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ASYMPTOTIC BEHAVIOR OF RESOLVENTS ON
COMPLETE GEODESIC SPACES WITH NEGATIVE
CURVATURE

YASUNORI KIMURA AND KEISUKE SHINDO

ABSTRACT. The resolvent for a proper lower semicontinuous convex func-
tion is one of the most important notions in the theory of convex analysis.
Asymptotic behavior of resolvents is an important subject and there are
a lot of results in various settings of underlying spaces. In this paper, we
consider asymptotic behavior of resolvents on complete geodesic spaces
with negative curvature.

1. INTRODUCTION

The resolvents for a proper lower semicontinuous convex function is one of
the most important notions in the theory of convex analysis. The asymptotic
behavior of resolvents is an important subject and there are a lot of results in
various settings of underlying spaces. In a Hilbert space H, if f: H — ]—00, o0
is a proper lower semicontinuous convex function, then a resolvent Jy is defined
by

. 1 2
e = arguin { £) + 5 I~ 217}
yeH

for all z € H. We consider the limit Jyx as A tends to co and 0. The following
are well-known facts. See [4], for instance.

Theorem 1.1. Let H be a Hilbert space and f: H — ]—00,00] a proper lower
semicontinuous convex function. If {J,, x}, _y is bounded for some sequence
{in} C R such that pu, — oo, then argmin f # () and

/\ILH;O Izt = Pargmin f .
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Theorem 1.2. Let H be a Hilbert space and f: H — ]—00,00] a proper lower
semicontinuous convex function. Then
/\ILIEO J)\LE = me.’b.
Furthermore, a complete CAT(0) space is a generalization of Hilbert spaces
and under the same condition as a function f on a Hilbert space, a resolvent
on a complete CAT(0) space is defined by

Jyx = argmin {f(y) + 1d(y, x)2}
yeX A

for all x € X, where the function d(-,x)? is called a perturbation function.

Asymptotic behavior of this resolvent is considered by [1] and the same results
as the case of Hilbert spaces are obtained. On the other hand, a complete
CAT(—1) space is an example of CAT(0) spaces. On a complete CAT(—1)
space, a resolvent with another perturbation is defined by [3]. Its perturbation
function is tanhd(z, ) sinh d(z, ). In this paper, we consider the asymptotic
behavior of this resolvent defined on complete CAT(—1) spaces.

2. PRELIMINARIES

Let X be a metric space. For 2,y € X, a mapping c¢: [0,1] — X is called a
geodesic with endpoints z, y if ¢ satisfies ¢(0) = z, ¢(I) = y and d(c(u), c(v)) =
|u —v| for u,v € [0,1]. X is called a geodesic space, if there exists a geodesic
for any z,y € X. Moreover, if a geodesic segment exists uniquely for each
x,y € X, then X is called a uniquely geodesic space. In what follows, we
always assume that X is a uniquely geodesic space. We call the image of ¢ a
geodesic segment joining = and y, and denote it by [z, y]. Then, for ¢ € [0,1] and
z,y € X, there exists a unique point z € [z,y] such that d(z, z) = (1 —t)d(z, y)
and d(y,z) = td(z,y). We denote it by tx @ (1 — t)y. A geodesic triangle
A(zq, o, x3) with vertices z1, 22,25 € X is the union of geodesic segments
joining each pair of vertices. Let H? be a two dimensional unit sphere. A
comparison triangle A(Z7,T2,73) in H? for A(z1,72,73) is a triangle such
that d(z;,z;) = d=(77,7;) (i,5 = 1,2,3). A point p € [Z1,T2| is comparison
point if d(T1,p) = dy=(T1,p). X is called a CAT(—1) space if for any p,q €

A(z1,x2,3), and their comparison points p, g € A(T1, %32, T3), the inequality

d(p7 q) S dH2 (ﬁa 6)

is satisfied for all triangles in X.
The following inequality is a direct result from the hyperbolical law of cosines
and a characterization of a CAT(—1) space; see [2].
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Theorem 2.1. Let X be a complete CAT(—1) space, x,y,z € X, and t with
0<t<1. Then

coshd(tx @ (1 — t)y, z) sinh d(x, y)

< coshd(z, z) sinh td(z,y) + cosh d(y, z) sinh(1 — t)d(z, y).
In particular,
d(z,y)

1 1 1 1
coshd (295 @ 2 z> cosh < 3 coshd(z, z) + 3 cosh d(y, z).

This theorem is called the parallelogram law and from this result, we get
the following lemma.

