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A HALPERN’S ITERATIVE SCHEME WITH MULTIPLE
ANCHOR POINTS IN COMPLETE GEODESIC SPACES
WITH CURVATURE BOUNDED ABOVE

YASUNORI KIMURA AND KAZUYA SASAKI

ABSTRACT. In this paper, we define a new convex combination specific
to geodesic spaces with curvature bounded above by one, and we show an
approximation theorem for finding a common fixed point of mappings us-
ing a Halpern’s iterative scheme with multiple anchor points on complete
CAT(1) spaces.

1. INTRODUCTION

Approximating a common fixed point of mappings is one of the important
topics in convex analysis and it has been studied in various spaces by many
mathematicians. Halpern’s iterative scheme is one of the popular methods
to find a common fixed point of mappings; see [2, 10, 9]. In 2010, Saejung [7]
proved a Halpern type approximation theorem with a nonexpansive mapping in
a complete CAT(0) space. In 2013, Kimura and Sat6 [5] obtained a convergence
theorem using a Halpern type iteration with a strongly quasinonexpansive and
A-demiclosed mapping in a complete CAT(1) space. In 2015, Kimura and
Wada [6] showed that a Halpern type iteration with nonexpansive mappings and
multiple anchor points converges to a common fixed points of their mappings
in a complete CAT(0) space.

Theorem 1.1 (Kimura and Wada [6]). Let X be a complete CAT(0) space
and R, S, T nonexpansive mappings from X into itself with F = F(R)NF(S)N
F(T) # @. Let {a,} C 0,1[ such that lim, 0 o, = 0, Y00 | @ = 00 and
S0 lans1r —an| < 00, and {Bn}, {vn} C la,b[ C]0,1] such that > " | |Bp+1—
Br| < 00, limyoo B = B € 10,1[, D07 [fnt1 — Yl < 00 and lim, o0 v, =
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v €]0,1[. Let u,v,w,z1 € X and define an iterative sequence {x,} C X by
Tn = apu® (1 — a,)Ray,
Sn = apv ® (1 — ) Sy,
ty = apw® (1 — ap)Tx,,
Tnt+1l = 5nTn ® (1 - ﬁn)(’)’nsn 3] (1 - ’Yn)tn)
for all n € N. Then the sequence {x,} converges to a point p € F, which is a
minimizer of the function g(x) = Bd(u,z)?+ (1 —B)(yd(v,x)? + (1 —~)d(w, z)?)
on F.

In this theorem, the function g can be defined as
g(x) = Md(u, z)* + pd(v, 2)? + vd(w, z)*,

where A, p,v > 0 satisfy A + u 4+ v = 1. This function is inspired by the
following inequality, which is obtained a CAT(0) space X: for any z,y,z € X
and a € [0,1],

dlaz ® (1 —a)y, 2)? < ad(z,2)? + (1 — a)d(y, 2)*

On the other hand, if X is a CAT(—1) space, the following inequality holds

for any x,y,z € X and a € [0, 1]:
coshd(az @ (1 — a)y,z) < acoshd(x, z) + (1 — «) coshd(y, 2).
From this observation, it seems to be appropriate to use the following function
in CAT(—1) spaces:
h(z) = Acoshd(u, z) + pcosh d(v,x) + v cosh d(w, z).

It is known that all CAT(—1) spaces are also CAT(0) space. Therefore,

the sequence generated by the same method as in Theorem 1.1 converges to

the same point p also in a CAT(—1) space. That point is a minimizer of the
function g, however, it is not a minimizer of the following function:

h(z) = Bcoshd(u,z) + (1 — B)(ycoshd(v,z) + (1 — ) cosh d(w, x)).

Similarly, the limit p of the iteration in Theorem 1.1 does not maximize the
following function:

i(z) = Beosd(u,x) + (1 — B)(ycosd(v,z) + (1 — ) cos d(w, x)).

To solve this problem, we need to redefine the notion of convex combination
in a different way.

In this paper, we define a new convex combination on a CAT(1) space in
order to resolve that problem, and show that a sequence generated by using
that convex combination converges to a maximizer of i in CAT(1) spaces.
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2. PRELIMINARIES

Let (X, d) be a metric space. For z,y € X, a mapping ~: [0,]] — X is called
a geodesic joining z and y if v satisfies v(0) = z, y(I) = y and d(y(s),~(t)) =
|s — t| for s,t € [0,1], where | = d(z,y). For D € ]0,00], X is said to be a
D-geodesic space if for any two points =,y € X satisfying d(x,y) < D, there
exists a geodesic joining z and y. Furthermore, if a geodesic exists uniquely
for any two points x,y € X such that d(z,y) < D, then X is called a uniquely
D-geodesic space. In a uniquely D-geodesic space, the image of a geodesic
joining = and y is said to be a geodesic segment and is denoted by [z, y].

