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INFINITE-HORIZON PONTRYAGIN PRINCIPLES WITHOUT
INVERTIBILITY

JOËL BLOT

Abstract. We give new statements of Pontryagin principles in the setting of
infinite-horizon discrete-time optimal control problems with various criteria, when
the system is governed by a difference equation or by a difference inequation. In
a previous work [3] an invertibility condition of the vector field with respect to
the state variable was used. In the present work, after a section devoted to the
comparison between the problems governed by difference equations and problems
governed by difference inequations, we give new conditions to obtain Pontryagin
principles without the using of the above-mentionned invertibility condition: a
positivity condition and a partial surjectivity condition.

1. Introduction

Our aim is to establish Pontryagin principles for discrete-time infinite-horizon
optimal control problems with various criteria, as to maximize

∑∞
t=0 f

0
t (xt, ut),

or as to find ((x̂t)t, (ût)t) such that lim infh→∞
∑h

t=0(f
0
t (x̂t, ût) − f0

t (xt, ut)) ≥
0 for all admissible processes ((xt)t, (ut)t), or as to find ((x̂t)t, (ût)t) such that
lim suph→∞

∑h
t=0(f

0
t (x̂t, ût)−f0

t (xt, ut)) ≥ 0 for all admissible processes ((xt)t, (ut)t),
when the system is governed by a difference equation xt+1 = ft(xt, ut) or by a dif-
ference inequation xt+1 ≤ ft(xt, ut).

Such problems are fundamental in the macroeconomic optimal growth theory,
see for instance [17], [14] and the references in [4]. In [18] we can find motivations
provided by other scientific fields. Note that, following [17], Chapter I, Section
2, the difference inequations are more suitable than difference equations in the
macroeconomic models.

Recall that the pre-Hamiltonian associated to these problems is

Ht(xt, ut, λ
0, pt+1) := λ0f0

t (xt, ut) + 〈pt+1, ft(xt, ut)〉

where xt is the state variable, ut is the control variable, λ0 is a multiplier, pt+1 is
the adjoint variable, and 〈., .〉 is the duality bracket on Rn∗ ×Rn.

An optimal process ((x̂t)t, (ût)t) being given, we say that a Pontryagin principle
is strong when, beside other conditions notably the adjoint equation, for all t ∈ N ,
we have

Ht(x̂t, ût, λ
0, pt+1) ≥ Ht(x̂t, ut, λ

0, pt+1)
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for all the possible values ut of the control variable. We say that a Pontryagin
principle is weak when instead of this maximality condition we have only a tan-
gency condition (like a first-order necessary condition of optimality in Mathemat-
ical Programming) as, for instance, a generalized differential with respect to ut,
∂utHt(x̂t, ût, λ

0, pt+1), contains normal vectors to the set of the possible values of
ut.

For continuous-time problems, we have not need special conditions to obtain a
strong Pontryagin principle; see for instance [1] in the finite-horizon setting, and [6]
in the infinite-horizon setting. But as Boltyanski emphazises it in [5] by providing
counter-examples, for the (finite-horizon) discrete-time problems, strong Pontryagin
principle cannot hold without additional assumptions which are, in a more or less
sophisticated form, convexity conditions. This is a great difference between the
continuous-time optimal control problems and the discrete-time optimal control
problems. In this paper, for the strong Pontryagin principles, we use a condition
due to Michel [12], so-called the condition of mixed problem.

Here we describe the sketch of the methods used to prove our theorems. An
optimal process being given, we consider a family of finite-horizon problems for
which the restrictions of the optimal process are optimal solutions. Then by using
known results on the finite-horizon problems, for each finite horizon h ∈ N , we
obtain a multiplier λ0,h ∈ R1

+ and an adjoint variable (ph
1 , ..., p

h
h) ∈ (Rn∗)h or (Rn∗

+ )h

which satisfy the adjoint equation and the maximum principle in a weak form or
in a strong form. After, for the infinite-horizon problem, we obtain a multiplier λ0

and an adjoint variable pt, when t ≥ 1, as limit points of the sequences (λ0,h)h and
(ph

t )h>t respectively (when h→∞). The main question is to prove that λ0 and the
pt are not simultaneously equal to zero. A technical difficulty related to this question
is the character backward of the adjoint equation; this is also a difference with the
continuous-time setting. In [3] an invertibility condition permits to transform the
adjoint equation in a forward equation. In this paper we give new conditions to
avoid to use the invertibility condition of [3].

Now we briefly describe the contents of the paper. In Section 2 we present
our settings and the problems considered. In Section 3 we establish results on
the comparison between problems governed by difference equations and problems
governed by difference inequations. In Section 4 we establish new weak Pontryagin
principles. In Section 5 we establish new strong Pontryagin principles under a
positivity condition. In Section 6 we establish new strong Pontryagin principles
under a partial surjectivity condition.

2. The settings

Rn and Rm are endowed with their natural order: when d = n or m, x =
(x1, ..., xd) ≤ y = (y1, ..., yd) means that xi ≤ yi for all i = 1, ...d. The writing
x < y means that x ≤ y and x 6= y that is equivalent to say that xi ≤ yi for all
i = 1, ..., d and there exists j ∈ {1, ..., d} such that xj < yj . N denotes the set of
the nonnegative integer numbers, and we set N∗ := N \ {0}. Following [8] p. 224,
a function φ : Rd → Re, where e ∈ N∗, is called increasing when x ≤ y implies
φ(x) ≤ φ(y).
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To abridge the writing inside the proofs, we will denote a sequence by an under-
lined letter, for instance x := (xt)t = (xt)t∈N and u := (ut)t = (ut)t∈N .

