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probability Pxy( · | · ) from S1 to the game process: A1B1S2A2B2S3 . . . = H∞, such
that for the two bounded Borel measurable (reward) functions {un, vn} defined
on HnAnBn (n ∈ N) ⊂ H∞ are the density functions for the expectations of players
I and II, respectively.

As the previous paper [14], for each s1 ∈ S1 and the history (stochastic) variable
h ∈ H∞, we obtain the total conditional expectations at time n ∈ N as the following
form:

E(un, x, y)(s1) =

∫
H∞

un(h)Pxy(dh | s1)

= Ex1Ey1Et2 . . . Exn−1Eyn−1EtnExnEynun(s1)

≡ Exyun(s1),

and

E(vn, x, y)(s1) =

∫
H∞

vn(h)Pxy(dh | s1)

= Ex1Ey1Et2 . . . Exn−1Eyn−1EtnExnEynvn(s1)

≡ Exyvn(s1),

where Exn , Eyn , and Etn+1 , n = 1, 2, . . . are the conditional expectation opera-
tors and transition probability with respect to xn ∈ Xn, yn ∈ Yn, and {xn} ⊂
X, {yn} ⊂ Y.

Consequently, the total stochastic reward conditional expectational functions of
players I and II, respectively, are given by

U(x, y)(s1) = lim
n→∞

Exy un(s1) ∈ R,(1.1)

and

V (x, y)(s1) = lim
n→∞

Exy vn(s1) ∈ R+.(1.2)

In the game system (DGPθ), the loss (gain) function of player I at n ∈ N obeys
the law of function

Fn
θ = un − θvn,(1.3)

and the player II at time n ∈ N has his gain (loss) function

(1.4) −Fn
θ .

Thus, at any time n ∈ N, the two players are playing zero sum rewards. Since
the reward functions {un, vn} are bounded, by dominated convergence theorem
employing in (1.1) and (1.2), as well as Fubini theorem in (1.1) and (1.2).

Consequently, one can get the total conditional expectation of the loss function
of player I is given by

Fθ(x, y)(s1) ≡ lim
n→∞

Exy Fn
θ (x, y)(s1)

= lim
n→∞

Exy[un(x, y)− θvn(x, y)](s1)

= U(x, y)(s1)− θ(s1)V (x, y)(s1)(1.5)
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and shows that

F θ(s1) = inf
x∈X

sup
y∈Y

Fθ(x, y)(s1) = sup
y∈Y

inf
x∈X

Fθ(x, y)(s1) = F θ(s1)(1.6)

holds in the game system (DGPθ).
Since V (x, y)(s1) ∈ R+, the quotient of functions:

W (x, y)(s1) =
U(x, y)(s1)

V (x, y)(s1)
, (x, y) ∈ X × Y,(1.7)

is well defined and makes a plausible problem, that is, how to derive the minimax
theorem as

inf
x∈X

sup
y∈Y

W (x, y)(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1)(1.8)

holds.
Actually, the right hand side of (1.8) is similar to a duality problem with respect

to the minimax programming problem of the left hand side of (1.8) with some
constraints. There are many research articles in minimax programming problems
(cf. Lai et al. [4–9]).

Usually a minimax programming with an objective function f : X × Y → R is
as the form:

(P0) inf
x∈X

sup
y∈Y

f(x, y)

satisfying some constraints,
and most of the variables (x, y) ∈ X × Y in (P0) are reals. There are also complex
variables in engineering (cf. Lai et al. [4,5,8]), or set variables in measurable spaces
X and Y (cf. Lai et al. [6, 7]).

Minimax theorem has many applications. For instance, in variational inequality,
mathematic economic for minimum cost and maximum profit, or minimum loss and
maximum gain in game theory, etc..

In game theory, there are many types of games. Several types of game systems can
be referred to Lai and Tanaka in [10–13,17]. See also the related works in [2,3,14].
These games involved n-person noncooperative dynamic systems in various spaces
(cf. Lai [10–13]) and two-person zero-sum dynamic games (see [2, 3, 14–17]).