Let X be a uniquely D-geodesic space. For z,y € X with d(x,y) < D and
t € [0,1], there exists a unique point z € [z, y] such that d(z, z) = (1 —t)d(z,y)
and d(y, z) = td(z,y). The point z is called a convex combination of = and y,
and is denoted by tx @ (1 —t)y. For three points z,y, z € X, a geodesic triangle
A(z,y,z) C X is defined by the union of geodesic segments joining each two
points. A subset C' C X is said to be convex if [z,y] C C for all 2,y € C.

For k € R, let M, be a two-dimensional model space with curvature k.
In particular, My is the two-dimensional Euclidean space R?, M is the two-
dimensional unit sphere S?, and M_; is the two-dimensional hyperbolic space
H2. The diameter of M, is denoted by D,, that is, D, = oo for k < 0 and
D,, = n/+/k otherwise.

Let k € R and let X be a uniquely D-geodesic space. For a geodesic triangle
A(z,y,z) C X with d(z,y) + d(y, z) + d(z,z) < 2D,, a comparison triangle
A(Z,7,2) C M, is defined by [z, 7] U [y, z] U[Z, Z], where Z, , Z are comparison
points on M, which satisfies d(z,y) = d(z,y), d(y, z) = d(y,z), and d(z,z) =
d(z,z). X is called a CAT (k) space if for any two points p,q € A(x,y,2)
and their comparison points p,§ € A(Z, 7, 2), the inequality d(p,q) < d(p,q),
which is called a CAT (k) inequality, is satisfied for any A(z,y,z) C X and its
comparison triangle A(Z, 7, Z) C M,. It is well known that any CAT(k) space
is also a CAT(x') space whenever k < x’. A CAT(k) space X is said to be
admissible if d(z,y) < D, /2 for any x,y € X.

Let X be an admissible CAT(1) space. Then the following inequality always
holds for any z,y,z € X and a € [0, 1]:

cosd(az @ (1 — a)y, z) sind(z,y)
> cosd(x, z) sin(ad(x,y)) + cosd(y, z) sin((1 — a)d(z, y)).

This inequality is often called the parallelogram law on CAT(1) spaces. The
following inequality is easily obtained by this inequality:

cosd(az @ (1 — a)y, z) > acosd(z,z) + (1 — a) cosd(y, z).
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Let C' be a nonempty set. For f: C — R, the set of all maximizers and
all minimizers of f is denoted by argmax, . f(z) and argmin . f(z), respec-
tively. In this paper, if argmax, .~ f(x) consists of exactly one point p, it is
denoted by p = argmax, .- f(x).

Let X be a set and C' a nonempty subset of X. For T: C — X, the set of
all fixed points of T is denoted by F(T).

Let X be a metric space. An asymptotic center of a sequence {x,} C X is
defined by argmin, ¢ y (limsup,,_, d(z,z,)). If the asymptotic center of any
subsequences of {z,, } is just one point x € X, then {z,,} is said to A-converge to

x, and we denote it by x,, A A mapping T from X into itself is said to be A-

demiclosed if for any sequences {z,, } C X with z, A @, imy, o0 d(zp, Tzp) =0
implies « € F(T).

Theorem 2.1 (Espinola and Fernandez-Leén [3]). Let X be a complete CAT(1)
space. If a sequence {x,} C X satisfies inf,cx limsup,,_, o d(zn,y) < 7/2,
then there exists a A-convergent subsequence {x,,} of {zn}.

Theorem 2.2 (He, Fang, Lopez and Li [4]). Let X be a complete CAT(1)

space and {x,} a sequence on X such that x, Az eX. Then foranyu e X
with limsup,,_, . d(u,z,) < 7/2, the following inequality holds:

d(u, z) < liminf d(u, z,,).
n—0o0

Let X be a CAT(1) space and T a mapping from X into itself with F/(T) #
@. T is said to be quasinonexpansive if it satisfies d(Tz,z) < d(z,z) for
all z € X and z € F(T). We know that the set of all fixed points of
quasinonexpansive mapping is closed and convex. Further, T is said to be
strongly quasinonexpansive if it is quasinonexpansive and, for any sequence
{zn} C X, limy, 00 (d(2n, 2) — d(Tzp, 2)) = 0 for some z € F(T) implies that
lim,, o d(zp, Txy) = 0.