For each integer t ∈ N , Xt denotes a nonempty open subset of Rn, Ut denotes a
nonempty subset of Rm, f0

t : Xt × Ut → R1 and ft : Xt × Ut → Xt+1 denote func-
tions, and η is an element of X0. Let (xt)t ∈

∏
t∈N Xt and (ut)t ∈

∏
t∈N Ut; we say

that ((xt)t, (ut)t) belongs to domJ when the following series sum J((xt)t, (ut)t) :=∑
t≥0 f

0
t (xt, ut) exists in R1 (i.e. this series is convergent toward a finite real num-

ber).

We denote by Adm(η) the set of the processes ((xt)t, (ut)t) ∈
∏

t∈N Xt×
∏

t∈N Ut

such that xt+1 = ft(xt, ut) for all t ∈ N and such that x0 = η. We denote by Iad(η)
the set of the processes ((xt)t, (ut)t) ∈

∏
t∈N Xt×

∏
t∈N Ut such that xt+1 ≤ ft(xt, ut)

for all t ∈ N and such that x0 = η.

With these notations we can define the following problems.

(PI,η): Maximize
∑∞

t=0 f
0
t (xt, ut) =: J((xt)t, (ut)t) when ((xt)t, (ut)t) ∈ domJ∩

Adm(η).
(PII,η): Find ((xt)t, (ut)t) ∈ Adm(η) such that lim infh→∞

∑h
t=0(f

0
t (xt, ut) −

f0
t (xt, ut)) ≥ 0 for all ((xt)t, (ut)t) ∈ Adm(η).

(PIII,η): Find ((xt)t, (ut)t) ∈ Adm(η) such that lim suph→∞
∑h

t=0(f
0
t (xt, ut)−

f0
t (xt, ut)) ≥ 0 for all ((xt)t, (ut)t) ∈ Adm(η).

(QI,η): Maximize
∑∞

t=0 f
0
t (xt, ut) =: J((xt)t, (ut)t) when ((xt)t, (ut)t) ∈ domJ∩

Iad(η).
(QII,η): Find ((xt)t, (ut)t) ∈ Iad(η) such that lim infh→∞

∑h
t=0(f

0
t (xt, ut) −

f0
t (xt, ut)) ≥ 0 for all ((xt)t, (ut)t) ∈ Iad(η).

(QIII,η): Find ((xt)t, (ut)t) ∈ Iad(η) such that lim suph→∞
∑h

t=0(f
0
t (xt, ut) −

f0
t (xt, ut)) ≥ 0 for all ((xt)t, (ut)t) ∈ Iad(η).

Remark 2.1. We define the following binary relation on Adm(η) or on Iad(η) :
((xt)t, (ut)t) S ((yt)t, (vt)t) which means lim infh→∞

∑h
t=0(f

0
t (xt, ut)− f0

t (yt, vt)) ≥
0. We easily verify that S is reflexive and transitive, that is called a pre-ordering in
[2] p. 28. Note that these properties do not hold when we replace liminf by limsup.

3. Some relations between problems governed by difference
equations and problems governed by difference inequations

We begin by giving a list of conditions which will be used into the results of this
section.

(1): For all t ∈ N and for all ut ∈ Ut, the partial function f0
t (., ut) is increasing.

(2): For all t ∈ N and for all ut ∈ Ut, the partial function ft(., ut) is increasing.
(3): For all t ∈ N , f0

t ≥ 0.
(4): For all t ∈ N , for all (yt+1, yt, ut) ∈ Xt+1 × Xt × Ut such that yt+1 ≤
ft(yt, ut), there exists vt ∈ Ut such that vt ≥ ut and yt+1 = ft(yt, vt).

(5): For all t ∈ N and for all xt ∈ Xt, the partial function f0
t (xt, .) is increas-

ing.

When (x̂, û) ∈ Adm(η), we consider the following condition.
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(6): For all t ∈ N and for all zt ∈ Xt, there exist s ∈ N∗ and (vt, vt+1, ...,
vt+s−1) ∈

∏
0≤i≤s−1 Ut+i such that, by setting zt+i+1 := ft+i(zt+i, vt+i) for

i = 0, ..., s− 1, we have zt+s = x̂t+s.

Remark 3.1. This condition (6) is a condition of reachability in finite time. For
instance, when ft, Xt and Ut are independent of t, the usual condition of control-
lability in finite time, as defined in [16] p. 81 or in [10] p. 98, implies the condition
(6).

Lemma 3.2. We assume (1) and (2) fulfilled. Let ((yt)t, (ut)t) ∈ Iad(η). Then
there exists (xt)t ∈

∏
t∈N Xt such that ((xt)t, (ut)t) ∈ Adm(η) and such that

lim infh→∞
∑h

t=0(f
0
t (xt, ut)− f0

t (yt, ut)) ≥ 0.

Proof. If ((yt)t, (ut)t) ∈ Adm(η) it suffices to take x = y. Now we assume that
((yt)t, (ut)t) /∈ Adm(η) and we define T ∈ N∗ as the minimum of the set of the t ∈ N∗
such that yt+1 < ft(yt, ut). We define xt := yt when t ≤ T , xT+1 := fT (yT , uT ), and
by induction xt+1 := ft(xt, ut) when t > T + 1. And so we have (x, u) ∈ Adm(η).
Moreover we have xT+1 = fT (yT , uT ) > yT+1, and by using (2) we obtain xT+2 =
fT+1(xT+1, uT+1) ≥ fT+1(yT+1, uT+1) ≥ yT+2, and proceeding by induction we
obtain xt ≥ yt for all t ∈ N. Then by using (1) we obtain f0

t (xt, ut) ≥ f0
t (yt, ut)

for all t ∈ N , and consequently we have lim infh→∞
∑h

t=0(f
0
t (xt, ut)− f0

t (yt, ut)) ≥
0. �

Theorem 3.3. We assume (1) and (2) fulfilled. If ((x̂t)t, (ût)t) is an optimal
solution of (PII,η) then it is also an optimal solution of (QII,η).

