Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis & International Conference on Optimization: Techniques and Applications -I-(Hakodate, Japan, 2019), 331–341

ASYMPTOTIC BEHAVIOR OF RESOLVENTS ON COMPLETE GEODESIC SPACES WITH NEGATIVE CURVATURE

YASUNORI KIMURA AND KEISUKE SHINDO

ABSTRACT. The resolvent for a proper lower semicontinuous convex function is one of the most important notions in the theory of convex analysis. Asymptotic behavior of resolvents is an important subject and there are a lot of results in various settings of underlying spaces. In this paper, we consider asymptotic behavior of resolvents on complete geodesic spaces with negative curvature.

1. INTRODUCTION

The resolvents for a proper lower semicontinuous convex function is one of the most important notions in the theory of convex analysis. The asymptotic behavior of resolvents is an important subject and there are a lot of results in various settings of underlying spaces. In a Hilbert space H, if $f: H \to]-\infty, \infty]$ is a proper lower semicontinuous convex function, then a resolvent J_{λ} is defined by

$$J_{\lambda}x = \underset{y \in H}{\operatorname{argmin}} \left\{ f(y) + \frac{1}{\lambda} \left\| y - x \right\|^2 \right\}$$

for all $x \in H$. We consider the limit $J_{\lambda}x$ as λ tends to ∞ and 0. The following are well-known facts. See [4], for instance.

Theorem 1.1. Let H be a Hilbert space and $f: H \to]-\infty, \infty]$ a proper lower semicontinuous convex function. If $\{J_{\mu_n}x\}_{n\in\mathbb{N}}$ is bounded for some sequence $\{\mu_n\} \subset \mathbb{R}$ such that $\mu_n \to \infty$, then argmin $f \neq \emptyset$ and

$$\lim_{\lambda \to \infty} J_{\lambda} x = P_{\operatorname{argmin} f} x.$$

²⁰¹⁰ Mathematics Subject Classification. 52A41.

Key words and phrases. CAT(-1) space, convex function, resolvent, asymptotic behavior.

Theorem 1.2. Let H be a Hilbert space and $f: H \to]-\infty, \infty]$ a proper lower semicontinuous convex function. Then

$$\lim_{\lambda \to \pm 0} J_{\lambda} x = P_{\overline{\mathrm{dom}}\,f} x.$$

Furthermore, a complete CAT(0) space is a generalization of Hilbert spaces and under the same condition as a function f on a Hilbert space, a resolvent on a complete CAT(0) space is defined by

$$J_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} d(y, x)^2 \right\}$$

for all $x \in X$, where the function $d(\cdot, x)^2$ is called a perturbation function. Asymptotic behavior of this resolvent is considered by [1] and the same results as the case of Hilbert spaces are obtained. On the other hand, a complete CAT(-1) space is an example of CAT(0) spaces. On a complete CAT(-1)space, a resolvent with another perturbation is defined by [3]. Its perturbation function is $\tanh d(x, \cdot) \sinh d(x, \cdot)$. In this paper, we consider the asymptotic behavior of this resolvent defined on complete CAT(-1) spaces.