Lemma 2.2. Let X be a complete CAT(—1) space. Then for all x,y,z € X,

1 1 1 1 1
hd | - — < —coshd —coshd —(1-— .
cos <2x€B 2y,z) < 5 cos (z,2) + 5 €O (y, 2) ( o d“;’”)

Proof. From Theorem 2.1, we have

1 1
cosh d (m &) y)

2 2
- 1 coshd(z, 2) + 1 coshd(y, 2)
B cosh 4z:v)

2

1 1
ok coshd(zx, z) + 3 coshd(y, 2)

1 1 1
—J = coshd + = coshd - —
{2 coshd(z, z) + 3 cos (y’z)} ( coshd(z’y)>

2

IN

cosh =5

This is the desired result. O

1 1 1
5 coshd(z, z) + 5 coshd(y, z) — (1 - d(z,y)) :

Let X be a complete CAT(—1) space and C' a nonempty closed convex subset
of X. Then for each point x € X, there exists a unique point zg € C such that
d(x,z¢) = d(x,C). A mapping Po from X onto C such that Pox = xq is called
a metric projection. We know the following fact about metric projections.

Theorem 2.3. Let X be a complete CAT(—1) space, C a nonempty closed
convex subset of X, x € X andy € C. Then,

cosh d(z, Pox) cosh d(Peox,y) < coshd(z,y),

where Pg is the metric projection from X onto C.
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Proof. Let t € [0, 1]. Since C is convex, we have d(z, Pox) < d(z,tPcx®(1—t)y)
and hence

coshd(x, Pox) sinh d(Pox, y)

< coshd(z,tPocx @ (1 — t)y) sinh d(Pox, y)

< coshd(x, Pcx)sinhtd(Pcx,y) + coshd(x,y) sinh(1 — t)d(Pcx,y).
Thus,

cosh d(z, Pox){sinh d(Pcx,y) — sinhtd(Pez,y)}
< coshd(z,y)sinh(1 — t)d(Pcx,y).

Since

sinh d(Pox,y)—sinh td(Pox, y) = 2 cosh

—t)d(P,
(1 +t)d2(Pc.’£,y) sinh (]' t) 2( Cfﬂ,y)’

we have

‘Qiiygifﬁﬁgmﬁl—ﬂdGb%y)

14 t)d(P, 1 - t)d(P,
< 2coshd(z, Pox) cosh< +1) 2( c,y) Sinh( ) 2( T, Y)

= cosh d(z, Pcz){sinh d(Pcx,y) — sinh td(Pox,y)}
< coshd(z,y) sinh(1 — t)d(Pox, y).

cosh d(z, Pox) cosh

Dividing by sinh(1 — ¢)d(Pcx,y) and t — 1, we have
coshd(x, Pox) coshd(Pox,y) < coshd(x,y).
This is the desired result. O

Lemma 2.4. Let X be a complete CAT(—1) space, C' a closed subset of X,
and x € X. Then

1

coshd(z, Pox) coshd(Peox,y) — cosh d(z, Po) cosh d(Por.3)

1

< coshd -
< coshd(, y) coshd(x,y)
Proof. By Theorem 2.3,

cosh d(z, Pox) cosh d(Pox,y) < coshd(x,y).

Thus
1 1

- < - .
coshd(z, Pox) coshd(Pox,y) — coshd(z,y)
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Then we have
1
cosh d(z, Pox) cosh d(Pox, y)

coshd(z, Pox) coshd(Peox,y) —

1
coshd(x,y)

This is the desired result. O

< coshd(z,y) —

We consider a resolvent on a complete CAT(—1) space. Let f: X — ]—00, 0]
be a proper lower semicontinuous convex function. Then for a positive real
number A, the resolvent for f of a perturbation tanh(:)sinh(-) with parameter
A is defined by

1
Rz = argmin {f(y) + — tanhd(z, y) sinh d(z, y)} .
yeX A

Tt is proved that Ry are well defined as a single-valued mapping; see [2,3]. Since
f is proper, there exists a point y such that f(y) < co. That is, Ryz € dom f =
{r € X : f(z) < oo}. The following are properties of a resolvent Rj.

Lemma 2.5. Let X be a complete CAT(—1) space and f: X — |—00, ] a
proper lower semicontinuous convex function. For X > 0, define Ry: X — X

by
1
Ryz = argmin {f(y) + — tanh d(y, z) sinh d(y, a:)}
yeX A
forx € X. Then for \,pu > 0 with A < pu,

tanh d(Ryz, z) sinh d(Ryz, ) < tanhd(R,z,x)sinh d(R,z, ),

which is equivalent to
d(Ryz,z) < d(Ruz,x).