Proof. Let (y, u) ∈ Iad(η). By using Lemma 3.2 we know that there
exists x ∈

∏
t∈N Xt such that (x, u) ∈ Adm(η) and such that

lim infh→∞
∑h

t=0(f
0
t (xt, ut)− f0

t (yt, ut)) ≥ 0. By using Remark 2.1, the transitivity
ensures lim infh→∞

∑h
t=0(f

0
t (x̂t, ût)− f0

t (yt, ut)) ≥ 0. �

Lemma 3.4. Let ((x̂t)t, (ût)t) be an optimal solution of (PI,η). We assume (3) and
(6) fulfilled. Then we have ((xt)t, (ut)t) ∈ dom(J) for all ((xt)t, (ut)t) ∈ Adm(η).

Proof. We proceed by contradiction, we assume that there exists ((xt)t, (ut)t) ∈
Adm(η) such that ((xt)t, (ut)t) /∈ dom(J). Because of (3), we necessarily have∑∞

t=0 f
0
t (xt, ut) = ∞, and consequently there exists h > 0 such that

∑h
t=0 f

0
t (xt, ut) >

J(x̂, û). Now we use (6) with t = h, zt = xh and we define

yt :=

 xt if t ≤ h
zt if h+ 1 ≤ t ≤ h+ 1 + s
x̂t if t ≥ h+ 1 + s

and

wt :=

 ut if t ≤ h
vt if h+ 1 ≤ t ≤ h+ 1 + s
ût if t ≥ h+ 1 + s

And so we have (y, w) ∈ Adm(η), and since we have
∑

t≥h+1+s f
0
t (yt, wt) =∑

t≥h+1+s f
0
t (x̂t, ût) <∞ we can assert that (y, w) ∈ dom(J). By using (3) we have

J(y, w) ≥
∑h

t=0 f
0
t (xt, ut) > J(x̂, û) that is a contradiction with the optimality of

(x̂, û). �
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Theorem 3.5. Let ((x̂t)t, (ût)t) be an optimal solution of (PI,η). We assume (1-3)
and (6) fulfilled. Then ((x̂t)t, (ût)t) is also an optimal solution of (QI,η).

Proof. Let (y, v) ∈ Iad(η) ∩ dom(J). We define x by induction by setting x0 := η
and xt+1 := ft(xt, vt) for all t ∈ N∗. And so we have (x, v) ∈ Adm(η). By using
(2) we have x1 = f0(η, v0) ≥ y1, and proceeding by induction we obtain xt ≥ yt

for all t ∈ N . By using (1) we have f0
t (xt, vt) ≥ f0

t (yt, vt) for all t ∈ N and
consequently we have

∑∞
t=0 f

0
t (xt, vt) ≥

∑∞
t=0 f

0
t (yt, vt). Now by using Lemma 3.4,

since (x, v) ∈ Adm(η), we have (x, v) ∈ dom(J), and the following inequalities hold
: J(x̂, û) ≥ J(x, v) ≥ J(y, v). �

Theorem 3.6. We assume (1) and (4-5) fulfilled. If ((x̂t)t, (ût)t) is an optimal
solution of (PII,η), then it is also an optimal solution of (QII,η).

Proof. Let (y, u) ∈ Iad(η). By using (4) we know that there exists v = (vt)t ∈∏
t∈N Ut such that (y, v) ∈ Adm(η) and such that vt ≥ ut for all t ∈ N .

By using (5) we have f0
t (yt, vt) ≥ f0

t (yt, ut) for all t ∈ N , and consequently
we obtain lim infh→∞

∑h
t=0(f

0
t (yt, vt) − f0

t (yt, ut)) ≥ 0. Since we have
lim infh→∞

∑h
t=0(f

0
t (x̂t, ût)−f0

t (yt, vt)) ≥ 0, by using the transitivity noticed in Re-
mark 2.1, we have lim infh→∞

∑h
t=0(f

0
t (x̂t, ût)− f0

t (yt, ut)) ≥ 0. �

Theorem 3.7. Let ((x̂t)t, (ût)t) be an optimal solution of (PI,η). We assume (3-6)
fulfilled. Then ((x̂t)t, (ût)t) is also an optimal solution of (QI,η).

Proof. Let (y, u) ∈ Iad(η) ∩ dom(J). Then by using (4) we know that there exists
v = (vt)t such that (y, v) ∈ Adm(η) and such that vt ≥ ut for all t ∈ N . By using
Lemma 3.4 we know that (y, v) ∈ dom(J) and by using (5) we have f0

t (yt, vt) ≥
f0

t (yt, ut) et donc J(x̂, û) ≥ J(y, v) ≥ J(y, u). �

4. Weak principles

We begin by giving a list of conditions used in this section.

(7): For all t ∈ N , the function f0
t is Lipschitzian on a neighborhood of (x̂t, ût)

and Clarke-regular at (x̂t, ût), and the function ft is strictly differentiable
at (x̂t, ût).

Following [7] p. 39, recall that, Z being a normed space, a function g : Z → R is
Clarke-regular at z when, for all w ∈ Z, we have limt→0+

1
t (g(z + tw) − g(z)) =

lim supy→z,t→0+
1
t (g(y + tw) − g(y)). The strict differentiability is defined in [7] p.

30 and in [1] p. 133. A particular case of (1) is the following condition.

(8): For all t ∈ N , the functions f0
t and ft are of class C1 on a neighborhood

of (x̂t, ût) and the set Ut is convex.

We introduce the new following condition that we call a positivity condition; in this
condition the sequences ((x̂t)t, (ût)t) are given.