2. Preliminaries

Let X be a metric space. For $x, y \in X$, a mapping $c: [0, l] \to X$ is called a geodesic with endpoints x, y if c satisfies c(0) = x, c(l) = y and d(c(u), c(v)) = |u - v| for $u, v \in [0, l]$. X is called a geodesic space, if there exists a geodesic for any $x, y \in X$. Moreover, if a geodesic segment exists uniquely for each $x, y \in X$, then X is called a uniquely geodesic space. In what follows, we always assume that X is a uniquely geodesic space. We call the image of c a geodesic segment joining x and y, and denote it by [x, y]. Then, for $t \in [0, 1]$ and $x, y \in X$, there exists a unique point $z \in [x, y]$ such that d(x, z) = (1-t)d(x, y) and d(y, z) = td(x, y). We denote it by $tx \oplus (1-t)y$. A geodesic segments joining each pair of vertices. Let \mathbb{H}^2 be a two dimensional unit sphere. A comparison triangle $\overline{\Delta}(\overline{x_1}, \overline{x_2}, \overline{x_3})$ in \mathbb{H}^2 for $\Delta(x_1, x_2, x_3)$ is a triangle such that $d(x_i, x_j) = d_{\mathbb{H}^2}(\overline{x_i}, \overline{x_j})$ (i, j = 1, 2, 3). A point $\overline{p} \in [\overline{x}_1, \overline{x}_2]$ is comparison point if $d(\overline{x}_1, p) = d_{\mathbb{H}^2}(\overline{x_1}, p)$. X is called a CAT(-1) space if for any $p, q \in \Delta(x_1, x_2, x_3)$, and their comparison points $\overline{p}, \overline{q} \in \overline{\Delta}(\overline{x_1}, \overline{x_2}, \overline{x_3})$, the inequality

$$d(p,q) \le d_{\mathbb{H}^2}(\overline{p},\overline{q})$$

is satisfied for all triangles in X.

The following inequality is a direct result from the hyperbolical law of cosines and a characterization of a CAT(-1) space; see [2].

Theorem 2.1. Let X be a complete CAT(-1) space, $x, y, z \in X$, and t with 0 < t < 1. Then

$$\cosh d(tx \oplus (1-t)y, z) \sinh d(x, y)$$

$$\leq \cosh d(x, z) \sinh t d(x, y) + \cosh d(y, z) \sinh(1-t) d(x, y).$$

In particular,

$$\cosh d\left(\frac{1}{2}x \oplus \frac{1}{2}y, z\right) \cosh \frac{d(x, y)}{2} \le \frac{1}{2} \cosh d(x, z) + \frac{1}{2} \cosh d(y, z).$$

This theorem is called the parallelogram law and from this result, we get the following lemma.

Lemma 2.2. Let X be a complete CAT(-1) space. Then for all
$$x, y, z \in X$$
,
 $\cosh d\left(\frac{1}{2}x \oplus \frac{1}{2}y, z\right) \leq \frac{1}{2} \cosh d(x, z) + \frac{1}{2} \cosh d(y, z) - \left(1 - \frac{1}{\cosh \frac{d(x, y)}{2}}\right).$

Proof. From Theorem 2.1, we have

$$\begin{aligned} \cosh d\left(\frac{1}{2}x \oplus \frac{1}{2}y\right) \\ &\leq \frac{\frac{1}{2}\cosh d(x,z) + \frac{1}{2}\cosh d(y,z)}{\cosh \frac{d(x,y)}{2}} \\ &= \frac{1}{2}\cosh d(x,z) + \frac{1}{2}\cosh d(y,z) \\ &- \left\{\frac{1}{2}\cosh d(x,z) + \frac{1}{2}\cosh d(y,z)\right\} \left(1 - \frac{1}{\cosh \frac{d(x,y)}{2}}\right) \\ &\leq \frac{1}{2}\cosh d(x,z) + \frac{1}{2}\cosh d(y,z) - \left(1 - \frac{1}{\cosh \frac{d(x,y)}{2}}\right). \end{aligned}$$

This is the desired result.

Let X be a complete CAT(-1) space and C a nonempty closed convex subset of X. Then for each point $x \in X$, there exists a unique point $x_0 \in C$ such that $d(x, x_0) = d(x, C)$. A mapping P_C from X onto C such that $P_C x = x_0$ is called a metric projection. We know the following fact about metric projections.

Theorem 2.3. Let X be a complete CAT(-1) space, C a nonempty closed convex subset of X, $x \in X$ and $y \in C$. Then,

 $\cosh d(x, P_C x) \cosh d(P_C x, y) \le \cosh d(x, y),$

where P_C is the metric projection from X onto C.