Proof. By the definition of the resolvent, we have
1
f(Ryx) + X tanh d(Ryz, z) sinhd(Raz, z) < f(R,x)
1
+ X tanh d(R,x, z)sinh d(R,z, x)
and

f(Rux) + itanh d(R,x,x)sinhd(Ry,z,x) < f(Rax)

1
+ — tanh d(Ryx, ) sinh d(Ryz, x).
w
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From these inequalities, we have

% tanh d(Ryz, z) sinh d(Ryx, x) + 1 tanh d(R,z, z)sinhd(R,z, x)
7
<

1

tanh d(R,z, z) sinh d(R,x,z) + — tanh d(Rxx, ) sinh d(Ryz, x).
1

and hence

(i - 1> tanh d(R\z, z) sinh d(Ry\z, )
I

1 1
< (}\ - ,u> tanh d(R,x, z)sinh d(R,x, x).

Since A < pu, we obtain
tanh d(Ryx, z) sinh d(Ryx, ) < tanhd(R,z,x)sinh d(R,z, ),

which is the desired result. O

Lemma 2.6. Let X be a complete CAT(—1) space and f: X — ]—o00,00] a
proper lower semicontinuous convex function. For A > 0, define Ry: X — X

by
1
Ryz = argmin {f(y) + — tanh d(y, z) sinh d(y, :1:)}
yeX A
forx € X. Then for A\, > 0 with A < p,
f(Raz) = f(Ryx).
Proof. By the definition of the resolvent, we have
1
f(Rux) + m tanh d(R,z, z) sinhd(R,z,x) < f(Raz)
1
+ — tanh d(Ryz, ) sinh d(Ryz, x),
I

and therefore we have
f(Ruz) — f(Raz)
< 1 {tanh d(Ryx, z) sinh d(Ryx, ) — tanh d(R,z, z) sinh d(R,x, z)} < 0.
]

This is the desired result. O
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Lemma 2.7. Let X be a complete CAT(—1) space and f: X — ]—00,0] a
proper lower semicontinuous convex function. For A > 0, define Ry: X — X
by
1
Ryx = argmin {f(y) + — tanh d(y, «) sinh d(y, a:)}
yeX A
for x € X. If {Ry,x}, cy is bounded for some sequence {un} C R such

that p, — oo, Then for all increasing sequences {A\,} such that A, — oo,
{Rx, T}, cy 8 bounded.

Proof. Since {R,,, x}
necN

nen 18 bounded, There exists M > 0 such that for all

d(R,,x,x) < M.
Let {\,} be an increasing sequence such that A\, — co. Suppose {Ry, =}
is not bounded. Then there exists a subsequence {\,,} of {\,} such that

d(Rx,, @,z) > M.

for all © € N. Then there exists [ € N such that \,, < y;. From Lemma 2.5,
we have

neN

M < d(Ry, z,x) < d(Ryx,z) < M.

n
This is a contradiction and we have the desired result. O

3. MAIN THEOREMS

First we consider the asymptotic behavior at infinity of a resolvent R, on
CAT(—1) spaces.

Theorem 3.1. Let X be a complete CAT(—1) space and f: X — |]—00,0] a
proper lower semicontinuous conver function. For A > 0, define Ry: X — X
by
Ryx = argmin {f(y) + 1 tanh d(y, «) sinh d(y, x)}
yeX A
forx € X. If {Ry,x}, oy is bounded for some sequence {un} C R such that
[ — 00, then argmin f # 0 and

)\11_{1;0 Rz = Pargmin f.

Proof. Let {A\,} C R be an increasing sequence such that A, — oo and denote
Ry, x by x,. First we show that argmin f is nonempty. Since {,},cy is
bounded by Lemma 2.7, there exist a subsequence {x,, } of {x, }ney and zo € X
such that {x,,} is A-convergent to zg. For all y € X,

1 1
flzn,) + SV tanh d(z,,, z) sinh d(x,,, ) < f(y) + = tanh d(y, «) sinh d(y, ).

Uz g
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Tending ¢ — oo, we have

liminf f(zn,) < f(y).

11— 00

Since f is A-lower semicontinuous,
f() < iminf f(z,,).
71— 00

Therefore f(xo) < f(y) for all y € X, and hence we obtain argmin f # (.
Next we show 2, = Pargmin r&. Suppose n < m. From Lemma 2.2, we have

Flan) + Ai {Coshd(xn,m) - 1}

n coshd (xy,, x)

<f L @1 +i coshd1 @1 !