Let X be a complete CAT(1) space and C' a nonempty closed convex sub-
set of X. Then there exists a unique point p, € C such that d(z,p,) =
infyec d(z,y) for each z € X. We define a metric projection Po from X onto
C by Pcx = p, for any x € X.

Next, we introduce some properties of trigonometric functions and their
inverses. In this paper, we assume that sin™': [-1,1] — [-7/2,7/2],
cos™t: [-1,1] = [0,7], tan™!': R — ]—7/2,7/2] are inverses of the trigono-
metric functions.

Lemma 2.3. For any a € R,
1

Vita?

sin(tan™' a) = e cos(tan™! a) =

V1t a2’



A HALPERN’S ITERATIVE SCHEME WITH MULTIPLE ANCHOR POINTS 317

Proof. For any A € |—7/2,7/2[, we have sin A = (tan A)/v/1 + tan® A, cos A =
1/V1 + tan® A. So putting A = tan~! a, we get the desired result. O
Lemma 2.4. For any a,b € R with ab > —1,

L a—b
1+4ab’

tan"'a —tan~!' b = tan

Proof. Let a,b € R and suppose that ab > —1. From the definition of tan~!,
we have tan~!a — tan='b € ]—7, 7[. Moreover, from Lemma 2.3, we obtain
cos(tan~ta — tan=1b) = (1 + ab)/(v/1 + a2v/1 + b2) > 0 and hence tan™! a —
tan~1 b € |—7/2, 7/2[. Therefore, since tan(tan~! a—tan=' b) = (a—b)/(1+ab),
we get the conclusion. O

The following is an important lemma that forms the basis of the proof of
the main result.

Lemma 2.5 (Aoyama, Kimura and Kohsaka [1]; Saejung and Yotkaew [8]).
Let {an} be a sequence of non-negative real numbers and {t,} a sequence of real
numbers. Let {B,} be a sequence in]0,1[ such that Y| B, = co. Suppose that
ant1 < (1= Bn)an+ Buty for alln € N. Ifliminf;_, o, (av(i)ﬂ — aw(i)) >0 im-
plies limsup,_, . Loy < 0 for any nondecreasing @: N — N with lim;_, o (i) =
o0, then a, — 0.

3. MAIN RESULT

In this section, we prove a Halpern type approximation theorem with multi-
ple anchor points for strongly quasinonexpansive and A-demiclosed mappings
on admissible complete CAT(1) spaces. To prove the main result, we define a
new convex combination and show that its properties.

Lemma 3.1. Let {s,},{tn},{un} be sequences of non-positive real numbers.
Then lim,, o0 Sy, = limy, o0 £, = limy,—y 00 Uy, = 0 whenever limy,— o0 (S, + tn +
up) = 0.

Lemma 3.2. Let X be an admissible CAT(1) space. For uy,us,uz € X and
B1, B2, B3 € [0,1] with B + B2 + B3 = 1, define a function g: X —]0,1] by

g(w) = Brcosd(ur, ) + B2 cos d(uz, x) + B3 cos d(us, x)
for all x € X. Then for any z,y € X,

11 d(z,y) _ g(x) +9(y)
g<2x@2y> cos 5 > 2 .
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Proof. Let x,y be elements of X. It is obvious if x = y. Otherwise, we have

3
1 1 1 1
g<21: @ 2y> sind(z,y) = E Bi cosd(ui7 - ® 2y) sind(z,y)

; 2
=1

3
> Z Bi(cosd(u;, z) 4+ cosd(u;, y)) sin d(g’ )
i=1

— (g(e) + 9(y)) sin 2L,

2
Since sind(z,y) = 2sin w Ccos @, we obtain the desired result. O

Lemma 3.3. Let X be a complete admissible CAT(1) space and C' a nonempty
closed conver subset of X. For uj,uz,us € X and B1, 52,03 € [0,1] with
B1+ B2+ B3 =1, define a function g: X —]0,1] by

g(x) = prcosd(uy,x) + B2 cosd(ug, x) + P cos d(us, )
for all x € X. Then g has a unique mazximizer on C.

Proof. Put L = sup,¢c g(x) and take a sequence {z,} C C with L —1/n <
g(zn) < L for all n € N. Then lim,,,, g(2,) = L.