Proof. Let $t \in [0,1]$. Since C is convex, we have $d(x, P_C x) \leq d(x, tP_C x \oplus (1-t)y)$ and hence

$$\begin{aligned} \cosh d(x, P_C x) \sinh d(P_C x, y) \\ &\leq \cosh d(x, t P_C x \oplus (1 - t)y) \sinh d(P_C x, y) \\ &\leq \cosh d(x, P_C x) \sinh t d(P_C x, y) + \cosh d(x, y) \sinh(1 - t) d(P_C x, y). \end{aligned}$$

Thus,

$$\begin{aligned} \cosh d(x, P_C x) \{\sinh d(P_C x, y) - \sinh t d(P_C x, y)\} \\ \leq \cosh d(x, y) \sinh(1 - t) d(P_C x, y). \end{aligned}$$

Since

$$\sinh d(P_C x, y) - \sinh t d(P_C x, y) = 2 \cosh \frac{(1+t)d(P_C x, y)}{2} \sinh \frac{(1-t)d(P_C x, y)}{2},$$

we have

$$\cosh d(x, P_C x) \cosh \frac{(1+t)d(P_C x, y)}{2} \sinh(1-t)d(P_C x, y)$$

$$\leq 2 \cosh d(x, P_C x) \cosh \frac{(1+t)d(P_C x, y)}{2} \sinh \frac{(1-t)d(P_C x, y)}{2}$$

$$= \cosh d(x, P_C x) \{\sinh d(P_C x, y) - \sinh td(P_C x, y)\}$$

$$\leq \cosh d(x, y) \sinh(1-t)d(P_C x, y).$$

Dividing by $\sinh(1-t)d(P_C x, y)$ and $t \to 1$, we have

$$\cosh d(x, P_C x) \cosh d(P_C x, y) \le \cosh d(x, y).$$

This is the desired result.

Lemma 2.4. Let X be a complete CAT(-1) space, C a closed subset of X, and $x \in X$. Then

$$\cosh d(x, P_C x) \cosh d(P_C x, y) - \frac{1}{\cosh d(x, P_C x) \cosh d(P_C x, y)}$$
$$\leq \cosh d(x, y) - \frac{1}{\cosh d(x, y)}.$$

Proof. By Theorem 2.3,

_

$$\cosh d(x, P_C x) \cosh d(P_C x, y) \le \cosh d(x, y).$$

Thus

$$-\frac{1}{\cosh d(x, P_C x) \cosh d(P_C x, y)} \le -\frac{1}{\cosh d(x, y)}.$$

Then we have

$$\cosh d(x, P_C x) \cosh d(P_C x, y) - \frac{1}{\cosh d(x, P_C x) \cosh d(P_C x, y)}$$
$$\leq \cosh d(x, y) - \frac{1}{\cosh d(x, y)}.$$

This is the desired result.

We consider a resolvent on a complete CAT(-1) space. Let $f: X \to]-\infty, \infty]$ be a proper lower semicontinuous convex function. Then for a positive real number λ , the resolvent for f of a perturbation $tanh(\cdot) \sinh(\cdot)$ with parameter λ is defined by

$$R_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} \tanh d(x, y) \sinh d(x, y) \right\}.$$

It is proved that R_{λ} are well defined as a single-valued mapping; see [2,3]. Since f is proper, there exists a point y such that $f(y) < \infty$. That is, $R_{\lambda}x \in \text{dom } f = \{x \in X : f(x) < \infty\}$. The following are properties of a resolvent R_{λ} .

