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A GENERIC RESULT IN MINIMAX OPTIMIZATION

ALEXANDER J. ZASLAVSKI

Abstract. In this paper we study a class of minimax problems on a complete
metric space for which a cost function f is a maximum of functions f1, . . . , fn.
Using porosity notion we show that for most of problems there exists a unique
solution. Moreover, if x is this unique solution, then the set of all j ∈ {1, . . . , n}
satisfying fj(x) = f(x) is a singleton.

1. Introduction

The study of minimax problems is one of central topics in optimization theory.
See, for example, [5-7] and the references mentioned therein. In this paper we
consider a class of minimax problems

max{f1(x), . . . , fn(x)} → min, x ∈ X,

where n is a given natural number, X is a complete metric space and f1, . . . , fn are
continuous functions. Using the porosity notion we show that for most problems
there exists a unique point of minimum z ∈ X and a unique integer j ∈ {1, . . . , n}
such that

fj(z) > fi(z) for all i ∈ {1, . . . , n} \ {j}.
Here, instead of considering a certain property for a single minimax problem, we
investigate it for a class of minimax problems and show that this property holds
for most of the problems in the class. This approach has already been successfully
applied in many areas of Analysis. See, for example, [1-4, 8-10].

Before we continue we recall the concept of porosity [4].
Let (Y, d) be a complete metric space. We denote by Bd(y, r) the closed ball of

center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous with respect to d
(or just porous if the metric is understood) if there exist α ∈ (0, 1] and r0 > 0 such
that for each r ∈ (0, r0] and each y ∈ Y there exists z ∈ Y for which

Bd(z, αr) ⊂ Bd(y, r) \ E.

A subset of the space Y is called σ-porous with respect to d (or just σ-porous
if the metric is understood) if it is a countable union of porous (with respect to d)
subsets of Y .

The following definition was introduced in [10].
Assume that Y is a nonempty set and d1, d2 : Y × Y → [0,∞) are metrics which

satisfy d1(x, y) ≤ d2(x, y) for all x, y ∈ Y .
A subset E ⊂ Y is called porous with respect to the pair (d1, d2) (or just porous

if the pair of metrics is understood) if there exist α ∈ (0, 1] and r0 > 0 such that
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for each r ∈ (0, r0] and each x ∈ Y there exists y ∈ Y for which

d2(y, x) ≤ r, Bd1(y, αr) ∩ E = ∅.
A subset of the space Y is called σ-porous with respect to (d1, d2) (or just σ-

porous if the pair of metrics is understood) if it is a countable union of porous (with
respect to (d1, d2)) subsets of Y .

In [10] we use this generalization of the porosity notion because in applications
a space is usually endowed with a pair of metrics and one of them is weaker than
the other. Note that porosity of a set with respect to one of these two metrics does
not imply its porosity with respect to the other metric. However, the following
proposition proved in [10] shows that if a subset E ⊂ Y is porous with respect to
(d1, d2), then E is porous with respect to any metric which is weaker than d2 and
stronger than d1.

Proposition 1.1. Let k1 and k2 be positive numbers and d : Y × Y → [0,∞) be
a metric such that k1d(x, y) ≥ d1(x, y) and k2d(x, y) ≤ d2(x, y) for all x, y ∈ Y .
Assume that a set E ⊂ Y is porous with respect to (d1, d2). Then E is porous with
respect to d.

2. Well-posedness of optimization problems

We use the convention that ∞/∞ = 1. For each function f : X → [−∞,∞],
where X is nonempty, we set

inf(f) = inf{f(x) : x ∈ X}.
We consider a metric space (X, ρ) which is called the domain space and a topological
space A with the topology τ which is called the data space [8]. We always consider
the set X with the topology generated by the metric ρ.

We assume that with every a ∈ A a lower semicontinuous function fa on X is
associated with values in R̄ = [−∞,∞].

Let a ∈ A. We say that the minimization problem for fa on (X, ρ) is well-posed
if inf(fa) is finite and attained at a unique point xa ∈ X and the following assertion
holds:

For each ε > 0 there exists δ > 0 such that if z ∈ X satisfies fa(z) ≤ inf(fa) + δ,
then ρ(xa, z) ≤ ε.

