


332 Y. KIMURA AND K. SHINDO

Theorem 1.2. Let H be a Hilbert space and f : H → ]−∞,∞] a proper lower
semicontinuous convex function. Then

lim
λ→+0

Jλx = Pdom fx.

Furthermore, a complete CAT(0) space is a generalization of Hilbert spaces
and under the same condition as a function f on a Hilbert space, a resolvent
on a complete CAT(0) space is defined by

Jλx = argmin
y∈X

{
f(y) +

1

λ
d(y, x)2

}
for all x ∈ X, where the function d(·, x)2 is called a perturbation function.
Asymptotic behavior of this resolvent is considered by [1] and the same results
as the case of Hilbert spaces are obtained. On the other hand, a complete
CAT(−1) space is an example of CAT(0) spaces. On a complete CAT(−1)
space, a resolvent with another perturbation is defined by [3]. Its perturbation
function is tanh d(x, ·) sinh d(x, ·). In this paper, we consider the asymptotic
behavior of this resolvent defined on complete CAT(−1) spaces.

2. Preliminaries

Let X be a metric space. For x, y ∈ X, a mapping c : [0, l] → X is called a
geodesic with endpoints x, y if c satisfies c(0) = x, c(l) = y and d(c(u), c(v)) =
|u− v| for u, v ∈ [0, l]. X is called a geodesic space, if there exists a geodesic
for any x, y ∈ X. Moreover, if a geodesic segment exists uniquely for each
x, y ∈ X, then X is called a uniquely geodesic space. In what follows, we
always assume that X is a uniquely geodesic space. We call the image of c a
geodesic segment joining x and y, and denote it by [x, y]. Then, for t ∈ [0, 1] and
x, y ∈ X, there exists a unique point z ∈ [x, y] such that d(x, z) = (1− t)d(x, y)
and d(y, z) = td(x, y). We denote it by tx ⊕ (1 − t)y. A geodesic triangle
△(x1, x2, x3) with vertices x1, x2, x3 ∈ X is the union of geodesic segments
joining each pair of vertices. Let H2 be a two dimensional unit sphere. A
comparison triangle △(x1, x2, x3) in H2 for △(x1, x2, x3) is a triangle such
that d(xi, xj) = dH2(xi, xj) (i, j = 1, 2, 3). A point p ∈ [x1, x2] is comparison
point if d(x1, p) = dH2(x1, p). X is called a CAT(−1) space if for any p, q ∈
△(x1, x2, x3), and their comparison points p, q ∈ △(x1, x2, x3), the inequality

d(p, q) ≤ dH2(p, q)

is satisfied for all triangles in X.
The following inequality is a direct result from the hyperbolical law of cosines

and a characterization of a CAT(−1) space; see [2].
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Theorem 2.1. Let X be a complete CAT(−1) space, x, y, z ∈ X, and t with
0 < t < 1. Then

cosh d(tx⊕ (1− t)y, z) sinh d(x, y)

≤ cosh d(x, z) sinh td(x, y) + cosh d(y, z) sinh(1− t)d(x, y).

In particular,

cosh d

(
1

2
x⊕ 1

2
y, z

)
cosh

d(x, y)

2
≤ 1

2
cosh d(x, z) +

1

2
cosh d(y, z).

This theorem is called the parallelogram law and from this result, we get
the following lemma.

Lemma 2.2. Let X be a complete CAT(−1) space. Then for all x, y, z ∈ X,

cosh d

(
1

2
x⊕ 1

2
y, z

)
≤ 1

2
cosh d(x, z) +

1

2
cosh d(y, z)−

(
1− 1

cosh d(x,y)
2

)
.

Proof. From Theorem 2.1, we have

cosh d

(
1

2
x⊕ 1

2
y

)
≤

1
2 cosh d(x, z) +

1
2 cosh d(y, z)

cosh d(x,y)
2

=
1

2
cosh d(x, z) +

1

2
cosh d(y, z)

−
{
1

2
cosh d(x, z) +

1

2
cosh d(y, z)

}(
1− 1

cosh d(x,y)
2

)

≤ 1

2
cosh d(x, z) +

1

2
cosh d(y, z)−

(
1− 1

cosh d(x,y)
2

)
.

This is the desired result. □

LetX be a complete CAT(−1) space and C a nonempty closed convex subset
of X. Then for each point x ∈ X, there exists a unique point x0 ∈ C such that
d(x, x0) = d(x,C). A mapping PC from X onto C such that PCx = x0 is called
a metric projection. We know the following fact about metric projections.