Lemma 2.5. Let X be a complete CAT(-1) space and $f: X \to]-\infty, \infty]$ a proper lower semicontinuous convex function. For $\lambda > 0$, define $R_{\lambda}: X \to X$ by

$$R_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} \tanh d(y, x) \sinh d(y, x) \right\}$$

for $x \in X$. Then for $\lambda, \mu > 0$ with $\lambda \leq \mu$,

 $\tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x) \leq \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x),$

which is equivalent to

$$d(R_{\lambda}x, x) \le d(R_{\mu}x, x).$$

Proof. By the definition of the resolvent, we have

$$\begin{aligned} f(R_{\lambda}x) + \frac{1}{\lambda} \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x) &\leq f(R_{\mu}x) \\ &+ \frac{1}{\lambda} \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x) \end{aligned}$$

and

$$\begin{split} f(R_{\mu}x) + \frac{1}{\mu} \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x) &\leq f(R_{\lambda}x) \\ &+ \frac{1}{\mu} \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x) \end{split}$$

335

From these inequalities, we have

$$\begin{aligned} &\frac{1}{\lambda} \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x) + \frac{1}{\mu} \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x) \\ &\leq \frac{1}{\lambda} \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x) + \frac{1}{\mu} \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x). \end{aligned}$$

and hence

$$\left(\frac{1}{\lambda} - \frac{1}{\mu}\right) \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x)$$

$$\leq \left(\frac{1}{\lambda} - \frac{1}{\mu}\right) \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x).$$

Since $\lambda \leq \mu$, we obtain

$$\tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x) \le \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x),$$

which is the desired result.

Lemma 2.6. Let X be a complete CAT(-1) space and $f: X \to]-\infty, \infty]$ a proper lower semicontinuous convex function. For $\lambda > 0$, define $R_{\lambda} \colon X \to X$ by

$$R_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} \tanh d(y, x) \sinh d(y, x) \right\}$$

for $x \in X$. Then for $\lambda, \mu > 0$ with $\lambda \leq \mu$,

$$f(R_{\lambda}x) \ge f(R_{\mu}x).$$

Proof. By the definition of the resolvent, we have

$$\begin{aligned} f(R_{\mu}x) + \frac{1}{\mu} \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x) &\leq f(R_{\lambda}x) \\ &+ \frac{1}{\mu} \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x), \end{aligned}$$

and therefore we have

$$f(R_{\mu}x) - f(R_{\lambda}x)$$

$$\leq \frac{1}{\mu} \{ \tanh d(R_{\lambda}x, x) \sinh d(R_{\lambda}x, x) - \tanh d(R_{\mu}x, x) \sinh d(R_{\mu}x, x) \} \leq 0.$$
is is the desired result.

This is the desired result.

Lemma 2.7. Let X be a complete CAT(-1) space and $f: X \to]-\infty, \infty]$ a proper lower semicontinuous convex function. For $\lambda > 0$, define $R_{\lambda}: X \to X$ by

$$R_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} \tanh d(y, x) \sinh d(y, x) \right\}$$

for $x \in X$. If $\{R_{\mu_n}x\}_{n\in\mathbb{N}}$ is bounded for some sequence $\{\mu_n\} \subset \mathbb{R}$ such that $\mu_n \to \infty$, Then for all increasing sequences $\{\lambda_n\}$ such that $\lambda_n \to \infty$, $\{R_{\lambda_n}x\}_{n\in\mathbb{N}}$ is bounded.

Proof. Since $\{R_{\mu_n}x\}_{n\in\mathbb{N}}$ is bounded, There exists M > 0 such that for all $n \in \mathbb{N}$

$$d(R_{\mu_n}x, x) \le M.$$

Let $\{\lambda_n\}$ be an increasing sequence such that $\lambda_n \to \infty$. Suppose $\{R_{\lambda_n}x\}_{n\in\mathbb{N}}$ is not bounded. Then there exists a subsequence $\{\lambda_{n_i}\}$ of $\{\lambda_n\}$ such that

$$d(R_{\lambda_{n_i}}x, x) > M.$$

for all $i \in \mathbb{N}$. Then there exists $l \in \mathbb{N}$ such that $\lambda_{n_1} \leq \mu_l$. From Lemma 2.5, we have

$$M < d(R_{\lambda_{n_1}}x, x) \le d(R_{\mu_l}x, x) \le M.$$

This is a contradiction and we have the desired result.