We show that {z,} is a Cauchy sequence on C. Let m,n € N with m > n.
From Lemma 3.2, we get g(32,, & 12,) cos W > (g(zm) +9(2n))/2. Since
g(%zm D %Zn) <L<1,

d(zm7zn) > g(zm) + g(zn) > g(zm) + g(zn) > L— 1/n
> Cu(lemola) S 2 C 1
Therefore {z,} is a Cauchy sequence on C. From completeness of X and
closedness of C, there exists z € C such that z, — z and hence g(z) = L =

sup,ec 9(2). So z is a maximizer of g on C.
Next, we prove its uniqueness. Let z,z’ € C satisfying g(z) = g(z') = L.
From Lemma 3.2, we have

/ 1 1 ! !
L cos d(z,z) 2g(z@z’> Ccos d(z,z) > g(z)+g(z) = L.

cos =1 (n— o0).

2 2 2 2 = 2
Since L > 0, we get cos d(ZT’Z/) > 1 and hence z = 2’. Therefore we get the
conclusion. O

Lemma 3.4. Let X be a uniquely geodesic space. Then for u,v € X with
0 <d(u,v) <7/2 and § € [0,1],

ou® (1 — o)v = argmax(f cosd(u,z) + (1 — 8) cosd(v, z))

z€[u,v)
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if and only if
B 4 Bsind(u,v)
~ d(u,v) tan 1— B+ Bcosd(u,v)’

Proof. Tt is obvious if 8 =0 or 8 = 1. For u,v € X with u # v and 8 € ]0, 1],
put d = d(u,v), A = argmax,c, (8 cosd(u,z) + (1 — B) cosd(v,z)), B =
argmaxgy«;<1(8cos((1 —t)d) + (1 — B) costd), and C = argmaxy,« (S cos(d —
t)+ (1 — B) cost). Then the sets A, B and C consist of one point, respectively.
We also have A = {tu® (1 —t)v |t € B} and B = argmaxg<,<; (8 cos(d —td) +
(1—B)costd) ={t |t e C}.

Define a function f: |—n/2,7/2[ — 10,1 by f(t) = Bcos(d—t)+ (1 — ) cost
for allt € |—m/2,7/2[, then f is infinitely differentiable and f'(0) > 0, f'(d) <0
and f"(t) < 0 for all ¢ € [0,d]. So there exists a unique real number ¢ such
that f'(t) = 0 and ¢ € ]0,d[, that is, there exists a unique maximizer ¢ of
f on ]0,d[ and it satisfies f'(t) = 0. Then we have f’(t) = 0 if and only if

— —1 __ Bsind
t = tan 1_Brﬁncosd.
- 1 Bsind _ sl -1 Bsind
Thus we get C = {tan 1—,8—}3-1%} and B = {E tan #ﬁcosd} So
putting o = % tan™! %7 we get A = {ou@ (1 —o)v}, that is, cu® (1 —
o) = argmax, ¢, (B cosd(u, z) + (1 — ) cos d(v, x)). O

Lemma 3.5. Let X be a uniquely geodesic space. Then for u,v € X with
d(u,v) < 7/2 and § € [0,1],

argmax(f cosd(u,x) + (1 — 8) cosd(v, x))

z€[u,v]
= argmax(f3 cosd(u, z) + (1 — 8) cos d(v, x)).
reX
Proof. If uw = v, it is obvious. Let w,v € X with v # v and g8 € [0,1],
and define a function f: X — R by f(z) = Bcosd(u,z) + (1 — ) cosd(v,x)
for all z € X. Put z = argmax,¢(,, f(z) and let w € X. Further, put
t = d(v,w)/(d(u,w) + d(v,w)) and 2’ = tu @ (1 — t)v € [u,v]. Then we get
f(z) > f(z) and d(u,w) = (1 —t)(d(u, w) +d(v,w)) > (1 —t)d(u,v) = d(u, ).
Similarly, we also have d(v,w) > d(v,z’). Therefore we get f(z') > f(w) and
hence f(z) = maxyex f(w). O

Using Lemma 3.4 and Lemma 3.5, we define a new convex combination.

