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γ ∈ ]0, 1[. Let u, v, w, x1 ∈ X and define an iterative sequence {xn} ⊂ X by
rn = αnu⊕ (1− αn)Rxn,
sn = αnv ⊕ (1− αn)Sxn,
tn = αnw ⊕ (1− αn)Txn,
xn+1 = βnrn ⊕ (1− βn)(γnsn ⊕ (1− γn)tn)

for all n ∈ N. Then the sequence {xn} converges to a point p ∈ F , which is a
minimizer of the function g(x) = βd(u, x)2+(1−β)(γd(v, x)2+(1−γ)d(w, x)2)
on F .

In this theorem, the function g can be defined as

g(x) = λd(u, x)2 + µd(v, x)2 + νd(w, x)2,

where λ, µ, ν > 0 satisfy λ + µ + ν = 1. This function is inspired by the
following inequality, which is obtained a CAT(0) space X: for any x, y, z ∈ X
and α ∈ [0, 1],

d(αx⊕ (1− α)y, z)2 ≤ αd(x, z)2 + (1− α)d(y, z)2.

On the other hand, if X is a CAT(−1) space, the following inequality holds
for any x, y, z ∈ X and α ∈ [0, 1]:

cosh d(αx⊕ (1− α)y, z) ≤ α cosh d(x, z) + (1− α) cosh d(y, z).

From this observation, it seems to be appropriate to use the following function
in CAT(−1) spaces:

h(x) = λ cosh d(u, x) + µ cosh d(v, x) + ν cosh d(w, x).

It is known that all CAT(−1) spaces are also CAT(0) space. Therefore,
the sequence generated by the same method as in Theorem 1.1 converges to
the same point p also in a CAT(−1) space. That point is a minimizer of the
function g, however, it is not a minimizer of the following function:

h(x) = β cosh d(u, x) + (1− β)(γ cosh d(v, x) + (1− γ) cosh d(w, x)).

Similarly, the limit p of the iteration in Theorem 1.1 does not maximize the
following function:

i(x) = β cos d(u, x) + (1− β)(γ cos d(v, x) + (1− γ) cos d(w, x)).

To solve this problem, we need to redefine the notion of convex combination
in a different way.

In this paper, we define a new convex combination on a CAT(1) space in
order to resolve that problem, and show that a sequence generated by using
that convex combination converges to a maximizer of i in CAT(1) spaces.
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2. Preliminaries

Let (X, d) be a metric space. For x, y ∈ X, a mapping γ : [0, l] → X is called
a geodesic joining x and y if γ satisfies γ(0) = x, γ(l) = y and d(γ(s), γ(t)) =
|s − t| for s, t ∈ [0, l], where l = d(x, y). For D ∈ ]0,∞], X is said to be a
D-geodesic space if for any two points x, y ∈ X satisfying d(x, y) < D, there
exists a geodesic joining x and y. Furthermore, if a geodesic exists uniquely
for any two points x, y ∈ X such that d(x, y) < D, then X is called a uniquely
D-geodesic space. In a uniquely D-geodesic space, the image of a geodesic
joining x and y is said to be a geodesic segment and is denoted by [x, y].

Let X be a uniquely D-geodesic space. For x, y ∈ X with d(x, y) < D and
t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that d(x, z) = (1− t)d(x, y)
and d(y, z) = td(x, y). The point z is called a convex combination of x and y,
and is denoted by tx⊕ (1− t)y. For three points x, y, z ∈ X, a geodesic triangle
△(x, y, z) ⊂ X is defined by the union of geodesic segments joining each two
points. A subset C ⊂ X is said to be convex if [x, y] ⊂ C for all x, y ∈ C.

For κ ∈ R, let Mκ be a two-dimensional model space with curvature κ.
In particular, M0 is the two-dimensional Euclidean space R2, M1 is the two-
dimensional unit sphere S2, and M−1 is the two-dimensional hyperbolic space
H2. The diameter of Mκ is denoted by Dκ, that is, Dκ = ∞ for κ ≤ 0 and
Dκ = π/

√
κ otherwise.

