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mapping T from C into H is said to be widely more generalized hybrid if there exist
α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Tx−Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2(1.1)

+ ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for all x, y ∈ C. Such a mapping T is called an (α, β, γ, δ, ε, ζ, η)-widely more gener-
alized hybrid mapping; see also [12]. In particular, an (α, β, γ, δ, 0, 0, 0)-widely more
generalized hybrid mapping is generalized hybrid in the sense of Kocourek, Taka-
hashi and Yao [14] if α+β = −γ−δ = 1. A generalized hybrid mapping with a fixed
point is quasi-nonexpansive. However, a widely more generalized hybrid mapping is
not quasi-nonexpansive generally even if it has a fixed point. In [13], Kawasaki and
Takahashi proved fixed point theorems and nonlinear ergodic theorems of Baillon’s
type [2] for such new mappings in a Hilbert space. In particular, by using their fixed
point theorems, they proved directly Browder and Petryshyn’s fixed point theorem
[3] for strict pseudo-contractive mappings and Kocourek, Takahashi and Yao’s fixed
point theorem [14] for super generalized hybrid mappings.

In this paper, using strongly asymptotically invariant sequences, we first prove a
weak convergence theorem of Mann’s type [18] for widely more generalized hybrid
mappings in a Hilbert space. Furthermore, using the idea of mean convergence by
Shimizu and Takahashi [19, 20], we prove a strong convergence theorem of Halpern’s
type [6] for widely more generalized hybrid mappings in a Hilbert space. This theo-
rem generalizes Hojo and Takahashi’s strong convergence theorem [7] for generalized
hybrid mappings.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product ⟨·, · ⟩ and
norm ∥ · ∥, respectively. We denote the strong convergence and the weak convergence
of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively. From [23], we have that for
any x, y ∈ H and λ ∈ R,

(2.1) ∥y∥2 − ∥x∥2 ≤ 2⟨y − x, y⟩,

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore, we know that for x, y, u, v ∈ H

(2.3) 2 ⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a non-empty subset of H. A mapping T : C → H is said to be
nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. A mapping T : C → H
with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥x− Ty∥ ≤ ∥x− y∥ for all x ∈ F (T )
and y ∈ C. Let C be a non-empty, closed and convex subset of H and x ∈ H.
Then, we know that there exists a unique nearest point z ∈ C such that ∥x− z∥ =
infy∈C ∥x− y∥. We denote such a correspondence by z = PCx. The mapping PC is
called the metric projection of H onto C. It is known that PC is nonexpansive and

⟨x− PCx, PCx− u⟩ ≥ 0
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for all x ∈ H and u ∈ C. Furthermore, we know that

(2.4) ∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy⟩
for all x, y ∈ H; see [23] for more details. For proving main results in this paper,
we also need the following lemmas proved in [25] and [1].

Lemma 2.1 (Takahashi and Toyoda [25]). Let D be a nonempty closed convex
subset of H. Let P be the metric projection from H onto D. Let {un} be a sequence
in H. If ∥un+1 − u∥ ≤ ∥un − u∥ for any u ∈ D and n ∈ N, then {Pun} converges
strongly to some u0 ∈ D.

Lemma 2.2 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {sn} be a sequence of
nonnegative real numbers, let {αn} be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let

{βn} be a sequence of nonnegative real numbers with
∑∞

n=1 βn < ∞, and let {γn}
be a sequence of real numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Let ℓ∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (ℓ∞)∗ (the dual space of ℓ∞). Then we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . .) ∈ ℓ∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on ℓ∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . .). A mean µ is called a Banach limit on ℓ∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on ℓ∞. If µ is a Banach limit on ℓ∞, then
for f = (x1, x2, x3, . . .) ∈ ℓ∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . .) ∈ ℓ∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. See [22] for the proof of existence of a Banach limit and its other
elementary properties. For f ∈ ℓ∞, define ℓ1 : ℓ

∞ → ℓ∞ as follows:

ℓ1f(k) = f(1 + k), ∀k ∈ N.
A sequence {µn} of means on ℓ∞ is said to be strongly asymptotically invariant if

∥ℓ∗1µn − µn∥ → 0,

where ℓ∗1 is the adjoint operator of ℓ1. See [4] for more details. The following
definition which was introduced by Takahashi [21] is crucial in the fixed point theory.
Let h be a bounded function of N into H. Then, for any mean µ on ℓ∞, there exists
a unique element hµ ∈ H such that

⟨hµ, z⟩ = (µ)k⟨h(k), z⟩, ∀z ∈ H.