In this paper we focus on an objective function W (x, y) which is a ratio of frac-
tional conditional expectation functions of players I and II in the two-person zero-
sum dynamic game and is defined in the expression (1.8), and hence we may regard
our game system as a two-person zero-sum dynamic fractional game. However we
are only focus on the expression (1.8).

We infer that it will be consistent with Ky Fan’s [1] minimax theorem for the
strategy spaces of the zero-sum dynamic fractional game, that is,

inf
x∈X

sup
y∈Y

W (x, y)(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) holds.

In other words, we will investigate an existence theorem for the saddle value function
so that the two players can obtain an equilibrium point in the dynamic fractional
game system.
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2. Preliminary for a two-person zero-sum dynamic fractional game

In this paper we recall a two-person zero-sum dynamic fractional game (DFG)
with the strategy spaces X and Y for players I and II, respectively. It is performed
by the following six elements:

(DFG) (Sn, An, Bn, tn+1, un, vn) at time n ∈ N.

According to the same assumptions of the previous work [14] we can start to discuss
the theory of the dynamic game system.

Recall that X and Y are metrizable separable spaces employed as the strategy
spaces of players I and II, respectively. Hence we can denote by Xn (resp. Yn) the
set of all universal measurable transition mappings from history Hn to action An of
player I (resp. Bn of player II).

By the separability of the metric spaces, for any x ∈ X and y ∈ Y , we can consider
the sequences x = {xn}, y = {yn} with xn ∈ Xn, yn ∈ Yn at each time n ∈ N.

Then for each pair (x, y) ∈ X × Y and transition probabilities {tn+1}∞n=1, there
exists a unique universal measurable transition probability Pxy( · | · ) from S1 to the
game process: A1B1S2A2B2S3 · · · = H∞, such that for the two bounded Borel mea-
surable functions {un, vn} defined on HnAnBn

(n ∈ N) are the density functions for the expectations of players I and II, respec-
tively.

Let Exn , Eyn , and Etn+1 denote the conditional expectation operators with re-
spect to xn ∈ Xn, yn ∈ Yn, and transition probability tn+1, respectively.

Then for each s1 ∈ S1 and the history (stochastic) variable h ∈ H∞, the total
conditional expectation at time n ∈ N follows from [14], we restate it as the following
form S1 to

E(un, x, y)(s1) =

∫
H∞

un(h)Pxy(dh | s1)

≡ Exyun(s1),

and

E(vn, x, y)(s1) =

∫
H∞

vn(h)Pxy(dh | s1)

≡ Exyvn(s1).

Consequently, the total stochastic reward conditional expectational functions of
players I and II, respectively, are performed as the following limits:

U(x, y)(s1) = lim
n→∞

Exy un(s1) ∈ R,

and

V (x, y)(s1) = lim
n→∞

Exy vn(s1) ∈ R+.

Since V (x, y)(s1) > 0, the total expectation of the considered dynamic fractional
game (DFG) is well defined, and is given by the form:

W (x, y)(s1) =
U(x, y)(s1)

V (x, y)(s1)
, (x, y) ∈ X × Y.
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The minimax problem is natural to inqire that whether the saddle value function
exists on the dynamic fractional game while the players have chosen their strategies
from both the numerator and denominator. The outcome response will eventually
have a saddle point under some reasonable conditions.

3. Existence of saddle value function

For each y ∈ Y , there exists a real number λ depending on x (x ∈ X) such that
the reward functions un ∈ R and vn ∈ R+ in (DGPθ), having the following relations

sup
y∈Y

un(x, y)(s1)

vn(x, y)(s1)
= λ (x, y) ∈ X × Y,

and so

un(x, y)(s1)

vn(x, y)(s1)
≤ λ for all y ∈ Y,

or equivalently

un(x, y)(s1)− λvn(x, y)(s1) ≤ 0 for all (x, y) ∈ X × Y.