(9): For all t ∈ N∗, ∂fj
t (x̂t,ût)

∂xi
t

≥ 0 for all i, j = 1, ..., n and ∂f i
t (x̂t,ût)

∂xi
t

> 0 for all
i = 1, ..., n.
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Following Samuelson, [15] p. 86, when ft(., ut) is a production function, condition
(9) is coherent with the economic theory. Condition (9) implies that the partial
differential Dxtft(x̂t, ût) is a non negative matrix, see Chapter 13 in [9] or Chapter
9 of [13]. Condition (9) does not imply that Dxtft(x̂t, ût) is invertible, but it implies
that KerDxtft(x̂t, ût)∩Rn

+ = {0}. Now we give a first new weak Pontryagin principle
by using this positivity condition.

Theorem 4.1. Let ((x̂t)t, (ût)t) be an optimal solution of (QI,η) or of (QII,η) or of
(QIII,η). We assume (7) and (9) fulfilled. Then there exist λ0 ∈ R1 and (pt)t≥1 a
sequence in Rn∗ which satisfy the following conditions.

(i): (λ0, p1) is non zero.
(ii): λ0 ≥ 0.
(iii): For all t ∈ N∗, pt ≥ 0.
(iv): For all t ∈ N∗, pt ∈ ∂xtHt(x̂t, ût, λ

0, pt+1), where ∂xt denotes the partial
Clarke-differentiation with respect to xt.

(v): For all t ∈ N , ∂utHt(x̂t, ût, λ
0, pt+1)∩NUt(ût) 6= ∅, where ∂ut denotes the

partial Clarke-differentiation with respect to ut and NUt(ût) is the Clarke-
normal cone of Ut at ût.

The definitions of the Clarke-differentiation and of the Clarke-normal cone are
given in the two first chapters of [7].

The differences between Theorem 4.5 of the present paper and Theorem 1 of [3]
are the following ones: here the system is governed by a difference inequation in-
stead of a difference equation, and the condition of invertibility of Dxtft(x̂t, ût) in
[3] is replaced by condition (9).

Proof of Theorem 4.1. We use the same method as that of First Step of the proof
of Theorem 1 in [3] and by taking into account that the equality constraints are
replaced by inequality constraints (that ensures non negative multipliers). Since
((x̂t)t, (ût)t) is an optimal process of (QE,η) with E ∈ {I, II, III}, then, for all
h > 1, ((x̂t)1≤t≤h, (ût)1≤t≤h−1) is an optimal solution of the following finite-horizon
problem:

(Fh)


Maximize

∑h−1
t=0 f

0
t (xt, ut)

when xt ∈ Xt, t = 0, ..., h
ut ∈ Ut, t = 0, ..., h− 1
xt+1 ≤ ft(xt, ut), t = 0, ..., h− 1
x0 = η, xh = x̂h

The proof of this reduction to the finite-horizon is similar as that Lemma 1 in [3].
Setting x := (x0, x1, ..., xh), X :=

∏h
t=0Xt, u := (u0, u1, ..., uh−1), U :=

∏h−1
t=0 Ut,

πt : X ×U → Xt defined by πt(x0, ..., xh, u0, ..., uh−1) := xt, π′t : X ×U → Ut defined
by π′t(x0, ..., xh, u0, ..., uh−1) := ut, Jh(x,u) :=

∑h−1
t=0 f

0
t (πt(x,u), π′t(x,u)), we can

formulate the problem (Fh) as the following static optimization problem:

(Sh)


Maximize Jh(x,u)

when (x,u) ∈ X × U
ft(πt(x,u), π′t(x,u))− πt+1(x,u) ≥ 0, t = 0, ..., h− 1
π0(x,u) = η, πh(x,u) = x̂h
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Now, ever working as in the proof of Theorem 1 in [3], we verify that we can apply
the theorem on the Lagrange multipliers rule [7] p. 228, and we obtain that, for all
finite horizon h ∈ N∗, there exist λ0,h ∈ R1 and (ph

t )1≤t≤h ∈ (Rn∗
+ )h which satisfy

the following conditions.

(10): (λ0,h, ph
1 , ..., p

h
h) is non zero.

(11): λ0,h ≥ 0.
(12): For all t = 1, ..., h, ph

t ≥ 0.
(13): For all t = 1, ..., h, there exists ϕ0,h

t ∈ ∂xtf
0
t (x̂t, ût) such that

ph
t = λ0,hϕ0,h

t + ph
t+1 ◦Dxtft(x̂t, ût) = λ0,hϕ0,h

t +Dxtft(x̂t, ût)∗ph
t+1,

where the star denotes the transposition.
(14): For all t = 0, ..., h− 1, there exists ψ0,h

t ∈ ∂utf
0
t (x̂t, ût) such that, for all

vt ∈ TUt(ût), we have 〈λ0,hψ0,h
t + ph

t ◦ Dutft(x̂t, ût), vt〉 ≥ 0, where TUt(ût)
denotes the tangent cone to Ut at ût.

The assumption (9) implies that there exists ct ∈ (0,∞) such that Dxtft(x̂t, ût)∗v ≥
ctv for all v ∈ Rn∗

+ . Since a Clarke-gradient at a point is a compact subset, there
exists bt ∈ (0,∞) such that ‖v‖ ≤ bt for all v ∈ ∂xtf

0
t (x̂t, ût). And so the equality

ph
t = λ0,hϕ0,h

t + Dxtft(x̂t, ût)∗ph
t+1, or ph

t − λ0,hϕ0,h
t = Dxtft(x̂t, ût)∗ph

t+1, implies
ph

t − λ0,hϕ0,h
t ≥ ctp

h
t+1 ≥ 0, and consequently we have ‖ph

t − λ0,hϕ0,h
t ‖ ≥ ‖ctph

t+1‖
that implies ct‖ph

t+1‖ ≤ ‖ph
t ‖ + λ0,h‖ϕ0,h

t ‖. And then we have ‖ph
t+1‖ ≤ c−1

t ‖ph
t ‖ +

c−1
t btλ

0,h. Then we can deduce from these inequalities the following assertion.