Definition 3.6. Let X be a uniquely geodesic space. For w,v € X with
d(u,v) < 7/2 and « € [0,1], we define a 1-convex combination of u and v by
1
au® (1 —a)v ef argmax(acosd(u, z) + (1 — a) cos d(v, x)).
reX
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1
From Lemma 3.4 and Lemma 3.5, it can be expressed by au @ (1 — a)v =
1 a sin d(u,v)

—1
d(u,v) tan 1—a+acos d(u,v)

ou® (1 — o)v, where o = whenever u # v.

Lemma 3.7. For any o € [0,1] and d € ]0,7/2],

1ian-t asind —|—ltan_1 (1—-a)sind
d l—a+acosd d a+ (1 —a)cosd

Proof. 1t is obvious if « =0 or a = 1.
We consider the case where o € ]0,1[. Let a € ]0,1[ and d € ]0,7/2[. Using
Lemma 2.4, we have

1 1t _1 asind 1 tan—1 sind tan—1 asind
——tan " ——————— = — | tan —tan " —4m————
d l—a+acosd d cosd 1—a+aacosd
sind asind
_ 1 -1 cosd 1—a-+a«acosd
o dtan sind asind
cosd 1—a+ acosd
_ ltanfl (1 —a)sind .
d a+ (1 —a)cosd
So we get the desired result. O

Lemma 3.8. Let X be an admissible CAT(1) space and x,y,z € X, a € [0,1].
Then

cosd(az d (1 — )y, z) > 2o d@2) + (1~ a)cosdly, 2)
VaZ+2a(1 — a)cosd(z,y) + (1 — a)?

Proof. Let z,y,2z € X and « € [0, 1]. Tt is obvious if = y. Suppose that x # y
and put

. asind(z,y)
—— tan .
d(z,y) 1—a+ acosd(z,y)
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From Lemma 3.4, Lemma 3.7 and Lemma 2.3, we have

cosd(ax 61]9 (1—a)y,z)sind(z,y)
= cosd(ox ® (1 — o)y, z)sind(x,y)
) _ asind(z,y)
> cosd(z, z) sin (tan T T— d(a:,y))
(1 —a)sind(z,y) )
a+ (1 —a)cosd(z,y)
asind(z,y)
Va2 +2a(l — a)cosd(z,y) + (1 — )2
. (1 —a)sind(z,y)
Va2 +2a(l — a)cosd(z,y) + (1 — a)?
__ acos d(z,z) + (1 — ) cosd(y, z)
Va2 +2a(l — a)cosd(x,y) + (1 — a)?

+ cosd(y, z) sin (tanl

= cosd(x, z) -

+ cosd(y, z)

-sind(z,y)

and hence

1 d 1— d

cos d(ax P (1 _ Oé)y, Z) > @ Cos (1‘, Z) + ( OZ) CcOos (y, Z) '

\/Ot2 +2a(1 — a)cosd(z,y) + (1 — a)?
Thus we get the desired result.

321

O

Corollary 3.9. Let X be an admissible CAT(1) space and z,y,z € X, a €

[0,1]. Then

1
cosd(az @ (1 — a)y, z) > acosd(z,z) + (1 — a) cosd(y, z).

Proof. Since y/a2 +2a(1 — a)cosd(z,y) + (1 — a)? < 1, Lemma 3.8 implies

the conclusion.
Lemma 3.10. Let o €]0,1[ and d € [0,7/2]. Define 8 € R by

B=1

l-a
\/oz2+2a(1—oz)cosd+(1—a)2'

Then 0‘72 <pB<1.
Proof. Since o + (1 — a)? < 1, we get
1-— 1-
- @ Sle—— >
Va?+2a(l —a)cosd + (1 — )2 a2+ (1—a)?
It is obvious that 5 < 1.

I\D‘QM

O
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Lemma 3.11. Let X be an admissible CAT(1) space. Then for u,y,z € X
and o €10, 1],

1 — cosd(au é (1-a)y,z)

< (1= B)(1 - cosd(y, 2))

(1 —a++/a2+2a(1 —a)cosd(u,y) + (1 — 04)2) cosd(u, z)
a+2(1 —a)cosd(u,y) ’

+8 (1~

where
l—«

- Va? +2a(1 — a)cosd(u,y) + (1 —a)?

Proof. 1t is obvious if u = y. Otherwise, from Lemma 3.8, we have

B=1

1 — cosd(au é (1—-a)y,z)
B acosd(u, z)
Va2 +2a(1 - o) cosd(u,y) + (1 - )’

(1 _ cos . B acosd(u, 2)
= (1= A~ cosdly, ))+6<1 B\/ag+2a(1—a)cosd(u,y)+(1—a)2>.