Theorem 2.3. Let X be a complete CAT(−1) space, C a nonempty closed
convex subset of X, x ∈ X and y ∈ C. Then,

cosh d(x, PCx) cosh d(PCx, y) ≤ cosh d(x, y),

where PC is the metric projection from X onto C.
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Proof. Let t ∈ [0, 1]. Since C is convex, we have d(x, PCx) ≤ d(x, tPCx⊕(1−t)y)
and hence

cosh d(x, PCx) sinh d(PCx, y)

≤ cosh d(x, tPCx⊕ (1− t)y) sinh d(PCx, y)

≤ cosh d(x, PCx) sinh td(PCx, y) + cosh d(x, y) sinh(1− t)d(PCx, y).

Thus,

cosh d(x, PCx){sinh d(PCx, y)− sinh td(PCx, y)}
≤ cosh d(x, y) sinh(1− t)d(PCx, y).

Since

sinh d(PCx, y)−sinh td(PCx, y) = 2 cosh
(1 + t)d(PCx, y)

2
sinh

(1− t)d(PCx, y)

2
,

we have

cosh d(x, PCx) cosh
(1 + t)d(PCx, y)

2
sinh(1− t)d(PCx, y)

≤ 2 cosh d(x, PCx) cosh
(1 + t)d(PCx, y)

2
sinh

(1− t)d(PCx, y)

2
= cosh d(x, PCx){sinh d(PCx, y)− sinh td(PCx, y)}
≤ cosh d(x, y) sinh(1− t)d(PCx, y).

Dividing by sinh(1− t)d(PCx, y) and t → 1, we have

cosh d(x, PCx) cosh d(PCx, y) ≤ cosh d(x, y).

This is the desired result. □

Lemma 2.4. Let X be a complete CAT(−1) space, C a closed subset of X,
and x ∈ X. Then

cosh d(x, PCx) cosh d(PCx, y)−
1

cosh d(x, PCx) cosh d(PCx, y)

≤ cosh d(x, y)− 1

cosh d(x, y)
.

Proof. By Theorem 2.3,

cosh d(x, PCx) cosh d(PCx, y) ≤ cosh d(x, y).

Thus

− 1

cosh d(x, PCx) cosh d(PCx, y)
≤ − 1

cosh d(x, y)
.



ASYMPTOTIC BEHAVIOR OF RESOLVENTS 335

Then we have

cosh d(x, PCx) cosh d(PCx, y)−
1

cosh d(x, PCx) cosh d(PCx, y)

≤ cosh d(x, y)− 1

cosh d(x, y)
.

This is the desired result. □

We consider a resolvent on a complete CAT(−1) space. Let f : X → ]−∞,∞]
be a proper lower semicontinuous convex function. Then for a positive real
number λ, the resolvent for f of a perturbation tanh(·) sinh(·) with parameter
λ is defined by

Rλx = argmin
y∈X

{
f(y) +

1

λ
tanh d(x, y) sinh d(x, y)

}
.

It is proved that Rλ are well defined as a single-valued mapping; see [2,3]. Since
f is proper, there exists a point y such that f(y) < ∞. That is, Rλx ∈ dom f =
{x ∈ X : f(x) < ∞}. The following are properties of a resolvent Rλ.

Lemma 2.5. Let X be a complete CAT(−1) space and f : X → ]−∞,∞] a
proper lower semicontinuous convex function. For λ > 0, define Rλ : X → X
by

Rλx = argmin
y∈X

{
f(y) +

1

λ
tanh d(y, x) sinh d(y, x)

}
for x ∈ X. Then for λ, µ > 0 with λ ≤ µ,

tanh d(Rλx, x) sinh d(Rλx, x) ≤ tanh d(Rµx, x) sinh d(Rµx, x),

which is equivalent to

d(Rλx, x) ≤ d(Rµx, x).

Proof. By the definition of the resolvent, we have

f(Rλx) +
1

λ
tanh d(Rλx, x) sinh d(Rλx, x) ≤ f(Rµx)

+
1

λ
tanh d(Rµx, x) sinh d(Rµx, x)

and

f(Rµx) +
1

µ
tanh d(Rµx, x) sinh d(Rµx, x) ≤ f(Rλx)

+
1

µ
tanh d(Rλx, x) sinh d(Rλx, x).
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From these inequalities, we have

1

λ
tanh d(Rλx, x) sinh d(Rλx, x) +

1

µ
tanh d(Rµx, x) sinh d(Rµx, x)

≤ 1

λ
tanh d(Rµx, x) sinh d(Rµx, x) +

1

µ
tanh d(Rλx, x) sinh d(Rλx, x).

and hence(
1

λ
− 1

µ

)
tanh d(Rλx, x) sinh d(Rλx, x)

≤
(
1

λ
− 1

µ

)
tanh d(Rµx, x) sinh d(Rµx, x).