The following notion was introduced in [8].
Let a ∈ A. We say that the minimization problem for fa on (X, ρ) is strongly

well-posed with respect to (A, τ) if inf(fa) is finite and attained at a unique point
xa ∈ X and the following assertion holds:

For each ε > 0 there exists a neighborhood V of a in A with the topology τ
and δ > 0 such that for each b ∈ V, inf(fb) is finite and if z ∈ X satisfies fb(z) ≤
inf(fb) + δ, then ρ(xa, z) ≤ ε and |fb(z)− fa(xa)| ≤ ε.

If (A, d) is a metric space and τ is a topology generated by the metric d, then
“strongly well-posedness with respect to (A, τ)” will be sometimes replaced by
“strongly well-posedness with respect to (A, d)”.

Assume that d1, d2 : A × A → [0,∞) be metrics such that d1(a, b) ≤ d2(a, b)
for all a, b ∈ A. In our study we use the following hypotheses about the functions
introduced in [10].
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(H1) If a ∈ A, inf(fa) is finite, {xn}∞n=1 ⊂ X is a Cauchy sequence and the
sequence {fa(xn)}∞n=1 is bounded, then the sequences {xn}∞n=1 converges in X.

(H2) For each ε > 0 and each integer m ≥ 1 there exist numbers δ > 0 and r0 > 0
such that the following property holds:

For each a ∈ A satisfying inf(fa) ≤ m and each r ∈ (0, r0] there exist ā ∈ A and
x̄ ∈ X such that

d2(a, ā) ≤ r, inf(fā) ≤ m + 1
and that for each z ∈ X satisfying

fā(z) ≤ inf(fā) + δr

the inequality ρ(z, x̄) ≤ ε holds.
(H3) For each integer n ≥ 1 there exist α ∈ (0, 1) and r0 > 0 such that for

each r ∈ (0, r0], each a, b ∈ A satisfying d1(a, b) ≤ αr and each x ∈ X satisfying
min{fa(x), fb(x)} ≤ n the relation |fa(x)− fb(x)| ≤ r is valid.

The following variational principle was established in [10, Theorem 3.2].

Theorem 2.1. Assume that (H1), (H2) and (H3) hold and that inf(fa) is finite for
each a ∈ A. Then there exists a set B ⊂ A such that A \ B is σ-porous with respect
to (d1, d2) and that for each a ∈ B the minimization problem for fa on (X, ρ) is
strongly well-posed with respect to (A, d1).

3. A porosity result

Let (X, ρ) be a complete metric space and n be a natural number.
Denote by M the set of all functions f = (f1, . . . , fn) : X → Rn such that for

each i ∈ {1, . . . , n} the function fi : X → R1 is continuous and the function

x → max{fi(x) : i = 1, . . . , n}, x ∈ X

is bounded from below on X.
For f = (f1, . . . , fn), g = (g1, . . . , gn) ∈M set

(3.1) d̃(f, g) = sup{|fi(x)− gi(x)| : x ∈ X, i = 1, . . . , n},
d(f, g) = d̃(f, g)(1 + d̃(f, g))−1.

Here we use the convention that ∞/∞ = 1.
It is not difficult to see that the metric space (M, d) is complete.
For each f = (f1, . . . , fn) ∈M define a function max{f1, . . . , fn} : X → R1 by

(max{f1, . . . , fn})(x) = max{f1(x), . . . , .fn(x)}, x ∈ X.

In this section we prove the following porosity result.

Theorem 3.1. There exists a set F ⊂ M such that its complement M\ F is σ-
porous with respect to d and that for each f = (f1, . . . , fn) ∈ F the minimization
problem for max{f1, . . . , fn} on (X, ρ) is strongly well-posed with respect to (M, d).

Proof. We prove the theorem as a realization of the variational principle established
by Theorem 2.1.

Set A = M. For each a = (a1, . . . , an) ∈ A define

fa = max{a1, . . . , an}.
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Set d1 = d2 = d. We show that (H1), (H2) and (H3) hold. It is not difficult to see
that (H1) and (H3) are true. We show that (H2) holds.

