≤ Ψ(B).
The above notion is a generalization of the set-measure γ and the ball-measure

χ of noncompactness defined in terms of a family of seminorms or a norm.
For a measure Ψ of noncompactness on E, a map T : X ( E is said to be

Ψ-condensing provided that if A ⊂ X and Ψ(A) ≤ Ψ(T (A)), then A is relatively
compact; that is, Ψ(A) = 0.

From now on, we assume that Ψ is a measure of noncompactness on the given
set X in a t.v.s. E or on E if necessary. Note that any map defined on a compact
set or any compact map is Ψ-condensing. Especially, if E is locally convex, then a
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compact map T : X ( E is γ- or χ-condensing whenever X is complete or E is
quasi-complete.

The following in [28] is a simple consequence of Lemma 18:

Lemma 20. Let X be a nonempty closed convex subset of a t.v.s. E and T : X ( X
a Ψ-condensing map. Then there exists a nonempty compact convex subset K of X
such that T (K) ⊂ K.

From Theorem 11 and Lemma 20, we have the following particular form of The-
orem 19:

Theorem 21. Let E be a t.v.s. whose nonempty compact convex subsets have the
f.p.p., and X a closed convex subset of E. Then any Ψ-condensing map T ∈
Aκ

c (X, X) has a fixed point.

Proof. By Lemma 20, there is a nonempty compact convex subset K of X such that
T (K) ⊂ K. Then, by Theorem 11, T |K ∈ Aκ

c (K, K) has a fixed point x0 ∈ K. This
completes our proof. �

Remark. It is known that the Leray-Schauder alternative holds for a Ψ-condensing
closed approximable maps; see Park [39] and Ben-El-Mechaiekh et al. [7].

Corollary 21.1. Let E be a t.v.s. whose nonempty compact convex subsets have
the f.p.p., and X a closed convex subset of E. Then any Ψ-condensing locally
selectionable map T : X ( X with convex values has a fixed point.

Corollary 21.2. Let E be a locally convex t.v.s. and X a closed convex subset of
E. Then any Ψ-condensing Kakutani map T : X ( X has a fixed point.

In the remainder of this section, we list more than ten papers in chronological
order, from which we can deduce particular forms of Theorem 21:

Darbo [15]: Recall that Kuratowski defined the measure of noncompactness,
α(A), of a bounded subset A of a metric space (X, d):

α(A) = inf {ε > 0 : A can be covered by a finite number of sets

of diameter less than or equal to ε}.
Let T : X → X be a continuous function. Darbo calls T an α-contraction if given

any bounded set A in X, T (A) is bounded in X and

α[T (A)] ≤ kα(A),

where the constant k fulfils the inequality 0 ≤ k < 1. Darbo [15] showed that if
G is a closed, bounded, convex subset of a Banach space X and T : G → G is an
α-contraction, then T has a fixed point.

Sadovskii [59]: Introduced the notion of condensing maps in Banach spaces and
obtained a form of Theorem 21 extending the above result of Darbo.

Lif̌sic and Sadovskii [27]: The above result was extended to a locally convex t.v.s.
E.

Himmelberg, Porter, and Van Vleck [20]: A form of Theorem 21 for a locally
convex t.v.s.

Daneš [14], Furi and Vignoli [18], and Nussbaum [32] obtained particular forms
of Theorem 21 for a Banach space E.
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Reich [57] extended Sadovskii’s theorem to a locally convex t.v.s.
Reinermann [58]: A form of Theorem 21 for a Banach space and T = f ∈

C(X, X).
Mehta, Tan, and Yuan [28]: Particular forms of Theorem 21 for the Fan-Browder

type maps and the Kakutani maps, respectively, were obtained for a locally convex
t.v.s.

Remark. The concept of compact multimaps has variants (not necessarily general-
izations) in that of various types of condensing maps (pseudo-condensing or count-
ably condensing maps or of Mönch type). It is well-known that the theory of such
types of condensing maps reduces to that of compact maps. Therefore, our theorems
might be applied to those types of condensing maps.
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