<1—(1-B)cosd(y, 2)

Since
acosd(u, 2)
B/ a2+ 2a(1 — ) cosd(u, y) + (1 — a)?
_ acosd(u, z)
Va2 +2a(l —a)cosd(u,y) + (1 —a)2 — (1 —a)
(1 —a+ a2+ 2a(1 —a)cosd(u,y) + (1 — a)z) cosd(u, z)
a+2(1 — a)cosd(u,y) ’

we get the conclusion. O

Lemma 3.12. Let {a,} be a sequence on |0,1[ such that lim, . an = 0,
and {sp},{tn} sequences on [0,7/2] such that lim, ,o0 s, = d1 € [0,7/2],
limy, 00 t, = da € [0,7/2]. Define sequences {on},{mn} C]0,1[ by

1—a,
Unzl_ P
Va2 4+ 20, (1 — ay)coss, + (1 — ay)?
1—a,
Tn =1

- Va2 4+ 20, (1 — ay) costy, + (1 — ay)?
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for all n € N, respectively. Then

Proof. Put

Pn = V02 + 20, (1 — ) cos s, + (1 — ay)?,
Gn = V02 + 20, (1 — ay) costy, + (1 — ay,)?

for all n € N. Then we have

- 1—-oa, apn +2(1 — ay,) cost,
Tn _ \/an2+2an(1_an) costn + (1 — an)? _ qn(gn + 1 —an)
o 1—a, an +2(1 —ay)coss,
\/an2 + 20, (1 — ap) cos sy + (1 — ay)? Prn(pn+1—ap)
Since lim,, o pn = lim,, o g, = 1, we get the conclusion. O

Now, we show the main result.

Theorem 3.13. Let X be an admissible complete CAT(1) space and suppose
that sup,, ,ex d(u,v) < /2. Let R, S,T be strongly quasinonexpansive and A-
demiclosed mappings from X into itself with F = F(R)NF(S)NF(T) # &. Let
{an} € ]0,1] such that limy, oo oy, = 0 and > o7 a2 = oo, and {Bn}, {7} C
10, 1] such that lim, o Bn = B €10, 1], lim, 00 ¥n = v €]0, 1].

Let u,v,w,z1 € X and define a iterative sequence {x,} C X by

1
rn = apu® (1 — ap) Ry,
1
Sn = apv ® (1 — ) Sy,
1
tn = anw® (1 — ap)Tx,,
1 1
Tp+1 = ﬂnrn S7] (1 - ﬁn)(’)’nsn SY (1 - f}/n)tn)
for all n € N. Then the sequence {x,} converges to a point p € F, which is

a mazimizer of the function g(x) = fcosd(u,z) + (1 — 8)(ycosd(v,z) + (1 —
v) cosd(w, xz)) on F.

Proof. Since F' is a closed convex subset of X and from Lemma 3.3, the exis-
tence and uniqueness of the elements of the set argmax, c  g() are guaranteed.
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Let p = argmax, ¢ g(x) and put

an =1 —cosd(zy,p),
(1 — an + V2 4 200, (1 — o) cos d(u, Ray,) 4 (1 — ozn)2> cos d(u, p)

=1 - )
an, +2(1 — ay,) cos d(u, Rxy,)
(1 — ap + V2 4 200, (1 — ) cosd(v, Sp) + (1 — an)Q) cosd(v,p)
b =1- ;
apn +2(1 — ay,) cosd(v, Sxy,)
. (1 —ap + Va2 + 20, (1 — o) cosd(w, Ty,) + (1 — an)z) cos d(w,p)
b, =1-—
" an +2(1 — ayp) cosd(w, Tzy,) ’
’yr}z% =1- L an )
Va2 + 20, (1 — ) cosd(u, Rzy,) + (1 — o )?
/75 =1- L on )
Va2 4 20, (1 — ) cosd(v, Szp) + (1 — )2
7T 1 1—a,

- Va2 + 20, (1 — ap) cosd(w, Tx,) + (1 — oy )?

for all n € N. Moreover, put 3% = B,,, 85 = (1 — Bn)Vn, BL = (1= B,)(1 —7n)
for all n € N and put 8% = 8, 35 = (1— By, 37 = (1— B)(1—7). Then {7/},
{73} and {yI'} are sequences on 0, 1[. From Lemmas 3.8 and 3.11, we have

1
an+1 S 1- 571 COS d(rnvp) - (1 - Bn) COs d('YnSn @ (1 - fYn)tnap)