Let ε ∈ (0, 1). Choose a positive number δ such that

(3.2) δ < ε/4.

Assume that

(3.3) f = (f1, . . . , fn) ∈M and r ∈ (0, 1].

Choose x̄ ∈ X such that

(3.4) max{f1, . . . , fn}(x̄) ≤ inf(max{f1, . . . , fn}) + δr

and define f̄ = (f̄1, . . . , f̄n) ∈M by

(3.5) f̄i(x) = fi(x) + 2δrε−1 min{ρ(x, x̄), 1}, x ∈ X, i = 1, . . . , n.

By (3.1), (3.5) and (3.2),

(3.6) d(f, f̄) ≤ d̃(f, f̄) ≤ 2δrε−1 ≤ r.

It follows from (3.5), (3.2) and (3.3) that for each x ∈ X

max{f̄1, . . . , f̄n}(x) = 2δrε−1 min{ρ(x, x̄), 1}+ max{f1, . . . , fn}(x)

≤ max{f1, . . . , fn}(x) + 1

and

(3.7) inf(max{f̄1, . . . , f̄n}) ≤ inf{max{f1, . . . , fn}) + 1.

Assume that x ∈ X satisfies

(3.8) max{f̄1, . . . , f̄n}(x) ≤ inf(max{f̄1, . . . , f̄n}) + δr.

By (3.5), (3.8) and (3.4)

max{f1, . . . , fn}(x) + 2δrε−1 min{ρ(x, x̄), 1}
= max{f̄1, . . . , f̄n}(x)

≤ max{f̄1(x̄), . . . , f̄n(x̄)}+ δr

= max{f1(x̄), . . . , fn(x̄)}+ δr ≤ max{f1(x), . . . , fn(x)}+ 2δr,

2δrε−1 min{ρ(x, x̄), 1} ≤ 2δr,

ρ(x, x̄) ≤ ε.

Thus (H2) holds. This completes the proof of the theorem. ¤
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4. Main results

Let (X, ρ) be a complete metric space and n be a natural number. Consider the
complete metric space (M, d) introduced in Section 3.

Denote by F0 the set of all f = (f1, . . . , fn) ∈ M which have the following
property:

(P1) There are δ, ε > 0 and j ∈ {1, . . . , n} such that if x ∈ X satisfies

max{f1, . . . , fn}(x) < inf(max{f1, . . . , fn}) + δ,

then
fj(x) > fi(x) + ε for all i ∈ {1, . . . , n} \ {j}.

Proposition 4.1. Assume that f = (f1, . . . , fn) ∈ M, the minimization problem
for the function max{f1, . . . , fn} on (X, ρ) is well-posed, x̄ ∈ X satisfies

max{f1(x̄), . . . , fn(x̄)} = inf(max{f1, . . . , fn})
and j ∈ {1, . . . , n} satisfies

fj(x̄) > fi(x̄) for all i ∈ {1, . . . , n} \ {j}.
Then f = (f1, . . . , fn) ∈ F0.

Proof. Choose ∆ > 0 such that

(4.1) fj(x̄) > fi(x̄) + 4∆ for all i ∈ {1, . . . , n} \ {j}.
Since f1, . . . , fn are continuous functions there is ε > 0 such that if x ∈ X satisfies
ρ(x, x̄) ≤ ε, then

(4.2) |fi(x)− fi(x̄)| ≤ ∆/8, i = 1, . . . , n.

Since the minimization problem for the function max{f1, . . . , fn} is well-posed
on (X, ρ) there is δ > 0 such that if x ∈ X satisfies

(4.3) max{f1, . . . , fn}(x) ≤ inf(max{f1, . . . , fn}) + δ,

then

(4.4) ρ(x, x̄) ≤ ε.

Assume now that x ∈ X satisfies (4.3). Then (4.4) holds. By (4.4) and the definition
of ε the inequality (4.2) is valid for i = 1, . . . , n. It follows from (4.2) and (4.1) that
for all i ∈ {1, . . . , n} \ {j}

fj(x) ≥ fj(x̄)−∆/8 ≥ fi(x̄) + 4∆−∆/8

≥ fi(x)−∆/8 + 4∆−∆/8 ≥ fi(x) + 3∆.