Such a hµ is contained in co{h(k) : k ∈ N}, where coA is the closure of convex hull
of A. In particular, let T be a mapping of a subset C of a Hilbert space H into
itself such that {T kx : k ∈ N} is bounded for some x ∈ C. Putting h(k) = T kx for
all k ∈ N, we have that there exists z0 ∈ H such tat

µk⟨T kx, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

We denote such z0 by Tµx.
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From Kawasaki and Takahashi [13], we also know the following fixed point theo-
rem for widely more generalized hybrid mappings in a Hilbert space.

Theorem 2.3 ([13]). Let H be a Hilbert space, let C be a non-empty, closed and
convex subset of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself, i.e., there exist α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Tx−Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+ ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for all x, y ∈ C. Suppose that it satisfies the following condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0.

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n =
0, 1, . . .} is bounded. In particular, a fixed point of T is unique in the case of α +
β + γ + δ > 0 under the conditions (1) and (2).

3. Weak convergence theorems of Mann’s type

In this section, we prove a weak convergence theorem of Mann’s type [18] for
widely more generalized hybrid mappings in a Hilbert space. Before proving the
result, we need the following lemma proved by Kawasaki and Takahashi [13]; see
also [8].

Lemma 3.1 ([13]). Let C be a non-empty, closed and convex subset of a Hilbert
space H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself with F (T ) ̸= ∅ which satisfies the condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Then T is quasi-nonexpansive.

If T : C → H is quasi-nonexpansive, then F (T ) is closed and convex; see Itoh
and Takahashi [11]. It is not difficult to prove such a result in a Hilbert space. In
fact, for proving that F (T ) is closed, take a sequence {zn} ⊂ F (T ) with zn → z.
Since C is weakly closed, we have z ∈ C. Furthermore, from

∥z − Tz∥ ≤ ∥z − zn∥+ ∥zn − Tz∥ ≤ 2∥z − zn∥ → 0,

z is a fixed point of T and so F (T ) is closed. Let us show that F (T ) is convex. For
x, y ∈ F (T ) and α ∈ [0, 1], put z = αx+ (1− α)y. Then we have from (2.2) that

∥z − Tz∥2 = ∥αx+ (1− α)y − Tz∥2

= α∥x− Tz∥2 + (1− α)∥y − Tz∥2 − α(1− α)∥x− y∥2

≤ α∥x− z∥2 + (1− α)∥y − z∥2 − α(1− α)∥x− y∥2

= α(1− α)2∥x− y∥2 + (1− α)α2∥x− y∥2 − α(1− α)∥x− y∥2

= α(1− α)(1− α+ α− 1)∥x− y∥2

= 0

and hence Tz = z. This implies that F (T ) is convex.
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Using Lemma 3.1 and the technique developed by Ibaraki and Takahashi [9, 10],
we can prove the following weak convergence theorem.

Theorem 3.2. Let H be a Hilbert space and let C be a non-empty, closed and convex
subset of H. Let T : C → C be an (α, β, γ, δ, ε, ζ, η)- widely more generalized hybrid
mapping with F (T ) ̸= ∅ which satisfies the condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ζ + η ≥ 0 and ε+ η ≥ 0.

Let P be the mertic projection of H onto F (T ). Let {µn} be a strongly asymptotically
invariant sequence of means on ℓ∞. Let {αn} be a sequence of real numbers such
that 0 ≤ αn ≤ 1 and lim infn→∞ αn(1 − αn) > 0. Suppose {xn} is the sequence
generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Tµnxn, n ∈ N.
Then {xn} converges weakly to v ∈ F (T ), where v = limn→∞ Pxn.

Proof. Since T : C → C be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping, we have that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2(3.1)

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for any x, y ∈ C. Since T : C → H is quasi-nonexpansive, we have from Lemma
3.1 that F (T ) is closed and convex. Furthermore, we have that for any x ∈ C and
z ∈ F (T )

∥Tµnx− z∥2 = ⟨Tµnx− z, Tµnx− z⟩

= (µn)k⟨T kx− z, Tµnx− z⟩

≤ ∥µn∥ sup
k

|⟨T kx− z, Tµnx− z⟩|

≤ sup
k

∥T kx− z∥ · ∥Tµnx− z∥

≤ sup
k

∥x− z∥ · ∥Tµnx− z∥

= ∥x− z∥ · ∥Tµnx− z∥.
and hence

(3.2) ∥Tµnx− z∥ ≤ ∥x− z∥.
Using (3.2), we have that for any z ∈ F (T ),

∥xn+1 − z∥2 ≤ ∥αnxn + (1− αn)Tµnxn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥Tµnxn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2