Consequently, we can reduce the fractional problem to an equivalent nonfractional
parametric problem:

(Pλ) inf
x∈X

sup
y∈Y

[un(x, y)(s1)− λvn(x, y)(s1)] (≤ 0)

where λ is a parameter. It is the same as minimax fractional programming deduce
to nonfractional case. That is, the minimax fractional programming can be deduced
to a nonfractional programming problem having equivalence solution (without ad-
ditional assumptions) (cf. Lai et al. [9]).

The expression (1.5) is deduced to the minimax type theorem for the game sys-
tem (DGPθ) as the expression (1.6)

inf
x∈X

sup
y∈Y

Fθ(x, y)(s1) = sup
y∈Y

inf
x∈X

Fθ(x, y)(s1)

which is equivalent to the dynamic fractional game system (DFG) by using the
total expectation ratio (1.7) of the two players as the minimax type theorem:

inf
x∈X

sup
y∈Y

W (x, y)(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1)

under certain conditions. We want to inquire that whether (1.6) and (1.8) are both
solvable.

4. Upper and lower value functions of the game system (DFG)

To this purpose, we define the upper and lower value functions of the game
system (DFG) by

ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) and

ω(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1), respectively.
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Of course, ω(s1) ≤ ω(s1) for all s1 ∈ S1, and call the interval [ω(s1), ω(s1)] as the
duality gap of the game system (DFG).

If there is a saddle value function ω∗(s1) such that

ω(s1) = ω(s1) = ω∗(s1),

then the dual gap is equal zero, and call ω∗(s1) a saddle value function of the game
system (DFG).

Indeed, if there exists y∗ ∈ Y such that

ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) = inf
x∈X

W (x, y∗)(s1),

namely y∗ as a maximizer of W (x, y)(s1) over y ∈ Y for each x ∈ X in the game
system (DFG).

Similarly, if there exists x∗ ∈ X such that

ω(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) = sup
y∈Y

W (x∗, y)(s1),

we call x∗ as a minimizer of W (x, y)(s1) over x ∈ X for each y ∈ Y in the game
system (DFG).

It is remarkable that in minimax fractional programming, the denominator is
always positive, and the numerator may assume to be nonnegative.

In the dynamic fractional game system, the objective ratio function W (x, y)(s1)
could have a saddle value (point) function and needs some extra assumptions since
the law of motion F θ(·) can not guarantee the numerator’s reward function to be
nonnegative.

Hence, we need to analyze some relations between the parametric upper value
function as well as the lower value function for (DGPθ) and (DFG):

F θ(s1), F θ(s1) in (DGPθ) and ω(s1), ω(s1) in (DFG) (cf. Lai [3]).

At first, we state some properties for F θ(s1) as follows:

Proposition 4.1.

(i) For two parameter functions θ1(s1) and θ2(s1),
if θ1(s1) > θ2(s1) ≥ 0, then F θ1(s1) ≤ F θ2(s1),

(ii) If F θ(s1) > 0, then θ(s1) ≤ ω(s1),
(iii) If F θ(s1) < 0, then θ(s1) ≥ ω(s1),
(iv) If θ(s1) < ω(s1), then F θ(s1) ≥ 0,
(v) If θ(s1) > ω(s1), then F θ(s1) ≤ 0.

Proof. (i) If θ1(s1) > θ2(s1) ≥ 0, then for any (x, y) ∈ X × Y ,
since V (x, y)(s1) > 0, we have θ1(s1)V (x, y)(s1) > θ2(s1)V (x, y)(s1), it
yields

U(x, y)(s1)− θ1(s1)V (x, y)(s1) < U(x, y)(s1)− θ2(s1)V (x, y)(s1).

That is,

Fθ1(x, y)(s1) < Fθ2(x, y)(s1).
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Hence

F θ1(s1) = inf
x∈X

sup
y∈Y

Fθ1(x, y)(s1) ≤ inf
x∈X

sup
y∈Y

Fθ2(x, y)(s1) = F θ2(s1),

or

F θ1(s1) ≤ F θ2(s1), provided θ1(s1) > θ2(s1) ≥ 0.