3. Main Theorems

First we consider the asymptotic behavior at infinity of a resolvent R_{λ} on CAT(-1) spaces.

Theorem 3.1. Let X be a complete CAT(-1) space and $f: X \to]-\infty, \infty]$ a proper lower semicontinuous convex function. For $\lambda > 0$, define $R_{\lambda}: X \to X$ by

$$R_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} \tanh d(y, x) \sinh d(y, x) \right\}$$

for $x \in X$. If $\{R_{\mu_n}x\}_{n \in \mathbb{N}}$ is bounded for some sequence $\{\mu_n\} \subset \mathbb{R}$ such that $\mu_n \to \infty$, then $\operatorname{argmin} f \neq \emptyset$ and

$$\lim_{\lambda \to \infty} R_{\lambda} x = P_{\operatorname{argmin} f} x.$$

Proof. Let $\{\lambda_n\} \subset \mathbb{R}$ be an increasing sequence such that $\lambda_n \to \infty$ and denote $R_{\lambda_n} x$ by x_n . First we show that argmin f is nonempty. Since $\{x_n\}_{n\in\mathbb{N}}$ is bounded by Lemma 2.7, there exist a subsequence $\{x_{n_i}\}$ of $\{x_n\}_{n\in\mathbb{N}}$ and $x_0 \in X$ such that $\{x_{n_i}\}$ is Δ -convergent to x_0 . For all $y \in X$,

$$f(x_{n_i}) + \frac{1}{\lambda_{n_i}} \tanh d(x_{n_i}, x) \sinh d(x_{n_i}, x) \le f(y) + \frac{1}{\lambda_{n_i}} \tanh d(y, x) \sinh d(y, x).$$

Y. KIMURA AND K. SHINDO

Tending $i \to \infty$, we have

$$\liminf_{i \to \infty} f(x_{n_i}) \le f(y).$$

Since f is Δ -lower semicontinuous,

$$f(x_0) \le \liminf_{i \to \infty} f(x_{n_i}).$$

Therefore $f(x_0) \leq f(y)$ for all $y \in X$, and hence we obtain argmin $f \neq \emptyset$. Next we show $x_n \to P_{\operatorname{argmin} f} x$. Suppose $n \leq m$. From Lemma 2.2, we have

$$\begin{aligned} f(x_n) &+ \frac{1}{\lambda_n} \left\{ \cosh d(x_n, x) - \frac{1}{\cosh d(x_n, x)} \right\} \\ &\leq f\left(\frac{1}{2}x_n \oplus \frac{1}{2}x_m\right) + \frac{1}{\lambda_n} \left\{ \cosh d\left(\frac{1}{2}x_n \oplus \frac{1}{2}x_m, x\right) - \frac{1}{\cosh d\left(\frac{1}{2}x_n \oplus \frac{1}{2}x_m, x\right)} \right\} \\ &\leq \frac{1}{2}f(x_n) + \frac{1}{2}f(x_m) \\ &+ \frac{1}{\lambda_n} \left\{ \frac{1}{2}\cosh d(x_n, x) + \frac{1}{2}\cosh d(x_m, x) - \left(1 - \frac{1}{\cosh \frac{d(x_n, x_m)}{2}}\right) \right\} \\ &- \frac{1}{\lambda_n} \frac{1}{\frac{1}{2}\cosh d(x_n, x) + \frac{1}{2}\cosh d(x_m, x)} \\ &\leq f(x_n) + \frac{1}{\lambda_n} \left\{ \frac{1}{2}\cosh d(x_n, x) + \frac{1}{2}\cosh d(x_m, x) - \left(1 - \frac{1}{\cosh \frac{d(x_n, x_m)}{2}}\right) \right\} \\ &- \frac{1}{\lambda_n} \frac{1}{\cosh d(x_m, x)}, \end{aligned}$$