Let κ ∈ R and letX be a uniquely Dκ-geodesic space. For a geodesic triangle
△(x, y, z) ⊂ X with d(x, y) + d(y, z) + d(z, x) < 2Dκ, a comparison triangle
△(x̄, ȳ, z̄) ⊂ Mκ is defined by [x̄, ȳ]∪ [ȳ, z̄]∪ [z̄, x̄], where x̄, ȳ, z̄ are comparison
points on Mκ which satisfies d(x, y) = d(x̄, ȳ), d(y, z) = d(ȳ, z̄), and d(z, x) =
d(z̄, x̄). X is called a CAT(κ) space if for any two points p, q ∈ △(x, y, z)
and their comparison points p̄, q̄ ∈ △(x̄, ȳ, z̄), the inequality d(p, q) ≤ d(p̄, q̄),
which is called a CAT(κ) inequality, is satisfied for any △(x, y, z) ⊂ X and its
comparison triangle △(x̄, ȳ, z̄) ⊂ Mκ. It is well known that any CAT(κ) space
is also a CAT(κ′) space whenever κ < κ′. A CAT(κ) space X is said to be
admissible if d(x, y) < Dκ/2 for any x, y ∈ X.

Let X be an admissible CAT(1) space. Then the following inequality always
holds for any x, y, z ∈ X and α ∈ [0, 1]:

cos d(αx⊕ (1− α)y, z) sin d(x, y)

≥ cos d(x, z) sin(αd(x, y)) + cos d(y, z) sin((1− α)d(x, y)).

This inequality is often called the parallelogram law on CAT(1) spaces. The
following inequality is easily obtained by this inequality:

cos d(αx⊕ (1− α)y, z) ≥ α cos d(x, z) + (1− α) cos d(y, z).
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Let C be a nonempty set. For f : C → R, the set of all maximizers and
all minimizers of f is denoted by argmaxx∈C f(x) and argminx∈C f(x), respec-
tively. In this paper, if argmaxx∈C f(x) consists of exactly one point p, it is
denoted by p = argmaxx∈C f(x).

Let X be a set and C a nonempty subset of X. For T : C → X, the set of
all fixed points of T is denoted by F (T ).

Let X be a metric space. An asymptotic center of a sequence {xn} ⊂ X is
defined by argminx∈X(lim supn→∞ d(x, xn)). If the asymptotic center of any
subsequences of {xn} is just one point x ∈ X, then {xn} is said to ∆-converge to

x, and we denote it by xn
∆
⇀ x. A mapping T from X into itself is said to be ∆-

demiclosed if for any sequences {xn} ⊂ X with xn
∆
⇀ x, limn→∞ d(xn, Txn) = 0

implies x ∈ F (T ).

Theorem 2.1 (Esṕınola and Fernández-León [3]). Let X be a complete CAT(1)
space. If a sequence {xn} ⊂ X satisfies infy∈X lim supn→∞ d(xn, y) < π/2,
then there exists a ∆-convergent subsequence {xni

} of {xn}.

Theorem 2.2 (He, Fang, Lopez and Li [4]). Let X be a complete CAT(1)

space and {xn} a sequence on X such that xn
∆
⇀ x ∈ X. Then for any u ∈ X

with lim supn→∞ d(u, xn) < π/2, the following inequality holds:

d(u, x) ≤ lim inf
n→∞

d(u, xn).

Let X be a CAT(1) space and T a mapping from X into itself with F (T ) ̸=
∅. T is said to be quasinonexpansive if it satisfies d(Tx, z) ≤ d(x, z) for
all x ∈ X and z ∈ F (T ). We know that the set of all fixed points of
quasinonexpansive mapping is closed and convex. Further, T is said to be
strongly quasinonexpansive if it is quasinonexpansive and, for any sequence
{xn} ⊂ X, limn→∞(d(xn, z) − d(Txn, z)) = 0 for some z ∈ F (T ) implies that
limn→∞ d(xn, Txn) = 0.

Let X be a complete CAT(1) space and C a nonempty closed convex sub-
set of X. Then there exists a unique point px ∈ C such that d(x, px) =
infy∈C d(x, y) for each x ∈ X. We define a metric projection PC from X onto
C by PCx = px for any x ∈ X.

Next, we introduce some properties of trigonometric functions and their
inverses. In this paper, we assume that sin−1 : [−1, 1] → [−π/2, π/2],
cos−1 : [−1, 1] → [0, π], tan−1 : R → ]−π/2, π/2[ are inverses of the trigono-
metric functions.