<1- ,Bf cosd(ry,p) — Bf cosd(sn,p) — ﬂg cosd(tn,p)
= BR(1 = cosd(rn,p)) + B (1 — cosd(sn,p)) + B (1 — cos d(tn, p))
< B ((1 =451 = cosd(Ran, p)) + 74 bY)
+ 85 (1= 4)(1 = cosd(Szn,p)) + 75 b5)
+ B (L =) (1 = cos d(Txn, p)) + 7, by,)
< (BRA-AH) + 851 =) + BEA = 40)) an
+ BEAEbE + Bty + Brvsbh
= (1= (BEvE+ 8375 + BLAL)) an
BRARbR + Bivnby + B by
B + BRa + Bai

+ (BEAE + B33 + BEAT)

for all n € N.
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Now we show that the following conditions hold:

oo

() Y B+ B + Brm) = oo,
n=1

(ii) for any ¢: N — N satisfying that ¢ is nondecreasing and lim;_, . (i) =
oo, liminf;_, .o (aw(i)+1 — aw(i)) > 0 implies

i sup 2@ e sa(z) +5; (z)%(z) ot T8 (z)%(z)bw(w 0.
o0 B et T Bowow + Pot Vet

First, we show (i). From Lemma 3.10, we have 7* > a2 /2, 45 > o2 /2 and
> an/Q Thus we get

) o )
BRQ2 + ,BSOZQ + BTOlQ 042

n=1 n=1 n=1

Next, we consider (ii). Let ¢ be a nondecreasing function from N into
itself with lim; . p(i) = oo and put n; = (i) for all i € N. Assume
liminf; ,o0 (@n;+1 — an;) > 0. Then we get

0 < liminf (an,+1 — an;)
1— 00

= liminf (cosd(z,,p) — cosd(Tn,+1,p))

1— 00

< liminf (cosd(zn,,p) — 55; cosd(rp,,p) — ﬁi cosd(sp,,p)

1— 00

— B cosd(tn,,p))

< lim inf (cosd(zn,,p) — B,}z(ani cosd(u,p) + (1 — ay,) cosd(Rxyp,, p))
— B (0, cosd(v,p) + (1 — a,) cos d(Szy,, p))
- gr (am, cosd(w, p) + (1 — a,) cos d(Txy,, p)))

= hm inf (ﬂ (cosd(xy,,p) — cosd(Rxy,,p))

B5(cos d(zp,,p) — cosd(Szn,,p))
+ ﬂT(COS d(xn,,p) — cos d(Txy,,p)))
< limsup (8%(cos d(zn,,p) — cosd(Rxp,, p))

1—>00
+ B%(cos d(zp,,p) — cos d(Sz,,p))

+ B (cos d(xp,, p) — cosd(Txn,,p)))
<0.
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Thus we obtain

lim (ﬁR(COS d(xﬂq ) p) cos d(RxnI vp)) + /BS(COS d(xrn 7p) — CO8 d(an1 ) p))

1—00
+ BT (cosd(zy,,p) — cosd(Tzy,,p))) = 0.

From Lemma 3.1, we have

lim (cosd(xy,,p) — cosd(Rzy,,p)) =0
17— 00
lim (cosd(zn,,p) — cosd(Sz,,,p)) =0,
11— 00
lim (cosd(zn,,p) — cosd(Txy,,p)) =0
11— 00

Since R, S,T are strongly quasinonexpansive, we obtain

(1) lim d(xy,, Rry,) = lim d(z,,, Sty,) = lim d(z,,,TT,,) = 0.

1—00 1—>00 1—»00

Take a subsequence {xnj} of {z,,} satisfying

Bn[%nl Bnlvnl Bnilynl n;

lim sup
i—00 ni’%u + 57117111 + 5n,7n1
i nij ’Ynl 7}’?1 +ﬁn1 ’Ynl gl +Bnl ’Ynl n1
= lim
=00 fi Vi, B, Ve, + B, Vi,

Moreover, take a subsequence {z,} of {z, } satisfying

liminf d(u, ©,, ) = lim d(u,z)
j—ro0 r—00

and a subsequence {z,_} of {z.} with

hTH_l)gOlf d(v,z,) = Slggo d(v, z,).