=1\t ) TN, 2" T T ) T coshid (L © Ly, 2)
1 1

< = —

_Qf(xn)+2f(xm)

1 1 1 1
+ E 5 cosh d(l‘n,x) + 5 COShd(J?»,n,l') — (1 — COSh‘K-MQv-’«m)) }

1 1

An & coshd(z,,, ) + 3 coshd(z,, )
< Flan) + =3 L coshd(n, 2) + £ coshd(wm,z) — [ 1 L

Tp)+ — { =coshd(xn,,x) + = coshd(xm,,x) — -
- An | 2 2 coshw
Ly

A, cosh d(Tp,, )’

and therefore
1
1 -

cosh 751(”3”2’:”’")

1 1 1 1
<< = coshd(xm,x) — = coshd(x,, -
_{QCOS (@m,2) 9 ©% (@ x)}+{coshd(mn,x) coshd(a:m,m)}

1 1
< hd(z,,,x) — coshd(x,, —
< {eoshd(@m, x) = coshd(x x)}—’_{coshd(xn,z) coshd(mm,x)}

1 1
= { coshd(@n, &) — —— ¢ — 3 coshd(wy,x) — ————
{COS (@m, ) coshd (Z,, x) } {COS (@n,2) coshd (z,,x) }
= tanh d(z,, ) sinh d(z,,, ) — tanh d(z,,, ) sinh d(x,,, x).

Since {tanhd(zy,z)sinhd(x,, z)}nen is increasing and bounded, it is conver-
gent. Moreover since it is a Cauchy sequence, there exists a sequence {o,}
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such that «,, — 0 and
tanh d(zy,, z) sinh d(xm, x) — tanh d(x,, ) sinh d(z,, ) < ay, — 0.
Then we have
1-— ; < ay,.

cosh 7d(z"2’zm) B

This implies that {z,},en is a Cauchy sequence. By the completeness of X,
{Zn}nen is convergent. Suppose x, — p. Then from the former part of this
proof, p € argmin f and we show p = P,emin 2. For all y € argmin f,

) 1
fln) + 5 {“’Shd(x"’””) ~ coshd (. 7) }

<f<1 EBl >+ ! coshd(lx @1 :c> 1
ST @ 5 — ST @ Y, ) —
- 2 27 An 2 27 cosh d (%mn @ %y,x)

< fan)

11 1 1 1
— ! = coshd(ay, ) + = coshd(y,z) — [ 1— . .
* An {2 coshd(n, z) + 9 «% (. ) ( cosh d(fﬂg,,y) ) coshd(y, ) }

Then we have

0<1—
cosh

1 1 1 .
< - hd - — < — hd ny PR N
>~ {2 COSs (y7 iC) coshd (y7 ZE) } {2 €08 (m x) coshd ('rna LU) }

This implies d(x,,z) < d(y,z) and tending n — oo, we obtain that

d(p, ) < d(y, )
for all y € argmin f. This is the desired result. O

d(zn,y)
2

Next we consider the asymptotic behavior of Ry at 0.

Theorem 3.2. Let X be a complete CAT(—1) space and f: X — ]—00,0] a
proper lower semicontinuous convex function. For A > 0, define Ry: X — X

by
1
Ryxz = argmin {f(y) + — tanh d(y, ) sinh d(y, x)}
yeX A
forx € X. Then

)\1_1)1’20 R,\Q? = meac.
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Proof. Let {A\,} C R be a decreasing sequence such that A, — 0 and {z,,} C X
such that z,, — Pi— .z. Put z,, = Ry, x and p = mem. From the Lemma

dom f
2.4,
Fle) + 5 { coshd(n, p) cosh d(p, 2 1
on An COPH A\ Tn, P) COSREAD, cosh d(z,, p) cosh d(p, z)
1 1
< - h o
< flzn) + N {cos d(zn, ) coshd(;z:n,x)}
1 1
< Flzm) + — S coshd(zp, ) — ——— 4.
< flzm) + . {cos (2m, T) coshd(zm,x)}
Then

coshd(x,,p) coshd(p,z) < A\ (f(zm) — f(xn)) + coshd(z,, x)

1 1
B { coshd(zm,z)  coshd(an, p) coshd(p, x) } '
By the monotonicity of {f(x,)}nen, there exists o € R such that
cosh d(z,,, p) coshd(p, ) < Ay (f(2m) — @) + coshd(z,,, T)

1 1
B {cosh d(zm,z)  coshd(z,,p)coshd(p,z) }
< An(f(z’rn) - Oé) + cosh d(Zm, .73)

1 1
B {cosh d(zm,z)  coshd(p,z) } '

Dividing by cosh d(p, z) and tending n — oo, we have

cosh d(zpm, x)
li hd(zn,p) < —————~
imsup coshd(zn.P) < o ehd(p, )

1 1 1
B {cosh d(zm,z)  coshd(p,z) } coshd(p,z)’
Tending m — oo, we have

lim sup cosh d(z,,p) < 1.

n—o0

and therefore d(x,,p) — 0. Then we obtain

lim Ry, x = p.
n—oo

Since {R), z}nen converges to p for any decreasing sequences converging to 0,
we conclude limy_,g Ryx = p, which is the desired result. O
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