Lemma 2.3. For any a ∈ R,

sin(tan−1 a) =
a√

1 + a2
, cos(tan−1 a) =

1√
1 + a2

.
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Proof. For any A ∈ ]−π/2, π/2[, we have sinA = (tanA)/
√
1 + tan2 A, cosA =

1/
√
1 + tan2 A. So putting A = tan−1 a, we get the desired result. □

Lemma 2.4. For any a, b ∈ R with ab > −1,

tan−1 a− tan−1 b = tan−1 a− b

1 + ab
.

Proof. Let a, b ∈ R and suppose that ab > −1. From the definition of tan−1,
we have tan−1 a − tan−1 b ∈ ]−π, π[. Moreover, from Lemma 2.3, we obtain

cos(tan−1 a − tan−1 b) = (1 + ab)/(
√
1 + a2

√
1 + b2) > 0 and hence tan−1 a −

tan−1 b ∈ ]−π/2, π/2[. Therefore, since tan(tan−1 a−tan−1 b) = (a−b)/(1+ab),
we get the conclusion. □

The following is an important lemma that forms the basis of the proof of
the main result.

Lemma 2.5 (Aoyama, Kimura and Kohsaka [1]; Saejung and Yotkaew [8]).
Let {an} be a sequence of non-negative real numbers and {tn} a sequence of real
numbers. Let {βn} be a sequence in ]0, 1[ such that

∑∞
n=1 βn = ∞. Suppose that

an+1 ≤ (1−βn)an+βntn for all n ∈ N. If lim infi→∞
(
aφ(i)+1 − aφ(i)

)
≥ 0 im-

plies lim supi→∞ tφ(i) ≤ 0 for any nondecreasing φ : N → N with limi→∞ φ(i) =
∞, then an → 0.

3. Main result

In this section, we prove a Halpern type approximation theorem with multi-
ple anchor points for strongly quasinonexpansive and ∆-demiclosed mappings
on admissible complete CAT(1) spaces. To prove the main result, we define a
new convex combination and show that its properties.

Lemma 3.1. Let {sn}, {tn}, {un} be sequences of non-positive real numbers.
Then limn→∞ sn = limn→∞ tn = limn→∞ un = 0 whenever limn→∞(sn + tn +
un) = 0.

Lemma 3.2. Let X be an admissible CAT(1) space. For u1, u2, u3 ∈ X and
β1, β2, β3 ∈ [0, 1] with β1 + β2 + β3 = 1, define a function g : X → ]0, 1] by

g(x) = β1 cos d(u1, x) + β2 cos d(u2, x) + β3 cos d(u3, x)

for all x ∈ X. Then for any x, y ∈ X,

g

(
1

2
x⊕ 1

2
y

)
cos

d(x, y)

2
≥ g(x) + g(y)

2
.
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Proof. Let x, y be elements of X. It is obvious if x = y. Otherwise, we have

g

(
1

2
x⊕ 1

2
y

)
sin d(x, y) =

3∑
i=1

βi cos d

(
ui,

1

2
x⊕ 1

2
y

)
sin d(x, y)

≥
3∑

i=1

βi(cos d(ui, x) + cos d(ui, y)) sin
d(x, y)

2

= (g(x) + g(y)) sin
d(x, y)

2
.

Since sin d(x, y) = 2 sin d(x,y)
2 cos d(x,y)

2 , we obtain the desired result. □

Lemma 3.3. Let X be a complete admissible CAT(1) space and C a nonempty
closed convex subset of X. For u1, u2, u3 ∈ X and β1, β2, β3 ∈ [0, 1] with
β1 + β2 + β3 = 1, define a function g : X → ]0, 1] by

g(x) = β1 cos d(u1, x) + β2 cos d(u2, x) + β3 cos d(u3, x)

for all x ∈ X. Then g has a unique maximizer on C.

Proof. Put L = supx∈C g(x) and take a sequence {zn} ⊂ C with L − 1/n ≤
g(zn) ≤ L for all n ∈ N. Then limn→∞ g(zn) = L.

We show that {zn} is a Cauchy sequence on C. Let m,n ∈ N with m ≥ n.