(15): For all t ∈ N∗, there exist dt ∈ (0,∞) and et ∈ (0,∞) such that, for all
h > t, ‖ph

t ‖ ≤ dt‖ph
1‖+ etλ

0,h

where dt := c−1
t and et := c−1

t bt.
From this assertion we see that (λ0,h, ph

1) = (0, 0) implies (λ0,h, ph
1 , ..., p

h
h) =

(0, 0, ..., 0), and then by contraposition and by using (10) we obtain (λ0,h, ph
1) 6=

(0, 0). Therefore, noting that when (λ0,h, ph
1 , ..., p

h
h) satisfies (10-14) then, for all

θ ∈ (0,∞), (θλ0,h, θph
1 , ..., θp

h
h) also satisfies (10-14), we can choose (λ0,h, ph

1) such
that |λ0,h| + ‖ph

1‖ = 1 for all h. By using (15) we see that, for all t, the sequence
(ph

t )h>t is bounded by max{dt, et}. For all t, the sequences (ϕ0,h
t )h>t and (ψ0,h

t )h>t

(where t is fixed) are bounded since a Clarke-gradient is compact. Then we can use
Lemma 2 in [3] to assert that there exists an increasing function β : N∗ → N∗ and
there exist λ0 ∈ R1

+, (pt)t≥1 a sequence in Rn∗
+ , ϕ0

t ∈ ∂xtft(x̂t, ût) for all t ∈ N∗ and
ψ0

t ∈ ∂utft(x̂t, ût) for all t ∈ N such that limh→∞ λ0,β(h) = λ0, limh→∞ p
β(h)
t = pt

for all t ∈ N∗, limh→∞ ϕ
0,β(h)
t = ϕ0

t for all t ∈ N∗, and limh→∞ ψ
0,β(h)
t = ψ0

t for all
t ∈ N .

And so, from |λ0,β(h)| + ‖pβ(h)
1 ‖ = 1 for all h, by taking h → ∞ and by using

the continuity of the norms, we obtain |λ0| + ‖p1‖ = 1 that ensures (i). Since
λ0,β(h) ≥ 0 for all h and pβ(h)

t ≥ 0 for all h > t, by taking h→∞ we obtain (ii) and
(iii). From (13), for all t ≥ 1, we have pβ(h)

t = λ0,β(h)ϕ
0,β(h)
t + p

β(h)
t+1 ◦Dxtft(x̂t, ût)

for all h > t, and then by taking h→∞ we obtain pt = λ0ϕ0
t + pt+1 ◦Dxtft(x̂t, ût),

and since the Clarke-gradient is a correspondence with compact values we have
pt ∈ λ0∂xtf

0
t (xt, ut) + pt+1 ◦ Dxtft(x̂t, ût) which is (iv). From (12), for all t ≥ 1
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and for all vt ∈ TUt(ût), we have 〈λ0,β(h)ψ
0,β(h)
t + p

β(h)
t ◦Dutft(x̂t, ût), vt〉 ≥ 0 for all

h > t, and then by taking h→∞ we obtain 〈λ0ψ0
t + pt ◦Dutft(x̂t, ût), vt〉 ≥ 0 that

implies λ0ψ0
t + pt ◦Dutft(x̂t, ût) ∈ NUt(ût) that ensures (v); and so Theorem 4.1 is

proven.

Theorem 4.2. Let ((x̂t)t, (ût)t) be an optimal solution of (QI,η) or of (QII,η) or
of (QIII,η). We assume (8-9) fulfilled. Then there exist λ0 ∈ R1 and (pt)t≥1 a
sequence in Rn∗ which satisfy the following conditions.

(i): (λ0, p1) is non zero.
(ii): λ0 ≥ 0.
(iii): For all t ∈ N∗, pt ≥ 0.
(iv): For all t ∈ N∗, pt = DxtHt(x̂t, ût, λ

0, pt+1).
(v): For all t ∈ N , for all ut ∈ Ut, 〈DutHt(x̂t, ût, λ

0, pt+1), ut − ût〉 ≤ 0.

Theorem 4.2 is a simplified version of Theorem 4.1 whom the statement does
not contain any sophisticated mathematical tools. Note also that the condition (v)
appears as a variational inequation as in Section 12 in Chapter 5 of [5].

Proof of Theorem 4.2. It is clear that (8) implies (7). And so under the as-
sumptions of Theorem 4.2 the conclusions of Theorem 4.1 hold, that justifies the
conclusions (i), (ii) and (iii). Since, under (8), we have ∂xtHt(x̂t, ût, λ

0, pt+1) =
{DxtHt(x̂t, ût, λ

0, pt+1)} the conclusion (iv) of Theorem 4.2 is a consequence of the
conclusion (iv) of Theorem 4.1. Since Ut is convex, its tangent cone at ût satisfies
TUt(ût) = {θ(ut− ût) : θ ∈ R1

+, ut ∈ Ut}. Since NUt(ût) is the polar cone of TUt(ût),
and since under (8) we have ∂utHt(x̂t, ût, λ

0, pt+1) = {DutHt(x̂t, ût, λ
0, pt+1)}, from

the conclusion (v) of Theorem 4.1, we obtain DutHt(x̂t, ût, λ
0, pt+1) ∈ NUt(ût), that

implies 〈DutHt(x̂t, ût, λ
0, pt+1), ut − ût〉 ≤ 0 for all ut ∈ Ut that is (v).