= ∥xn − z∥2

for all n ∈ N. Hence limn→∞ ∥xn− z∥2 exists. Then {xn} is bounded. We also have
from (2.2) that

∥xn+1 − z∥2 ≤ ∥αnxn + (1− αn)Tµnxn − z∥2
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= αn∥xn − z∥2 + (1− αn)∥Txn − z∥2 − αn(1− αn)∥Tµnxn − xn∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2 − αn(1− αn)∥Tµnxn − xn∥2

= ∥xn − z∥2 − αn(1− αn)∥Tµnxn − xn∥2.
Thus we have

αn(1− αn)∥Tµnxn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2.
Since limn→∞ ∥xn − z∥2 exists and lim infn→∞ αn(1− αn) > 0, we have that

(3.3) ∥Tµnxn − xn∥ → 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ v.
From (3.3), we also have that Tµni

xni ⇀ v. Let us show that v is a fixed point of

T . We obtain from (3.1) that for any x, z ∈ C and n ∈ N,

α∥Tx− Tn+1z∥2 + β∥x− Tn+1z∥2 + γ∥Tx− Tnz∥2 + δ∥x− Tnz∥2

+ε∥x− Tx∥2 + ζ∥Tnz − Tn+1z∥2 + η∥(x− Tx)− (Tnz − Tn+1z)∥2 ≤ 0

for any n ∈ N ∪ {0} and x ∈ C. By (2.3) we obtain that

∥(x− Tx)− (Tnz − Tn+1z)∥2

= ∥x− Tx∥2 + ∥Tnz − Tn+1z∥2 − 2⟨x− Tx, Tnz − Tn+1z⟩
= ∥x− Tx∥2 + ∥Tnz − Tn+1z∥2 + ∥x− Tnz∥2 + ∥Tx− Tn+1z∥2

−∥x− Tn+1z∥2 − ∥Tx− Tnz∥2.
Thus we have that

(α+ η)∥Tx− Tn+1z∥2 + (β − η)∥x− Tn+1z∥2 + (γ − η)∥Tx− Tnz∥2

+(δ + η)∥x− Tnz∥2 + (ε+ η)∥x− Tx∥2 + (ζ + η)∥Tnz − Tn+1z∥2 ≤ 0.

From

(γ − η)∥Tx− Tnz∥2

= (α+ γ)(∥x− Tx∥2 + ∥x− Tnz∥2 − 2⟨x− Tx, x− Tnz⟩)
−(α+ η)∥Tx− Tnz∥2,

we have that

(α+ η)∥Tx− Tn+1z∥2 + (β − η)∥x− Tn+1z∥2

+(α+ γ)(∥x− Tx∥2 + ∥x− Tnz∥2 − 2⟨x− Tx, x− Tnz⟩)
−(α+ η)∥Tx− Tnz∥2 + (δ + η)∥x− Tnz∥2

+(ε+ η)∥x− Tx∥2 + (ζ + η)∥Tnz − Tn+1z∥2 ≤ 0

and hence

(α+ η)(∥Tx− Tn+1z∥2 − ∥Tx− Tnz∥2) + (β − η)∥x− Tn+1z∥2

−2(α+ γ)⟨x− Tx, x− Tnz⟩+ (α+ γ + δ + η)∥x− Tnz∥2

+(α+ γ + ε+ η)∥x− Tx∥2 + (ζ + η)∥Tnz − Tn+1z∥2 ≤ 0.

By α+ β + γ + δ ≥ 0, we have that

−(β − η) = −(β + δ) + δ + η ≤ α+ γ + δ + η.
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From this inequality and ζ + η ≥ 0 we obtain that

(α+ η)(∥Tx− Tn+1z∥2 − ∥Tx− Tnz∥2)
+(β − η)(∥x− Tn+1z∥2 − ∥x− Tnz∥2)(3.4)

−2(α+ γ)⟨x− Tx, x− Tnz⟩+ (α+ γ + ε+ η)∥x− Tx∥2 ≤ 0.