Thus f ∈ F0. Proposition 4.1 is proved. ¤
Proposition 4.2. The set F0 is open.

Proof. Let f = (f1, . . . , fn) ∈ F0 and let ε, δ > 0, j ∈ {1, . . . , n} be as guaranteed
by property (P1). We may assume that

(4.5) δ < min{1, ε}/4.

Assume that g = (g1, . . . , gn) ∈M satisfies

(4.6) d(g, f) ≤ δ/16.
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We show that g ∈ F0. (3.1) and (4.6) imply that

(4.7) d̃(f, g) = d(f, g)(1− d(f, g))−1 ≤ 2δ/16 = δ/8

and

(4.8) |fi(x)− gi(x)| ≤ δ/8, x ∈ X, i = 1, . . . , n.

Assume that x ∈ X satisfies

(4.9) max{g1(x), . . . .gn(x)} ≤ inf(max{g1, . . . , gn}) + δ/8.

It follows from (4.8) and (4.9) that

max{f1(x), . . . , fn(x)} ≤ max{g1(x), . . . , gn(x)}+ δ/8

≤ inf(max{g1, . . . , gn}) + δ/4

≤ inf(max{f1, . . . , fn}) + 3δ/8.

By this inequality and (P1) with ε, δ

(4.10) fj(x) > fi(x) + ε for all i ∈ {1, . . . , n} \ {j}.
It follows from (4.8), (4.10) and (4.5) that for al i ∈ {1, . . . , n} \ {j}

gj(x) ≥ fj(x)− δ/8 ≥ fi(x) + ε− δ/8

≥ gi(x)− δ/8 + ε− δ/8 ≥ gi(x) + ε/2.

Thus g ∈ F0. Proposition 4.2 is proved. ¤
Proposition 4.3. The set F0 is an everywhere dense subset of (M, d).

Proof. Let g = (g1, . . . , gn) ∈M, ε > 0. We show that there is f = (f1, . . . , fn) ∈ F0

such that d̃(f, g) ≤ ε. By Theorem 3.1 there exists h = (h1, . . . , hn) ∈M such that

(4.11) d̃(g, h) ≤ ε/4

and the minimization problem for max{g1, . . . , gn} is strongly well-posed on (X, ρ)
with respect to (M, d). There is x̄ ∈ X such that

(4.12) max{h1(x̄), . . . , hn(x̄)} = inf(max{h1, . . . , hn})
and the following property holds:

(P2) For each γ > 0 there is δ > 0 such that if z ∈ X satisfies

max{h1(z), . . . , hn(z)} ≤ inf(max{h1, . . . , hn}) + δ,

then ρ(z, x̄) ≤ γ.
There is j ∈ {1, . . . , n} such that

(4.13) hj(x̄) = max{h1(x̄), . . . , hn(x̄)}.
Since the functions h1, . . . , hn are continuous there is

(4.14) δ0 ∈ (0,min{1, ε}/8)

such that the following property holds:
(P3) If i ∈ {1, . . . , n} and x ∈ X satisfies ρ(x, x̄) ≤ δ0, then |hi(x)− hix̄)| ≤ ε/8.
Define a continuous function ψ : [0,∞) → [0, 1] by

(4.15) ψ(t) = 1, t ∈ [0, δ0/2], ψ(t) = 2− (2t)/δ0, t ∈ [δ0/2, δ0],



MINIMAX OPTIMIZATION 61

ψ(t) = 0, t ∈ [δ0,∞)
and set

(4.16) φ(x) = ψ(ρ(x, x̄)), x ∈ X.

Define f = (f1, . . . , fn) ∈M as follows. For i ∈ {1, . . . , n} \ {j} set

(4.17) fi(x) = (1− φ(x))hi(x) + φ(x)[hi(x̄) + ρ(x, x̄)− ε/2], x ∈ X

and define

(4.18) fj(x) = (1− φ(x))hj(x) + φ(x)[hj(x̄) + ρ(x, x̄)− ε/4], x ∈ X.