and therefore

$$\begin{aligned} 1 &- \frac{1}{\cosh \frac{d(x_n, x_m)}{2}} \\ &\le \left\{ \frac{1}{2} \cosh d(x_m, x) - \frac{1}{2} \cosh d(x_n, x) \right\} + \left\{ \frac{1}{\cosh d(x_n, x)} - \frac{1}{\cosh d(x_m, x)} \right\} \\ &\le \left\{ \cosh d(x_m, x) - \cosh d(x_n, x) \right\} + \left\{ \frac{1}{\cosh d(x_n, x)} - \frac{1}{\cosh d(x_m, x)} \right\} \\ &= \left\{ \cosh d(x_m, x) - \frac{1}{\cosh d(x_m, x)} \right\} - \left\{ \cosh d(x_n, x) - \frac{1}{\cosh d(x_n, x)} \right\} \\ &= \tanh d(x_m, x) \sinh d(x_m, x) - \tanh d(x_n, x) \sinh d(x_n, x). \end{aligned}$$

Since $\{\tanh d(x_n, x) \sinh d(x_n, x)\}_{n \in \mathbb{N}}$ is increasing and bounded, it is convergent. Moreover since it is a Cauchy sequence, there exists a sequence $\{\alpha_n\}$

such that $\alpha_n \to 0$ and

$$\tanh d(x_m, x) \sinh d(x_m, x) - \tanh d(x_n, x) \sinh d(x_n, x) \le \alpha_n \to 0$$

Then we have

$$1 - \frac{1}{\cosh \frac{d(x_n, x_m)}{2}} \le \alpha_n.$$

This implies that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence. By the completeness of X, $\{x_n\}_{n\in\mathbb{N}}$ is convergent. Suppose $x_n \to p$. Then from the former part of this proof, $p \in \operatorname{argmin} f$ and we show $p = P_{\operatorname{argmin} f} x$. For all $y \in \operatorname{argmin} f$,

$$f(x_n) + \frac{1}{\lambda_n} \left\{ \cosh d(x_n, x) - \frac{1}{\cosh d(x_n, x)} \right\}$$

$$\leq f\left(\frac{1}{2}x_n \oplus \frac{1}{2}y\right) + \frac{1}{\lambda_n} \left\{ \cosh d\left(\frac{1}{2}x_n \oplus \frac{1}{2}y, x\right) - \frac{1}{\cosh d\left(\frac{1}{2}x_n \oplus \frac{1}{2}y, x\right)} \right\}$$

$$\leq f(x_n)$$

$$+ \frac{1}{\lambda_n} \left\{ \frac{1}{2} \cosh d(x_n, x) + \frac{1}{2} \cosh d(y, x) - \left(1 - \frac{1}{\cosh \frac{d(x_n, y)}{2}}\right) - \frac{1}{\cosh d(y, x)} \right\}$$

Then we have

$$0 \leq 1 - \frac{1}{\cosh \frac{d(x_n, y)}{2}}$$
$$\leq \left\{ \frac{1}{2} \cosh d\left(y, x\right) - \frac{1}{\cosh d\left(y, x\right)} \right\} - \left\{ \frac{1}{2} \cosh d\left(x_n, x\right) - \frac{1}{\cosh d\left(x_n, x\right)} \right\}.$$

This implies $d(x_n, x) \leq d(y, x)$ and tending $n \to \infty$, we obtain that

$$d(p,x) \le d(y,x)$$

for all $y \in \operatorname{argmin} f$. This is the desired result.

Next we consider the asymptotic behavior of R_{λ} at 0.