From (3.4), we have that

(α+ η)(∥Tz − T k+1xn∥2 − ∥Tz − T kxn∥2)
+(β − η)(∥z − T k+1xn∥2 − ∥z − T kxn∥2)
−2(α+ γ)⟨z − Tz, z − T kxn⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0

for any k ∈ N ∪ {0} and z ∈ C. We apply µn to both sides of this inequality. We
have that

(α+ η)(µn)k(∥Tz − T k+1xn∥2 − ∥Tz − T kxn∥2)
+(β − η)(µn)k(∥z − T k+1xn∥2 − ∥z − T kxn∥2)
−2(α+ γ)(µn)k⟨z − Tz, z − T kxn⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0

and hence

−|α+ η|∥µn − ℓ∗1µn∥ sup
k∈N

∥Tz − T kxn∥2

− |β − η|∥µn − ℓ∗1µn∥ sup
k∈N

∥z − T kxn∥2(3.5)

− 2(α+ γ)⟨z − Tz, z − Tµnxn⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0.

Replacing n by ni in (3.5), we have that

−|α+ η|∥µni − ℓ∗1µni∥ sup
k∈N

∥Tz − T kxni∥2

−|β − η|∥µni − ℓ∗1µni∥ sup
k∈N

∥z − T kxni∥2

−2(α+ γ)⟨z − Tz, z − Tµni
xni⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0.

Letting i → ∞, we have from Tµni
xni ⇀ v that

−2(α+ γ)⟨z − Tz, z − v⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0.

Putting z = v, we have that

(α+ γ + ε+ η)∥v − Tv∥2 ≤ 0.

Since α + γ + ε + η > 0, we have that v ∈ F (T ). Let {xni} and {xnj} be two
subsequences of {xn} such that xni ⇀ v1 and xnj ⇀ v2. To complete the proof,

we show v1 = v2. We know that v1, v2 ∈ F (T ) and hence limn→∞ ∥xn − v1∥2 and
limn→∞ ∥xn − v2∥2 exist. Put

a = lim
n→∞

(∥xn − v1∥2 − ∥xn − v2∥2).

Note that for n = 1, 2, . . . ,

∥xn − v1∥2 − ∥xn − v2∥2 = 2⟨xn, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2.
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From xni ⇀ v1 and xnj ⇀ v2, we have

(3.6) a = 2⟨v1, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2

and

(3.7) a = 2⟨v2, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2.
Combining (3.6) and (3.7), we obtain 0 = 2⟨v2 − v1, v2 − v1⟩. Thus we obtain
v2 = v1. This implies that {xn} converges weakly to an element v ∈ F (T ). Since
∥xn+1 − z∥ ≤ ∥xn − z∥ for all z ∈ F (T ) and n ∈ N, we obtain from Lemma 2.1 that
{Pxn} converges strongly to an element p ∈ F (T ). On the other hand, we have
from the property of P that

⟨xn − Pxn, Pxn − u⟩ ≥ 0

for all u ∈ F (T ) and n ∈ N. Since xn ⇀ v and Pxn → p, we obtain

⟨v − p, p− u⟩ ≥ 0

for all u ∈ F (T ). Putting u = v, we obtain p = v. This means v = limn→∞ Pxn.
Similarly, we can obtain the desired result for the case of α + β + γ + δ ≥ 0,

α+ β > 0, ζ + η ≥ 0 and ε+ η ≥ 0. This completes the proof. �
Using Theorem 3.2, we can show the following weak convergence theorem of

Mann’s type for generalized hybrid mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a non-empty, closed and
convex subset of H. Let T : C → C be a generalized hybrid mapping with F (T ) ̸= ∅.
Let {µn} be a strongly asymptotically invariant sequence of means on ℓ∞. Let {αn}
be a sequence of real numbers such that 0 ≤ αn ≤ 1 and lim infn→∞ αn(1−αn) > 0.
Suppose that {xn} is the sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Tµnxn, n ∈ N.
Then the sequence {xn} converges weakly to an element v ∈ F (T ).

Proof. Since T : C → C is a generalized hybrid mapping, there exist α, β ∈ R such
that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− Ty∥2 + (1− β)∥x− Ty∥2

for all x, y ∈ C. We have that an (α, β)-generalized hybrid mapping is an (α, 1 −
α,−β,−(1− β), 0, 0, 0)-widely more generalized hybrid mapping which satisfies the
condition (2) in Theorem 3.2. Therefore, we have the desired result from Theorem
3.2. �

4. Strong convergence theorem

In this section, using the idea of mean convergence by Shimizu and Takahashi
[19] and [20], we prove the following strong convergence theorem for widely more
generalized hybrid mappings in a Hilbert space by using strongly asymptotically
invariant sequences.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping of
C into itself which satisfies the following condition (1) or (2):
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(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ζ + η ≥ 0 and ε+ η ≥ 0.