Furthermore, take a subsequence {z;,, } of {z,} satisfying

liminf d(w, z,,) = lim d(w, z,, )
s—00 t—00 t

and a subsequence {vy} of {z. } which satisfies vy A 2 € X. Then
from the formula (1), we have limg_,o d(vg, Rug) = limg_ oo d(vg, Svg) =
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limg_ o0 d(vg, Tvg) = 0 and hence z € F. Further, since

lim d(u,v) = liminf d(u, a:m.j) < lim inf (d(u, Rznij) + d(Rxmj T, )

k—o0 Jj—o0 j—oo

— lim inf d(u, R, )

Jj—o00

< liminf d(u, Rvy)
k—o00

< limsup d(u, Rug,)

k—o0

< lim sup(d(u, vi) + d(vk, Rug))

k—o0

= lim d(u,vy),
k—o0

we get limg o d(u, v) = limg_ o d(u, Rug). In the same way, we also obtain
limyg 00 d(v, vg) = limg o0 d(v, Svi) and limg s o0 d(w, v) = limg_ oo d(w, T'vg,).
By Theorem 2.2, we have

lim d(u, Rvg) = lim d(u,v) > d(u, 2),

k—o0 k—o0

lim d(v,Svg) = lim d(v,vy) > d(v, 2),

k—o0 k—o0

lim d(w,Tvg) = lim d(w,vg) > d(w, 2)
k— o0 k— o0

and hence

lim (B cosd(u, Rug) + B° cosd(v, Svy,) + BT cos d(w, Tvy,))

k— o0
< P cosd(u, z) + 5% cosd(v, z) + BT cos d(w, 2)
< BB cosd(u,p) + B cosd(v, p) + BT cosd(w, p).

Put dy = limg o0 d(u, Rug), do = limg o d(v, Svg), ds = limg_ o0 d(w, Tvg)
and put my =n;;,  for all K € N. Then from Lemma 3.12, we obtain
Stk

s T
lim Vi _ cos do im Vo _ cos ds
k—oo Y cosdy’  k—oo R cosdy

Put
R BE cos dy
we= BEcosdy, + B° cosdy + ST cosds’
s B~ cos dsy
Be= BE cosdy + B35 cosdy + BT cosds’
T BT cosds

b= BEcosdy 4+ B° cosdy + ST cosds’
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Then we get
lim sup e O+ O, b & B, o,
1—00 nl’ynl + Bnllynl + Bnlrynl
i P O & B Yo s+ By Vi Ui
k=00 mnm,c + B Yo + B VE
R 5 Cos do S T Cos d3 T
b . .
~ Jim s +5 cosdy +0 cosd; Mk
k—o00 GR 1 35 cos da T COs ds
cos d; cos dy
= kllrrgo (uRbﬁk + ,usbik Tbgk)

. d(u,p) cosd(v,p)
=1 R{1_ _cosalw,p) S =2\l
el (,u ( cos d(u, Ruy,) s cos d(v, Svy,)

T cos d(w, p)
s (1 ~ cos d(w,Tvk)>>
. cos d(u, Rvg) — cos d(u, cosd(v, Svy) — cosd(v,

- klggo ('uR ' ( co)s dx ) s : co)s do =
7 cosd(w,Tvy) — cosd(w, p)

. cos ds )

B cosd(u, Ruy,) + 8% cosd(v, Svi,) + BT cos d(w, Tvy,)
( BE cosdy + B35 cosdy + BT cosds

B cosd(u,p) + 3% cosd(v, p) + BT cosd(w, p) )

BE cosdy + B° cosdy + ST cosds

+

= lim
k—o0

<0.

Thus we have (ii). Hence, using Lemma 2.5, we obtain the desired result. O

In the formula

Tni1 = Bnsn ela (1 - 5n)(7n7’n é (1 - ’Yn)tn)

of Theorem 3.13, the limit of the sequence {z,} does not depend on the order
of the convex combination of r,, s, and ¢, unless the weight of the coeflicient of
the convex combination of r,, s, and t,, is changed. For example, the sequence
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{z,} defined by

for

Tn = QpU é (1 — ayp)Rxy,

Sy = QpU é (1 — ap)Sxy,

tn = QW é (1= an)Txy,

Tt = Bpsn & (L= B) (o & (1= 44)tn)
all n € N converges to

p = argmax (B cosd(u, x) + (1 — B)(ycosd(v,z) + (1 — ) cos d(w, x))),
zel

where 6;1 = (1 - 6n)7na (1 - B;z)ry;z = Bn.

(1]

[6]
[7]
(8]
[9]

(10]

Y.
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