From Lemma 3.2, we get g( 12zm ⊕ 1
2zn) cos

d(zm,zn)
2 ≥ (g(zm)+ g(zn))/2. Since

g
(
1
2zm ⊕ 1

2zn
)
≤ L ≤ 1,

cos
d(zm, zn)

2
≥ g(zm) + g(zn)

2g
(
1
2zm ⊕ 1

2zn
) ≥ g(zm) + g(zn)

2L
≥ L− 1/n

L
→ 1 (n → ∞).

Therefore {zn} is a Cauchy sequence on C. From completeness of X and
closedness of C, there exists z ∈ C such that zn → z and hence g(z) = L =
supx∈C g(x). So z is a maximizer of g on C.

Next, we prove its uniqueness. Let z, z′ ∈ C satisfying g(z) = g(z′) = L.
From Lemma 3.2, we have

L cos
d(z, z′)

2
≥ g

(
1

2
z ⊕ 1

2
z′
)
cos

d(z, z′)

2
≥ g(z) + g(z′)

2
= L.

Since L > 0, we get cos d(z,z′)
2 ≥ 1 and hence z = z′. Therefore we get the

conclusion. □

Lemma 3.4. Let X be a uniquely geodesic space. Then for u, v ∈ X with
0 < d(u, v) < π/2 and β ∈ [0, 1],

σu⊕ (1− σ)v = argmax
x∈[u,v]

(β cos d(u, x) + (1− β) cos d(v, x))
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if and only if

σ =
1

d(u, v)
tan−1 β sin d(u, v)

1− β + β cos d(u, v)
.

Proof. It is obvious if β = 0 or β = 1. For u, v ∈ X with u ̸= v and β ∈ ]0, 1[,
put d = d(u, v), A = argmaxx∈[u,v](β cos d(u, x) + (1 − β) cos d(v, x)), B =

argmax0≤t≤1(β cos((1− t)d) + (1− β) cos td), and C = argmax0≤t≤d(β cos(d−
t) + (1− β) cos t). Then the sets A,B and C consist of one point, respectively.
We also have A = {tu⊕ (1− t)v | t ∈ B} and B = argmax0≤t≤1(β cos(d− td)+

(1− β) cos td) = { 1
d t | t ∈ C}.

Define a function f : ]−π/2, π/2[ → ]0, 1[ by f(t) = β cos(d− t)+(1−β) cos t
for all t ∈ ]−π/2, π/2[, then f is infinitely differentiable and f ′(0) > 0, f ′(d) < 0
and f ′′(t) < 0 for all t ∈ [0, d]. So there exists a unique real number t such
that f ′(t) = 0 and t ∈ ]0, d[, that is, there exists a unique maximizer t of
f on ]0, d[ and it satisfies f ′(t) = 0. Then we have f ′(t) = 0 if and only if

t = tan−1 β sin d
1−β+β cos d .

Thus we get C = {tan−1 β sin d
1−β+β cos d} and B = { 1

d tan
−1 β sin d

1−β+β cos d}. So

putting σ = 1
d tan

−1 β sin d
1−β+β cos d , we get A = {σu⊕ (1−σ)v}, that is, σu⊕ (1−

σ)v = argmaxx∈[u,v](β cos d(u, x) + (1− β) cos d(v, x)). □

Lemma 3.5. Let X be a uniquely geodesic space. Then for u, v ∈ X with
d(u, v) < π/2 and β ∈ [0, 1],

argmax
x∈[u,v]

(β cos d(u, x) + (1− β) cos d(v, x))

= argmax
x∈X

(β cos d(u, x) + (1− β) cos d(v, x)).

Proof. If u = v, it is obvious. Let u, v ∈ X with u ̸= v and β ∈ [0, 1],
and define a function f : X → R by f(x) = β cos d(u, x) + (1 − β) cos d(v, x)
for all x ∈ X. Put z = argmaxx∈[u,v] f(x) and let w ∈ X. Further, put

t = d(v, w)/(d(u,w) + d(v, w)) and z′ = tu ⊕ (1 − t)v ∈ [u, v]. Then we get
f(z) ≥ f(z′) and d(u,w) = (1− t)(d(u,w)+d(v, w)) ≥ (1− t)d(u, v) = d(u, z′).
Similarly, we also have d(v, w) ≥ d(v, z′). Therefore we get f(z′) ≥ f(w) and
hence f(z) = maxw∈X f(w). □

Using Lemma 3.4 and Lemma 3.5, we define a new convex combination.