Since λ ≤ µ, we obtain

tanh d(Rλx, x) sinh d(Rλx, x) ≤ tanh d(Rµx, x) sinh d(Rµx, x),

which is the desired result. □

Lemma 2.6. Let X be a complete CAT(−1) space and f : X → ]−∞,∞] a
proper lower semicontinuous convex function. For λ > 0, define Rλ : X → X
by

Rλx = argmin
y∈X

{
f(y) +

1

λ
tanh d(y, x) sinh d(y, x)

}
for x ∈ X. Then for λ, µ > 0 with λ ≤ µ,

f(Rλx) ≥ f(Rµx).

Proof. By the definition of the resolvent, we have

f(Rµx) +
1

µ
tanh d(Rµx, x) sinh d(Rµx, x) ≤ f(Rλx)

+
1

µ
tanh d(Rλx, x) sinh d(Rλx, x),

and therefore we have

f(Rµx)− f(Rλx)

≤ 1

µ
{tanh d(Rλx, x) sinh d(Rλx, x)− tanh d(Rµx, x) sinh d(Rµx, x)} ≤ 0.

This is the desired result. □
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Lemma 2.7. Let X be a complete CAT(−1) space and f : X → ]−∞,∞] a
proper lower semicontinuous convex function. For λ > 0, define Rλ : X → X
by

Rλx = argmin
y∈X

{
f(y) +

1

λ
tanh d(y, x) sinh d(y, x)

}
for x ∈ X. If {Rµn

x}n∈N is bounded for some sequence {µn} ⊂ R such
that µn → ∞, Then for all increasing sequences {λn} such that λn → ∞,
{Rλnx}n∈N is bounded.

Proof. Since {Rµn
x}n∈N is bounded, There exists M > 0 such that for all

n ∈ N
d(Rµnx, x) ≤ M.

Let {λn} be an increasing sequence such that λn → ∞. Suppose {Rλnx}n∈N
is not bounded. Then there exists a subsequence {λni} of {λn} such that

d(Rλni
x, x) > M.

for all i ∈ N. Then there exists l ∈ N such that λn1 ≤ µl. From Lemma 2.5,
we have

M < d(Rλn1
x, x) ≤ d(Rµl

x, x) ≤ M.

This is a contradiction and we have the desired result. □

3. Main Theorems

First we consider the asymptotic behavior at infinity of a resolvent Rλ on
CAT(−1) spaces.

Theorem 3.1. Let X be a complete CAT(−1) space and f : X → ]−∞,∞] a
proper lower semicontinuous convex function. For λ > 0, define Rλ : X → X
by

Rλx = argmin
y∈X

{
f(y) +

1

λ
tanh d(y, x) sinh d(y, x)

}
for x ∈ X. If {Rµn

x}n∈N is bounded for some sequence {µn} ⊂ R such that
µn → ∞, then argmin f ̸= ∅ and

lim
λ→∞

Rλx = Pargmin fx.

Proof. Let {λn} ⊂ R be an increasing sequence such that λn → ∞ and denote
Rλn

x by xn. First we show that argmin f is nonempty. Since {xn}n∈N is
bounded by Lemma 2.7, there exist a subsequence {xni

} of {xn}n∈N and x0 ∈ X
such that {xni

} is ∆-convergent to x0. For all y ∈ X,

f(xni
) +

1

λni

tanh d(xni
, x) sinh d(xni

, x) ≤ f(y) +
1

λni

tanh d(y, x) sinh d(y, x).
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Tending i → ∞, we have

lim inf
i→∞

f(xni
) ≤ f(y).

Since f is ∆-lower semicontinuous,

f(x0) ≤ lim inf
i→∞

f(xni
).

Therefore f(x0) ≤ f(y) for all y ∈ X, and hence we obtain argmin f ̸= ∅.
Next we show xn → Pargmin fx. Suppose n ≤ m. From Lemma 2.2, we have

f(xn) +
1

λn

{
cosh d (xn, x)−

1

cosh d (xn, x)

}
≤ f

(
1

2
xn ⊕ 1

2
xm

)
+

1

λn

{
cosh d

(
1

2
xn ⊕ 1

2
xm, x

)
− 1

cosh d
(
1
2xn ⊕ 1

2xm, x
)}

≤ 1

2
f(xn) +

1

2
f(xm)

+
1

λn

{
1

2
cosh d(xn, x) +

1

2
cosh d(xm, x)−

(
1− 1

cosh d(xn,xm)
2

)}

− 1

λn

1
1
2 cosh d(xn, x) +

1
2 cosh d(xm, x)

≤ f(xn) +
1

λn

{
1

2
cosh d(xn, x) +

1

2
cosh d(xm, x)−

(
1− 1

cosh d(xn,xm)
2

)}

− 1

λn

1

cosh d(xm, x)
,

and therefore

1− 1

cosh d(xn,xm)
2

≤
{
1

2
cosh d(xm, x)− 1

2
cosh d(xn, x)

}
+

{
1

cosh d (xn, x)
− 1

cosh d(xm, x)

}
≤ {cosh d(xm, x)− cosh d(xn, x)}+

{
1

cosh d (xn, x)
− 1

cosh d(xm, x)

}
=

{
cosh d(xm, x)− 1

cosh d (xm, x)

}
−
{
cosh d(xn, x)−

1

cosh d (xn, x)

}
= tanh d(xm, x) sinh d(xm, x)− tanh d(xn, x) sinh d(xn, x).