(ii) If F θ(s1) > 0, then for any x ∈ X, by definition of infimum

sup
y∈Y

Fθ(x, y)(s1) > 0,

it follows that, there exists yx ∈ Y depending on x, such that

Fθ(x, yx)(s1) = U(x, yx)(s1)− θ(s1)V (x, yx)(s1) > 0.

Since V (x, yx)(s1) > 0, we obtain

W (x, yx)(s1) =
U(x, yx)(s1)

V (x, yx)(s1)
> θ(s1).

Hence, for each x ∈ X,

sup
y∈Y

W (x, y)(s1) ≥ W (x, yx)(s1) =
U(x, yx)(s1)

V (x, yx)(s1)
> θ(s1),

we have

ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) ≥ θ(s1),

that is, θ(s1) ≤ ω(s1).

(iii) If F θ(s1) < 0, then there exists x ∈ X such that

sup
y∈Y

Fθ(x, y)(s1) < 0,

that is, for any y ∈ Y ,

Fθ(x, y)(s1) = U(x, y)(s1)− θ(s1)V (x, y)(s1) < 0.

Since V (x, y)(s1) > 0,
this implies that

W (x, y)(s1) =
U(x, y)(s1)

V (x, y)(s1)
< θ(s1),

and so

sup
y∈Y

W (x, y)(s1) ≤ θ(s1).

Therefore

ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) ≤ θ(s1),

that is, θ(s1) ≥ ω(s1).



96 H.-C. LAI AND C.-Y. YU

(iv) If ω(s1) > θ(s1), then for any x ∈ X,

sup
y∈Y

W (x, y)(s1) > θ(s1).

It follows that, there exists yx ∈ Y depending on x, such that

W (x, yx)(s1) =
U(x, yx)(s1)

V (x, yx)(s1)
> θ(s1).

This implies that

Fθ(x, yx)(s1) = U(x, yx)(s1)− θ(s1)V (x, yx)(s1) > 0,

and satisfying

sup
y∈Y

Fθ(x, y)(s1) ≥ Fθ(x, yx)(s1) > 0.

Hence

F θ(s1) = inf
x∈X

sup
y∈Y

Fθ(x, y)(s1) ≥ 0.

(v) If θ(s1) > ω(s1), then by definition of ω(s1),
there exists x ∈ X such that

θ(s1) > sup
y∈Y

W (x, y)(s1),

or

θ(s1) > W (x, y)(s1), for all y ∈ Y.

This implies that, for all y ∈ Y ,

Fθ(x, y)(s1) = U(x, y)(s1)− θ(s1)V (x, y)(s1) < 0,

and satisfying

sup
y∈Y

Fθ(x, y)(s1) ≤ 0.

Therefore

F θ(s1) = inf
x∈X

sup
y∈Y

Fθ(x, y)(s1) ≤ sup
y∈Y

Fθ(x, y)(s1) ≤ 0.

�
By the similar arguments as Proposition 4.1 for F θ(x, y)(s1), we have the follow-

ing proposition for F θ(x, y)(s1).

Proposition 4.2.

(i) For two parameter functions θ1(s1) and θ2(s1),
if θ1(s1) > θ2(s1) ≥ 0, then F θ1(s1) ≤ F θ2(s1),

(ii) If F θ(s1) > 0, then θ(s1) ≤ ω(s1),
(iii) If F θ(s1) < 0, then θ(s1) ≥ ω(s1),
(iv) If θ(s1) < ω(s1), then F θ(s1) ≥ 0,
(v) If θ(s1) > ω(s1), then F θ(s1) ≤ 0.
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Proof. Using F θ(s1) and ω(s1) instead of F θ(s1) and ω(s1), respectively, we can
prove this proposition by the similar arguments as in the previous proof. �

5. The saddle value function of the game system (DFG)

We recall that in previous section 4, if there exists y∗ ∈ Y such that

ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) = inf
x∈X

W (x, y∗)(s1),

namely y∗ as a maximizer of W (x, y)(s1) over y ∈ Y for each x ∈ X in the game
system (DFG).

Similarly, if there exists x∗ ∈ X such that

ω(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) = sup
y∈Y

W (x∗, y)(s1),

we call x∗ as a minimizer of W (x, y)(s1) over x ∈ X for each y ∈ Y in the game
system (DFG).