By (4.17) and (4.18) for i ∈ {1, . . . , n} and x ∈ X

(4.19) |fi(x)− hi(x)| ≤ φ(x)[|hi(x̄)− hi(x)|+ ρ(x, x̃) + ε/2].

By (4.19), (4.15), (4.16), property (P3) and (4.14)

sup{|fi(x)− hi(x)| : x ∈ X, i = 1, . . . , n}
≤ ε/2 + sup{φ(x)[|hi(x)− hi(x̄)|+ ρ(x, x̄)] : x ∈ X, i = 1, . . . , n}
= ε/2 + sup{φ(x)[|hi(x)− hi(x̄)|+ ρ(x, x̄)] :

i = 1, . . . , n and x ∈ Xsatisfies ρ(x, x̄) ≤ δ0}
≤ ε/2 + δ0 + sup{|hi(x)− hi(x̄)| :

i = 1, . . . , n and x ∈ X satisfies ρ(x, x̄) ≤ δ0}
≤ ε/2 + δ0 + ε/8

≤ ε/2 + ε/4

and
d̃(f, h) ≤ ε/2 + ε/4.

Combined with (4.11) this implies that

(4.20) d̃(g, f) ≤ d̃(g, h) + d̃(h, f) ≤ ε.

We show that f ∈ F0. By (4.18), (4.15) and (4.16)

(4.21) fj(x̄) = hj(x̄)− ε/4,

(4.22) fi(x̄) = hi(x̄)− ε/2, i ∈ {1, . . . , n} \ {j}.
In view of (4.13), (4.21) and (4.22)

(4.23) fj(x̄) ≥ fi(x̄) + ε/4, i ∈ {1, . . . , n} \ {j}.
Assume that x ∈ X saisfies

(4.24) ρ(x, x̄) ≥ δ0.

It follows from (4.24), (4.17), (4.18), (4.15), (4.16), (4.13) and (4.21) that for all
i ∈ {1, . . . , n}

fi(x) = hi(x),

max{fi(x) : i = 1, . . . , n} = max{hi(x) : i = 1, . . . , n}
≥ max{hi(x̄) : i = 1, . . . , n} = hj(x̄) = fj(x̄) + ε/4.
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Thus (4.23) implies that

(4.25) max{fi(x) : i = 1, . . . , n} ≥ fj(x̄) + ε/4 = max{fi(x̄) : i = 1, . . . , n}+ ε/4

for all x ∈ X satisfying (4.24).
Assume that x ∈ X satisfies

(4.26) 0 < ρ(x, x̄) < δ0.

Then by property (P3)

(4.27) |hi(x)− hi(x̄)| ≤ ε/8.

It follows from (4.18), (4.27), (4.13), (4.15) and (4.16) that

(4.28) max{fi(x) : i = 1, . . . , n}
≥ fj(x)

= (1− φ(x))hj(x) + φ(x)[hj(x̄) + ρ(x, x̄)− ε/4]

≥ (1− φ(x))[hj(x̄)− ε/8] + φ(x)[hj(x̄) + ρ(x, x̄)− ε/4]

= φ(x)[ρ(x, x̄)− ε/4]− (ε/8)(1− φ(x)) + hj(x̄)

= φ(x)ρ(x, x̄) + hj(x̄)− ε/8− (ε/8)φ(x)

≥ φ(x)ρ(x, x̄) + hj(x̄)− ε/4.

By (4.26), (4.15), (4.16), the inequality

φ(x)ρ(x, x̄) > 0,

(4.28), (4.21) and (4.23)

max{fi(x) : i = 1, . . . , n} > hj(x̄)− ε/4(4.29)

= fj(x̄) = max{fi(x̄) : i = 1, . . . , n}.
(4.25) and (4.29) imply that x̄ is a unique solution for the minimization problem
for max{f1, . . . , fn} on X.

We show that the minimization problem for max{f1, . . . , fn} on (X, ρ) is well-
posed.

Assume that

(4.30) {xk}∞k=1 ⊂ X, lim
k→∞

(max{f1, . . . , fn})(xk)

= inf(max{f1, . . . , fn}) = max{f1, . . . , fn}(x̄).