Theorem 3.2. Let X be a complete CAT(-1) space and $f: X \to]-\infty, \infty]$ a proper lower semicontinuous convex function. For $\lambda > 0$, define $R_{\lambda}: X \to X$ by

$$R_{\lambda}x = \operatorname*{argmin}_{y \in X} \left\{ f(y) + \frac{1}{\lambda} \tanh d(y, x) \sinh d(y, x) \right\}$$

for $x \in X$. Then

$$\lim_{\lambda \to +0} R_{\lambda} x = P_{\overline{\mathrm{dom}}\,f} x.$$

Y. KIMURA AND K. SHINDO

Proof. Let $\{\lambda_n\} \subset \mathbb{R}$ be a decreasing sequence such that $\lambda_n \to 0$ and $\{z_m\} \subset X$ such that $z_m \to P_{\overline{\text{dom}}f}x$. Put $x_n = R_{\lambda_n}x$ and $p = P_{\overline{\text{dom}}f}x$. From the Lemma 2.4,

$$\begin{aligned} &f(x_n) + \frac{1}{\lambda_n} \left\{ \cosh d(x_n, p) \cosh d(p, x) - \frac{1}{\cosh d(x_n, p) \cosh d(p, x)} \right\} \\ &\leq f(x_n) + \frac{1}{\lambda_n} \left\{ \cosh d(x_n, x) - \frac{1}{\cosh d(x_n, x)} \right\} \\ &\leq f(z_m) + \frac{1}{\lambda_n} \left\{ \cosh d(z_m, x) - \frac{1}{\cosh d(z_m, x)} \right\}. \end{aligned}$$

Then

$$\cosh d(x_n, p) \cosh d(p, x) \le \lambda_n (f(z_m) - f(x_n)) + \cosh d(z_m, x)$$
$$- \left\{ \frac{1}{\cosh d(z_m, x)} - \frac{1}{\cosh d(x_n, p) \cosh d(p, x)} \right\}$$

By the monotonicity of $\{f(x_n)\}_{n\in\mathbb{N}}$, there exists $\alpha\in\mathbb{R}$ such that

$$\cosh d(x_n, p) \cosh d(p, x) \le \lambda_n (f(z_m) - \alpha) + \cosh d(z_m, x)$$
$$- \left\{ \frac{1}{\cosh d(z_m, x)} - \frac{1}{\cosh d(x_n, p) \cosh d(p, x)} \right\}$$
$$\le \lambda_n (f(z_m) - \alpha) + \cosh d(z_m, x)$$
$$- \left\{ \frac{1}{\cosh d(z_m, x)} - \frac{1}{\cosh d(p, x)} \right\}.$$

Dividing by $\cosh d(p, x)$ and tending $n \to \infty$, we have

$$\limsup_{n \to \infty} \cosh d(x_n, p) \le \frac{\cosh d(z_m, x)}{\cosh d(p, x)} - \left\{ \frac{1}{\cosh d(z_m, x)} - \frac{1}{\cosh d(p, x)} \right\} \frac{1}{\cosh d(p, x)}.$$

Tending $m \to \infty$, we have

$$\limsup_{n \to \infty} \cosh d(x_n, p) \le 1.$$

and therefore $d(x_n, p) \to 0$. Then we obtain

$$\lim_{n \to \infty} R_{\lambda_n} x = p$$

Since $\{R_{\lambda_n}x\}_{n\in\mathbb{N}}$ converges to p for any decreasing sequences converging to 0, we conclude $\lim_{\lambda\to 0} R_{\lambda}x = p$, which is the desired result. \Box

ASYMPTOTIC BEHAVIOR OF RESOLVENTS

References

- M. Bačák, Convex Analysis and Optimaization in Hadamard Spaces, De Gruyter, Berlin, 2014.
- [2] M. R. Bridson and A. Haefliger, *Metric Spaces of Non-positive Curvature*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.
- [3] T. Kajimura and Y. Kimura, Resolvents of convex functions in complete geodesic metric spaces with negative curvature, J. Fixed Point Theory Appl. 21 (2019), Art. 32, 15 pp.
- [4] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.

Y. KIMURA

Department of Information Science, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan

E-mail address: yasunori@is.sci.toho-u.ac.jp

K. Shindo

Department of Information Science, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan

E-mail address: 7520001s@st.toho-u.jp