The existence theorems for saddle value function between (DFG) and (DGPθ)
have the following theorems:

Theorem 5.1. (i) Let y∗ ∈ Y be a maximizer of W (x, y)(s1) over y ∈ Y for
each x ∈ X in the game system (DFG) , then we have

ω(s1) = ω(s1) ≡ ω∗(s1).

That is,

inf
x∈X

sup
y∈Y

W (x, y)(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) holds for (DFG).

(The saddle value function of (DFG) exists.)
(ii) Suppose that y∗ ∈ Y is a maximizer of W (x, y)(s1) in the game system (DFG).

If F θ(s1) ≤ 0, then y∗ ∈ Y is also a maximizer of Fθ(x, y)(s1) in the game
system (DGPθ).

Proof. (i) By definitions, we see that ω(s1) ≥ ω(s1).
As y∗ ∈ Y is a maximizer of W (x, y)(s1), we have

ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) = inf
x∈X

W (x, y∗)(s1)

≤ sup
y∈Y

inf
x∈X

W (x, y)(s1) = ω(s1)

This implies that

ω(s1) = ω(s1) ≡ ω∗(s1).

Hence, the game system (DFG) has a saddle value function, that is,

ω(s1) = ω(s1).
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(ii) If y∗ ∈ Y is a maximizer of W (x, y)(s1) in the game system (DFG),
then for all x ∈ X,

ω∗(s1) = ω(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) = inf
x∈X

W (x, y∗)(s1) ≤ W (x, y∗)(s1).

That is, for all x ∈ X,

ω∗(s1) ≤ W (x, y∗)(s1) =
U(x, y∗)(s1)

V (x, y∗)(s1)
.

This implies that, for all x ∈ X,

0 ≤ U(x, y∗)(s1)− ω∗(s1)V (x, y∗)(s1) = Fθ(x, y
∗)(s1) = sup

y∈Y
Fθ(x, y)(s1).

Thus

0 ≤ inf
x∈X

Fθ(x, y
∗)(s1) ≤ inf

x∈X
sup
y∈Y

Fθ(x, y)(s1) = F θ(s1) ≤ 0 (by assumption).

This shows that,

inf
x∈X

Fθ(x, y
∗)(s1) = inf

x∈X
sup
y∈Y

Fθ(x, y)(s1).

Therefore, y∗ ∈ Y is also a maximizer of Fθ(x, y)(s1) in the game sys-
tem (DGPθ).

�
Definition 5.2. We say that (x∗, y∗) is a saddle point of W (x, y)(s1), if

W (x∗, y)(s1) ≤ W (x∗, y∗)(s1) ≤ W (x, y∗)(s1) for all x ∈ X and y ∈ Y.

That is,

sup
y∈Y

W (x∗, y)(s1) ≤ W (x∗, y∗)(s1) ≤ inf
x∈X

W (x, y∗)(s1) for all x ∈ X and y ∈ Y.

Corollary 5.3. If (x∗, y∗) ∈ X×Y is a saddle point of the game system (DFG), then

(i) Fθ(x
∗, y∗)(s1) = 0, and

(ii) (x∗, y∗) is also a saddle point of the game system (DGPθ).

Theorem 5.4.

(i) Let x∗ ∈ X be a minimizer of W (x, y)(s1) over x ∈ X for each y ∈ Y in the
game system (DFG). Then we have

ω(s1) ≡ ω∗(s1) = ω(s1).

That is,

inf
x∈X

sup
y∈Y

W (x, y)(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) holds for (DFG).

(The saddle value function of (DFG) exists.)
(ii) Suppose that x∗ ∈ X is a minimizer of W (x, y)(s1) in the game system (DFG).

If F θ(s1) ≥ 0, then x∗ ∈ X is also a minimizer of Fθ(x, y)(s1) in the game
system (DGPθ).
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Proof. (i) By definitions, we see that ω(s1) ≤ ω(s1).
On the other hand, since x∗ ∈ X is a minimizer of W (x, y)(s1), we have

ω(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) = sup
y∈Y

W (x∗, y)(s1) ≥ inf
x∈X

sup
y∈Y

W (x, y)(s1) = ω(s1).