Theorem 4.3. Let ((x̂t)t, (ût)t) be an optimal solution of (PII,η). We assume that
the conditions (1-2), (7), (9) are fulfilled or that the conditions (1), (4-5), (7), (9)
are fulfilled. Then the conclusions of Theorem 4.1 hold, and moreover, when (8)
replaces (7), the conclusions of Theorem 4.2 hold.

Proof. By using Theorem 3.3 or Theorem 3.6, ((x̂t)t, (ût)t) becomes an optimal
solution of (QII,η), and we prove the first assertion by using Theorem 4.1, and we
prove the second assertion by using Theorem 4.2. �

Theorem 4.4. Let ((x̂t)t, (ût)t) be an optimal solution of (PI,η). We assume that
the conditions (1-3), (6-7), (9) are fulfilled or that the conditions (3-7), (9) are
fulfilled. Then the conclusions of Theorem 4.1 hold, and moreover, when (8) replaces
(7), the conclusions of Theorem 4.2 hold.

Proof. By using Theorem 3.5 or Theorem 3.7, ((x̂t)t, (ût)t) becomes an optimal
solution of (QI,η), and we prove the first assertion by using Theorem 4.1, and we
prove the second assertion by using Theorem 4.2. �

5. Strong principles with a positivity assumption

In this section we give a new strong Pontryagin principle by using the positivity
condition and the condition of mixed problem condition of Michel.
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We give a list of new conditions which will be used as assumptions in the theorems
of this section. In certain conditions an optimal process ((x̂t)t, (ût)t) is given. To
use the results of Michel we need the two following conditions.

(16): For all t ∈ N , the functions f0
t and ft are partially differentiable with

respect to xt.
(17): For all t ∈ N , for all (xt, xt+1) ∈ Xt ×Xt+1, we have coAt(xt, xt+1) ⊂
Bt(xt, xt+1), where co denotes the convex hull, where At(xt, xt+1) is the set
of the (λ, y) ∈ R1×Rn such that there exists u ∈ Ut satisfying λ ≤ f0

t (xt, u)
and y = ft(xt, u) − xt+1, and where Bt(xt, xt+1) is the set of the (λ, y) ∈
R1 × Rn such that there exists (u, v) ∈ Ut × Rn satisfying λ ≤ f0

t (xt, u)
and vjyj ≤ f j

t (xt, u)− xj
t+1 for all j = 1, ..., n (the upper index denotes the

coordinate).

This last condition was created by Michel [12] to establish a strong Pontryagin
principle for discrete-time finite-horizon optimal control problems. For instance
this condition is fulfilled when the sets At(xt, xt+1) are convex. When the sets Ut

are convex, when the partial functions f0
t (xt, .) are concave and when the partial

functions ft(xt, .) are affine, the sets At(xt, xt+1) are convex. But we note that (17)
can be fulfilled without the convexity of the sets At(xt, xt+1). And so (17) appears
as a weakened convexity condition to obtain a strong principle. Michel says that
the problem is mixed when (17) is fulfilled.

Theorem 5.1. Let ((x̂t)t, (ût)t) be an optimal solution of (QI,η) or of (QII,η) or
of (QIII,η). We assume (9) and (16-17) fulfilled. Then there exist λ0 ∈ R1 and
(pt)t≥1 a sequence in Rn∗ which satisfy the following conditions.

(i): (λ0, p1) is non zero.
(ii): λ0 ≥ 0.
(iii): For all t ∈ N∗, pt ≥ 0.
(iv): For all t ∈ N∗, pt = DxtHt(x̂t, ût, λ

0, pt+1).
(v): For all t ∈ N , for all ut ∈ Ut, Ht(x̂t, ût, λ

0, pt+1) ≥ Ht(x̂t, ut, λ
0, pt+1).

The differences between this new theorem and Theorem 3 of [3] are the following
ones: here the system is governed by a difference inequation instead of a difference
equation, and the condition of invertibility of Dxtft(x̂t, ût) in [3] is replaced by
condition (9).
Proof of Theorem 5.1. By using Lemma 1 in [3] and by using [12] p. 9, we can assert
that there exist λ0,h ∈ R1 and (ph

t )1≤t≤h ∈ (Rn∗
+ )h which satisfy the conditions (8),

(9), (10) and the following conditions for all h ∈ N∗.
(18): For all t = 1, ..., h−1, ph

t = DxtHt(x̂t, ût, λ
0,h, ph

t+1) = λ0,hDxtf
0
t (x̂t, ût)+

ph
t+1 ◦Dxtft(x̂t, ût).

(19): For all t = 0, ..., h− 1, for all ut ∈ Ut, Ht(x̂t, ût, λ
0,h, ph

t+1) ≥
Ht(x̂t, ut, λ

0,h, ph
t+1).

Now we proceed as in the proof of Theorem 4.1. From the equations (18) we obtain
ph

t − λ0,hDxtf
0
t (x̂t, ût) = Dxtft(x̂t, ût)∗ph

t+1 ≥ ctp
h
t+1, and therefore we have

‖ph
t ‖+ λ0,h‖Dxtf

0
t (x̂t, ût)‖ ≥ ‖ph

t − λ0,hDxtf
0
t (x̂t, ût)‖ ≥ ct‖ph

t+1‖.
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And so we obtain the inequalities (15) by taking bt := ‖Dxtf
0
t (x̂t, ût)‖, and the end

of the proof is similar as that of Theorem 4.1.

Theorem 5.2. Let ((x̂t)t, (ût)t) be an optimal solution of (PII,η). We assume that
the conditions (1-2), (9), (16-17) are fulfilled or that the conditions (1), (4-5), (9),
(16-17) are fulfilled. Then the conclusions of Theorem 5.1 hold.