Let {µn} be a strongly asymptotically invariant sequence of means on ℓ∞. Let u ∈ C
and define sequences {xn} and {zn} in C as follows: x1 = x ∈ C and{

xn+1 = αnu+ (1− αn)zn,

zn = Tµnxn

for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. If F (T ) ̸= ∅,
then {xn} and {zn} converge strongly to Pu, where P is the metric projection of H
onto F (T ).

Proof. Since T : C → C be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping, we have that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2(4.1)

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for any x, y ∈ C. Since F (T ) ̸= ∅, we have that for all q ∈ F (T ) and n = 1, 2, 3, ...,

(4.2) ∥zn − q∥ = ∥Tµnxn − q∥ ≤ ∥xn − q∥.
Thus we have that

∥xn+1 − q∥ = ∥αnu+ (1− αn)zn − q∥
≤ αn∥u− q∥+ (1− αn)∥zn − q∥
≤ αn∥u− q∥+ (1− αn)∥xn − q∥.

Hence, by induction, we obtain

∥xn − q∥ ≤ max {∥u− q∥, ∥x− q∥}
for all n ∈ N. Then {xn} and {zn} are bounded. Since ∥Tµnxn − q∥ ≤ ∥xn − q∥, we
have also that {Tµnxn} is bounded.

Since {Tnxn} is bounded, there exists a subsequence {Tnixni} of {Tnxn} such
that Tnixni ⇀ w ∈ H. As in the proof of Theorem 3.2, we have that w ∈ F (T ). On
the other hand, since xn+1 − zn = αn(u− zn), {Tnxn} is bounded and αn → 0, we
have limn→∞ ∥xn+1 − Tnxn∥ = 0. Let us show

lim sup
n→∞

⟨u− Pu, xn+1 − Pu⟩ ≤ 0.

We may assume without loss of generality that there exists a subsequence {xni+1}
of {xn+1} such that

lim sup
n→∞

⟨u− Pu, xn+1 − Pu⟩ = lim
i→∞

⟨u− Pu, xni+1 − Pu⟩

and xni+1 ⇀ v. From ∥xn+1 − Tnxn∥ → 0, we have Tnixni ⇀ v. From the above
argument, we have v ∈ F (T ). Since P is the metric projection of H onto F (T ), we
have

lim
i→∞

⟨u− Pu, xni+1 − Pu⟩ = ⟨u− Pu, v − Pu⟩ ≤ 0.

This implies

lim sup
n→∞

⟨u− Pu, xn+1 − Pu⟩ ≤ 0.(4.3)
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Since xn+1 − Pu = (1− αn)(zn − Pu) + αn(u− Pu), from (2.1) we have

∥xn+1 − Pu∥2 = ∥(1− αn)(zn − Pu) + αn(u− Pu)∥2

≤ (1− αn)
2∥zn − Pu∥2 + 2αn⟨u− Pu, xn+1 − Pu⟩

≤ (1− αn)∥xn − Pu∥2 + 2αn⟨u− Pu, xn+1 − Pu⟩.

Putting sn = ∥xn − Pu∥2, βn = 0 and γn = 2⟨u − Pu, xn+1 − Pu⟩ in Lemma 2.2,
we have from

∑∞
n=1 αn = ∞ and (4.3) that

lim
n→∞

∥xn − Pu∥ = 0.

By limn→∞ ∥xn+1 − zn∥ = 0, we also obtain zn → Pu as n → ∞.
Similarly, we can obtain the desired result for the case of α + β + γ + δ ≥ 0,

α+ β > 0, ζ + η ≥ 0 and ε+ η ≥ 0. �

Using Theorem 4.1, we can show the following result obtained by Hojo and Taka-
hashi [7]; see also [17].

Theorem 4.2 ([7]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T be a generalized hybrid mapping of C into itself. Let u ∈ C and
define two sequences {xn} and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnu+ (1− αn)zn,

zn =
1

n

n−1∑
k=0

T kxn

for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. If F (T ) is
nonempty, then {xn} and {zn} converge strongly to Pu ∈ F (T ), where P is the
metric projection of H onto F (T ).

Proof. As in the proof of Theorem 3.3, a generalized hybrid mapping is a widely
more generalized hybrid mapping. Define

µn(f) =
1

n

n−1∑
i=0

f(i)

for all n ∈ N and f ∈ ℓ∞. We have that {µn : n ∈ N} is a strongly asymptotically
invariant sequence of means on ℓ∞. Furthermore, we have that for any x ∈ C and
n ∈ N,

Tµnx =
1

n

n−1∑
i=0

T ix.

Therefore, we have the desired result from Theorem 4.1. �
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