Since {tanh d(xn, x) sinh d(xn, x)}n∈N is increasing and bounded, it is conver-
gent. Moreover since it is a Cauchy sequence, there exists a sequence {αn}
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such that αn → 0 and

tanh d(xm, x) sinh d(xm, x)− tanh d(xn, x) sinh d(xn, x) ≤ αn → 0.

Then we have

1− 1

cosh d(xn,xm)
2

≤ αn.

This implies that {xn}n∈N is a Cauchy sequence. By the completeness of X,
{xn}n∈N is convergent. Suppose xn → p. Then from the former part of this
proof, p ∈ argmin f and we show p = Pargmin fx. For all y ∈ argmin f ,

f(xn) +
1

λn

{
cosh d (xn, x)−

1

cosh d (xn, x)

}
≤ f

(
1

2
xn ⊕ 1

2
y

)
+

1

λn

{
cosh d

(
1

2
xn ⊕ 1

2
y, x

)
− 1

cosh d
(
1
2xn ⊕ 1

2y, x
)}

≤ f(xn)

+
1

λn

{
1

2
cosh d(xn, x) +

1

2
cosh d(y, x)−

(
1− 1

cosh d(xn,y)
2

)
− 1

cosh d(y, x)

}
.

Then we have

0 ≤ 1− 1

cosh d(xn,y)
2

≤
{
1

2
cosh d (y, x)− 1

cosh d (y, x)

}
−
{
1

2
cosh d (xn, x)−

1

cosh d (xn, x)

}
.

This implies d(xn, x) ≤ d(y, x) and tending n → ∞, we obtain that

d(p, x) ≤ d(y, x)

for all y ∈ argmin f . This is the desired result. □

Next we consider the asymptotic behavior of Rλ at 0.

Theorem 3.2. Let X be a complete CAT(−1) space and f : X → ]−∞,∞] a
proper lower semicontinuous convex function. For λ > 0, define Rλ : X → X
by

Rλx = argmin
y∈X

{
f(y) +

1

λ
tanh d(y, x) sinh d(y, x)

}
for x ∈ X. Then

lim
λ→+0

Rλx = Pdom fx.
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Proof. Let {λn} ⊂ R be a decreasing sequence such that λn → 0 and {zm} ⊂ X
such that zm → Pdom fx. Put xn = Rλn

x and p = Pdom fx. From the Lemma
2.4,

f(xn) +
1

λn

{
cosh d(xn, p) cosh d(p, x)−

1

cosh d(xn, p) cosh d(p, x)

}
≤ f(xn) +

1

λn

{
cosh d(xn, x)−

1

cosh d(xn, x)

}
≤ f(zm) +

1

λn

{
cosh d(zm, x)− 1

cosh d(zm, x)

}
.

Then

cosh d(xn, p) cosh d(p, x) ≤ λn(f(zm)− f(xn)) + cosh d(zm, x)

−
{

1

cosh d(zm, x)
− 1

cosh d(xn, p) cosh d(p, x)

}
.

By the monotonicity of {f(xn)}n∈N, there exists α ∈ R such that

cosh d(xn, p) cosh d(p, x) ≤ λn(f(zm)− α) + cosh d(zm, x)

−
{

1

cosh d(zm, x)
− 1

cosh d(xn, p) cosh d(p, x)

}
≤ λn(f(zm)− α) + cosh d(zm, x)

−
{

1

cosh d(zm, x)
− 1

cosh d(p, x)

}
.

Dividing by cosh d(p, x) and tending n → ∞, we have

lim sup
n→∞

cosh d(xn, p) ≤
cosh d(zm, x)

cosh d(p, x)

−
{

1

cosh d(zm, x)
− 1

cosh d(p, x)

}
1

cosh d(p, x)
.

Tending m → ∞, we have

lim sup
n→∞

cosh d(xn, p) ≤ 1.

and therefore d(xn, p) → 0. Then we obtain

lim
n→∞

Rλnx = p.

Since {Rλnx}n∈N converges to p for any decreasing sequences converging to 0,
we conclude limλ→0 Rλx = p, which is the desired result. □
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