We show that
lim
i→∞

ρ(xi, x̄) = 0.

Let us assume the converse. Then there are a subsequence {xik}∞k=1 and ∆ > 0
such that

(4.31) ρ(xik , x̄) ≥ ∆ for all natural numbers k.

Since (4.25) holds for all x ∈ X satisfying (4.24) it follows from (4.30) that ρ(xi, x̄) <
δ0 for all sufficiently large i. We may assume without loss of generality that

(4.32) ρ(xi, x̄) < δ0 for all natural numbres i.
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By (4.21), (4.23), (4.30), (4.32), (4.31), (4.28), (4.15) and (4.16)

hj(x̄)− ε/4 = lim sup
k→∞

max{f1(xik), . . . , fn(xik)}
≥ lim sup

k→∞
φ(xik)ρ(xik , x̄) + hj(x̄)− ε/8− (ε/8)φ(xik)

= hj(x̄)− ε/4 + lim sup
k→∞

[φ(xik)(ρ(xik , x̄) + (ε/8)(1− φ(xik))],

(4.33) 0 = lim
k→∞

[φ(xik)ρ(xik , x̄) + (ε/8)(1− φ(xik))].

By (4.15), (4.16), (4.33) and (4.31)

lim
k→∞

φ(xik) = 0

and
lim

k→∞
(1− φ(xik)) = 0.

The contradiction we have reached proves that limi→∞ ρ(xi, x̄) = 0 and that the
minimization problem for max{f1, . . . fn} on (X, ρ) is well-posed. Since x̄ is a unique
solution for the minimization problem for max{f1, . . . , fn} on X and x̄ satisfies
(4.23) it follows from Proposition 4.1 that f ∈ F0.

This completes the proof of the proposition. ¤
Propositions 4.2 and 4.3 imply the following result.

Theorem 4.1. The set F0 is an open everywhere dense subset of (M, d).

Corollary 4.1. Let the metric space (X, ρ) be a compact. Then for each f =
(f1, . . . , fn) ∈ F0 there are ε > 0 and j ∈ {1, . . . , n} such that if x ∈ X satisfies

max{f1, . . . , fn}(x) = inf(max{f1, . . . , fn}),
then

fj(x) ≥ fi(x) + ε for all i ∈ {1, . . . , n} \ {j}.
Corollary 4.2. Let the set F be as guaranteed by Theorem 3.1. Then for each
f = (f1, . . . , fn) ∈ F0 ∩ F there is a unique xf ∈ X such that

max{f1, . . . , fn}(xf ) = inf(max{f1, . . . , fn})
and j ∈ {1, . . . , n} such that

fj(xf ) > fi(xf ) for all i ∈ {1, . . . , n} \ {j}.
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[4] F.S. De Blasi and J. Myjak, Sur la porosité des contractions sans point fixe, C. R. Acad. Sci.
Paris 308 (1989) 51–54.

[5] V.F. Demyanov and V.N. Malozemov, Introduction to Minimax, Dover Publications, Inc., New
York, 1990.



64 ALEXANDER J. ZASLAVSKI

[6] V.F. Demyanov and A.M. Rubinov, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt
am Main, 1995.

[7] V.F. Demyanov and V.L. Vasil’ev, Nondifferentiable Optimization. Translations Series in
Mathematics and Engineering, Optimization Software, Inc., New York, 1985.

[8] A.D. Ioffe and A.J. Zaslavski, Variational principles and well-posedness in optimization and
calculus of variations, SIAM J. Control Optim. 38 (2000), 566–581.

[9] S. Reich and A.J. Zaslavski, Convergence of generic infinite products of nonexpansive and
uniformly continuous operators, Nonlinear Analysis: Theory, Methods and Applications 36
(1999), 1049–1065.

[10] A.J. Zaslavski, Well-posedness and porosity in optimal control without convexity assumptions,
Calculus of Variations and Partial Differential Equations 13 (2001), 265–293.

Manuscript received April 1, 2004

revised June 17, 2004

Alexander J. Zaslavski
Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: ajzasl@tx.technion.ac.il