Proof. By using Theorem 3.3 or Theorem 3.6, ((x̂t)t, (ût)t) becomes an optimal
solution of (QII,η), and we conclude by using Theorem 5.1. �

Theorem 5.3. Let ((x̂t)t, (ût)t) be an optimal solution of (PI,η). We assume that
the conditions (1-3), (6), (9), (16-17) are fulfilled or that the conditions (3-6), (9),
(16-17) are fulfilled. Then the conclusions of Theorem 5.1 hold.

Proof. By using Theorem 3.5 or Theorem 3.7, ((x̂t)t, (ût)t) becomes an optimal
solution of (QI,η), and we conclude by using Theorem 5.1. �

6. Strong principles with a partial surjectivity assumption

Now we formulate another alternative condition to replace the invertibility con-
dition of [3]. We consider Rn as an Euclidean space by endowing it with the usual
inner product. For all t ∈ N we set Nt := KerDxtft(x̂t, ût) and Mt stands for the or-
thogonal complement ofNt. πNt (respectively πMt) denotes the orthogonal projector
on Nt (respectively Mt). When ρ ∈ (0,∞) we set SNt(0, ρ) := {x ∈ Nt : ‖x‖ = ρ}
where ‖.‖ is the Euclidean norm.

(20): For all t ∈ N there exists Pt ⊂ Ut which satisfies the following conditions:
(20-i): There exists ρt ∈ (0,∞) such that πNt({ft(x̂t, ut) : ut ∈ Pt}) ⊃
SNt(0, ρt) + πNt(ft(x̂t, ût)).

(20-ii): {πMt(ft(x̂t, ut)) : ut ∈ Pt} is bounded in Rn.
(20-iii): {f0

t (x̂t, ut) : ut ∈ Pt} is bounded in R.
We call condition (20) a partial surjectivity condition. This condition can seem to
be difficult to verify; it is why we give the following condition, more easy to verify,
which is a particular case of (20).

(21): For all t ∈ N , f0
t (x̂t, .) and ft(x̂t, .) are continuous on Ut, Dxtft(x̂t, ût)

exists, ût belongs to the interior of Ut, ft(x̂t, .) is of class C1 at ût, and
Im(πNt ◦Dutft(x̂t, ût)) = Nt.

Remark 6.1. (21) =⇒ (20). Applying the Surjective Mapping Theorem of Graves,
[11] p. 397, sinceDut(πNt◦ft(x̂t, .))(ût) = πNt◦Dutft(x̂t, ût) is surjective from Rm on
Nt, there exists Pt, a closed ball centered at ût, such that πNt ◦ft(x̂t, .)(Pt) contains
a closed ball centered at πNt ◦ft(x̂t, ût). We denote by ρt the radius of this last ball,
and consequently we have {πNt ◦ ft(x̂t, ut) : ut ∈ Pt} ⊃ SNt(0, ρt) + πNt ◦ ft(x̂t, ût),
i.e. (20-i) is satisfied. Since Pt is compact and since πMt ◦ ft(x̂t, .) is continuous,
{πNt ◦ ft(x̂t, ut) : ut ∈ Pt} is compact therefore bounded, and so (20-ii) is satisfied.
Since f0

t (x̂t, .) is continuous, {f0
t (x̂t, ut) : ut ∈ Pt} is compact therefore bounded,

and so (20-iii) is satisfied.

Now we give a new Pontryagin principle by using a partial surjectivity condition
and the mixed problem condition of Michel.
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Theorem 6.2. Let ((x̂t)t, (ût)t) be an optimal solution of (QE,η) or of (PF,η) with
E,F ∈ {I, II, III}. We assume (16-17) and (20) fulfilled. Then there exist λ0 ∈ R1

and (pt)t≥1 a sequence in Rn∗ which satisfy the following conditions.
(i): (λ0, p1) is non zero.
(ii): λ0 ≥ 0.
(iii): For all t ∈ N∗, pt ≥ 0 when ((x̂t)t, (ût)t) is an optimal solution of (QE,η).
(iv): For all t ∈ N∗, pt = DxtHt(x̂t, ût, λ

0, pt+1).
(v): For all t ∈ N , for all ut ∈ Ut, Ht(x̂t, ût, λ

0, pt+1) ≥ Ht(x̂t, ut, λ
0, pt+1).

The differences between this last theorem and Theorem 3 in [3] are the following
ones: here we can treat a system governed by a difference inequation or by a differ-
ence equation when Theorem 3 in [3] treats only the case of a difference equation,
and the condition of invertibility of Dxtft(x̂t, ût) in [3] (which is omitted in [3] by
mistake) is replaced by condition (20).

Proof of Theorem 6.1. By using Lemma 1 in [3] we know that ((x̂t)t≤h, (ût)t≤h)
is an optimal solution of the finite-horizon problem (Fh). Recall that the theorem
in Subsection 2.3 in [12] is a strong Pontryagin principle for discrete-time finite-
horizon optimal control problems; by using it on (Fh) we can assert that there exist
λ0,h ∈ R1 and (ph

t )1≤t≤h ∈ (Rn∗
+ )h which satisfy the conditions (10), (11), (18), (19)

and the condition (12) only when ((x̂t)t, (ût)t) is an optimal solution of (QE,η).
Since Dxtft(x̂t, ût)∗z 6= 0 for all nonzero z ∈ Mt, we know that there exists

at ∈ (0,∞) such that ‖Dxtft(x̂t, ût)∗z‖ ≥ at‖z‖ for all z ∈ Mt. From (18) we
deduce the following equations

ph
t = Dxtft(x̂t, ût)∗πNt(ph

t+1) +Dxtft(x̂t, ût)∗πMt(ph
t+1) + λ0,hDxtf

0
t (x̂t, ût)

= Dxtft(x̂t, ût)∗πMt(ph
t+1) + λ0,hDxtf

0
t (x̂t, ût)

since Dxtft(x̂t, ût)∗ ◦ πNt = 0. Consequently we have

ph
t − λ0,hDxtf

0
t (x̂t, ût) = Dxtft(x̂t, ût)∗πMt(p

h
t+1),

that implies

‖ph
t ‖+ λ0,h‖Dxtf

0
t (x̂t, ût)‖ ≥ ‖ph

t − λ0,hDxtf
0
t (x̂t, ût)‖

= ‖Dxtft(xt, ut)∗πMt(p
h
t+1)‖ ≥ at‖πMt(p

h
t+1)‖.