This implies that

ω(s1) ≡ ω∗(s1) = ω(s1).

Thus, the game (DFG) has a saddle value function, that is,

ω(s1) = ω(s1).

(ii) If x∗ ∈ X is a minimizer of W (x, y)(s1) in the game system (DFG),
it follows that, for all y ∈ Y ,

ω∗(s1) = ω(s1) = sup
y∈Y

inf
x∈X

W (x, y)(s1) = sup
y∈Y

W (x∗, y)(s1) ≥ W (x∗, y)(s1).

That is, for all y ∈ Y ,

ω∗(s1) ≥ W (x∗, y)(s1) =
U(x∗, y)(s1)

V (x∗, y)(s1)
.

This implies that, for all x ∈ X,

U(x∗, y)(s1)− ω∗(s1)V (x∗, y)(s1) = Fθ(x
∗, y)(s1) = inf

x∈X
Fθ(x, y)(s1) ≤ 0.

Thus

0 ≥ sup
y∈Y

Fθ(x
∗, y)(s1) ≥ inf

x∈X
sup
y∈Y

Fθ(x, y)(s1) ≥ F θ(s1) ≥ 0 (by assumption).

This shows that,

sup
y∈Y

Fθ(x
∗, y)(s1) = sup

y∈Y
inf
x∈X

Fθ(x, y)(s1) = F θ(s1).

Therefore, x∗ ∈ X is also a minimizer of Fθ(x, y)(s1) in the game sys-
tem (DGPθ).

�

Theorem 5.5. (i) Suppose that ω(s1) = ω(s1) ≡ ω∗(s1).
If y∗ ∈ Y is a maximizer of Fθ(x, y)(s1) in the game system (DGPθ) with

inf
x∈X

Fθ(x, y
∗)(s1) = F θ(s1) = F ∗

θ (s1) ≥ 0,

then y∗ ∈ Y is also a maximizer of W (x, y)(s1) in the game system (DFG).
(ii) Suppose that ω(s1) = ω(s1) ≡ ω∗(s1).

If x∗ ∈ X is a minimizer of Fθ(x, y)(s1) in the game system (DGPθ) with

sup
y∈Y

Fθ(x
∗, y)(s1) = F θ(s1) = F ∗

θ (s1) ≤ 0,

then x∗ ∈ X is also a minimizer of W (x, y)(s1) in the game system (DFG).
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Proof. (i) By the assumptions, F θ(s1) = F ∗
θ (s1) ≥ 0 and y∗ ∈ Y is a maximizer

of Fθ(x, y)(s1), it follows that

0 ≤ inf
x∈X

sup
y∈Y

Fθ(x, y)(s1) = inf
x∈X

Fθ(x, y
∗)(s1) ≤ Fθ(x, y

∗)(s1), for all x ∈ X.

This implies that,

ω(s1) ≤
U(x, y∗)(s1)

V (x, y∗)(s1)
= W (x, y∗)(s1) ≤ sup

y∈Y
W (x, y)(s1), for all x ∈ X.

Hence

ω(s1) ≤ inf
x∈X

W (x, y∗)(s1) ≤ inf
x∈X

sup
y∈Y

W (x, y)(s1) = ω(s1),

it follows that

inf
x∈X

W (x, y∗)(s1) = inf
x∈X

sup
y∈Y

W (x, y)(s1) = ω(s1),

that is, y∗ ∈ Y is also a maximizer ofW (x, y)(s1) in the game system (DFG).
(ii) The proof follows the same lines as the proof given for (i).

�
From the above results, we conclude that the following result holds.

Theorem 5.6. Suppose that ω(s1) = ω(s1) ≡ ω∗(s1), and that (x∗, y∗) ∈ X ×Y is
a saddle point of the game system (DGPθ) with Fθ(x

∗, y∗)(s1) = 0. Then (x∗, y∗) is
also a saddle point of the game system (DFG).
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