And so we obtain the following inequalities:
(22): ∀h ∈ N∗, ∀t < h, ‖πMt(ph

t+1)‖ ≤ a−1
t (‖ph

t ‖+ λ0,h‖Dxtf
0
t (x̂t, ût)‖).

To abridge the writing we set
(23): ∆f0

t (ut) := f0
t (x̂t, ût)− f0

t (x̂t, ut), ∆ft(ut) := −ft(x̂t, ut) + ft(x̂t, ût).
From (19) we obtain λ0,h∆f0

t (ut) − 〈ph
t+1,∆ft(ut)〉 ≥ 0 for all ut ∈ Ut, that is

equivalent to

λ0,h∆f0
t (ut)− 〈πNt(p

h
t+1), πNt(∆ft(ut))〉 − 〈πMt(p

h
t+1), πMt(∆ft(ut))〉 ≥ 0

that implies
λ0,h|∆f0

t (ut)|+ ‖πMt(p
h
t+1)‖.‖πMt(∆ft(ut))‖ ≥

λ0,h∆f0
t (ut)− 〈πMt(p

h
t+1), πMt(∆ft(ut))〉 ≥ 〈πNt(p

h
t+1), πNt(∆ft(ut))〉,

that gives us the following inequalities:



188 JOËL BLOT

(24): λ0,h|∆f0
t (ut)|+‖πMt(ph

t+1)‖.‖πMt(∆ft(ut))‖ ≥ 〈πNt(ph
t+1), πNt(∆ft(ut))〉.

We set ξt := sup{|∆f0
t (ut)| : ut ∈ Pt} and ζt := sup{‖πMt(∆ft(ut))‖ : ut ∈ Pt}

where Pt is provided by (20). These two numbers are finite after (20). Now we
take the lower upper bound on Pt in the inequalities (24) that gives the following
inequalities:

λ0,hξt + ζt‖πMt(p
h
t+1)‖ ≥ sup

ut∈Pt

〈πNt(p
h
t+1), πNt(∆ft(ut))〉

≥ sup
zt∈SNt (0,ρt)

〈πNt(p
h
t+1), zt〉 = ρt sup

wt∈SNt (0,1)
〈πNt(p

h
t+1), wt〉 = ρt‖πNt(p

h
t+1)‖.

Therefore we have proven:
(25): ∀t,∀h > t, ‖πNt(ph

t+1)‖ ≤ (ρ−1
t ξt)λ0,h + (ρ−1

t ζt)‖πMt(ph
t+1)‖.

From (21) and (25) we deduce

‖πNt(p
h
t+1)‖ ≤ (ρ−1

t ξt)λ0,h + (ρ−1
t ζta

−1
t )(‖ph

t ‖+ λ0,h‖Dxtf
0
t (x̂t, ût)‖)

= (ρ−1
t ξt + ρ−1

t ζta
−1
t ‖Dxtf

0
t (x̂t, ût)‖)λ0,h + (ρ−1

t ζta
−1
t )‖ph

t ‖.
Consequently by using (21) and the last inequality we obtain

‖ph
t+1‖ ≤ ‖πNt(ph

t+1)‖+ ‖πMt(ph
t+1)‖

≤ (ρ−1
t ξt + ρ−1

t ζta
−1
t ‖Dxtf

0
t (x̂t, ût)‖+ a−1

t ‖Dxtf
0
t (x̂t, ût)‖)λ0,h

+(ρ−1
t ζta

−1
t + a−1

t )‖ph
t ‖.

By setting c0t := ρ−1
t ξt + ρ−1

t ζta
−1
t ‖Dxtf

0
t (x̂t, ût)‖ + a−1

t ‖Dxtf
0
t (x̂t, ût)‖ and b0t :=

ρ−1
t ζta

−1
t + a−1

t , we have proven the following inequalities
(26): For all t ∈ N∗, there exist c0t ∈ (0,∞) and b0t ∈ (0,∞) such that, for all
h > t, we have ‖ph

t+1‖ ≤ c0tλ
0,h + b0t ‖ph

t ‖.
Note that (26) is similar to (15) and we can conclude as in the proof of Theorem
4.1.

Theorem 6.3. Let ((x̂t)t, (ût)t) be an optimal solution of (QE,η) or of (PF,η) with
E,F ∈ {I, II, III}. We assume (17) and (21) fulfilled. Then there exist λ0 ∈ R1

and (pt)t≥1 a sequence in Rn∗ which satisfy the following conditions.
(i): (λ0, p1) is non zero.
(ii): λ0 ≥ 0.
(iii): For all t ∈ N∗, pt ≥ 0 when ((x̂t)t, (ût)t) is an optimal solution of (QE,η).
(iv): For all t ∈ N∗, pt = DxtHt(x̂t, ût, λ

0, pt+1).
(v): For all t ∈ N , for all ut ∈ Ut, Ht(x̂t, ût, λ

0, pt+1) ≥ Ht(x̂t, ut, λ
0, pt+1).

Theorem 6.3 is a simplified version of Theorem 6.2 where the condition (21) is
used instead of the condition (20); the condition (21) would be more easy to verify
on explicit examples.
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