Definition 3.6. Let X be a uniquely geodesic space. For u, v ∈ X with
d(u, v) < π/2 and α ∈ [0, 1], we define a 1-convex combination of u and v by

αu
1
⊕ (1− α)v

def
= argmax

x∈X
(α cos d(u, x) + (1− α) cos d(v, x)).
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From Lemma 3.4 and Lemma 3.5, it can be expressed by αu
1
⊕ (1 − α)v =

σu⊕ (1− σ)v, where σ = 1
d(u,v) tan

−1 α sin d(u,v)
1−α+α cos d(u,v) whenever u ̸= v.

Lemma 3.7. For any α ∈ [0, 1] and d ∈ ]0, π/2[,

1

d
tan−1 α sin d

1− α+ α cos d
+

1

d
tan−1 (1− α) sin d

α+ (1− α) cos d
= 1.

Proof. It is obvious if α = 0 or α = 1.
We consider the case where α ∈ ]0, 1[. Let α ∈ ]0, 1[ and d ∈ ]0, π/2[. Using

Lemma 2.4, we have

1− 1

d
tan−1 α sin d

1− α+ α cos d
=

1

d

(
tan−1 sin d

cos d
− tan−1 α sin d

1− α+ α cos d

)

=
1

d
tan−1

sin d

cos d
− α sin d

1− α+ α cos d

1 +
sin d

cos d
· α sin d

1− α+ α cos d

=
1

d
tan−1 (1− α) sin d

α+ (1− α) cos d
.

So we get the desired result. □

Lemma 3.8. Let X be an admissible CAT(1) space and x, y, z ∈ X, α ∈ [0, 1].
Then

cos d(αx
1
⊕ (1− α)y, z) ≥ α cos d(x, z) + (1− α) cos d(y, z)√

α2 + 2α(1− α) cos d(x, y) + (1− α)2
.

Proof. Let x, y, z ∈ X and α ∈ [0, 1]. It is obvious if x = y. Suppose that x ̸= y
and put

σ =
1

d(x, y)
tan−1 α sin d(x, y)

1− α+ α cos d(x, y)
.
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From Lemma 3.4, Lemma 3.7 and Lemma 2.3, we have

cos d(αx
1
⊕ (1− α)y, z) sin d(x, y)

= cos d(σx⊕ (1− σ)y, z) sin d(x, y)

≥ cos d(x, z) sin

(
tan−1 α sin d(x, y)

1− α+ α cos d(x, y)

)
+ cos d(y, z) sin

(
tan−1 (1− α) sin d(x, y)

α+ (1− α) cos d(x, y)

)
= cos d(x, z) · α sin d(x, y)√

α2 + 2α(1− α) cos d(x, y) + (1− α)2

+ cos d(y, z) · (1− α) sin d(x, y)√
α2 + 2α(1− α) cos d(x, y) + (1− α)2

=
α cos d(x, z) + (1− α) cos d(y, z)√
α2 + 2α(1− α) cos d(x, y) + (1− α)2

· sin d(x, y)

and hence

cos d(αx
1
⊕ (1− α)y, z) ≥ α cos d(x, z) + (1− α) cos d(y, z)√

α2 + 2α(1− α) cos d(x, y) + (1− α)2
.

Thus we get the desired result. □

Corollary 3.9. Let X be an admissible CAT(1) space and x, y, z ∈ X, α ∈
[0, 1]. Then

cos d(αx
1
⊕ (1− α)y, z) ≥ α cos d(x, z) + (1− α) cos d(y, z).

Proof. Since
√
α2 + 2α(1− α) cos d(x, y) + (1− α)2 ≤ 1, Lemma 3.8 implies

the conclusion. □

Lemma 3.10. Let α ∈ ]0, 1[ and d ∈ [0, π/2[. Define β ∈ R by

β = 1− 1− α√
α2 + 2α(1− α) cos d+ (1− α)2

.

Then α2

2 < β < 1.

Proof. Since α2 + (1− α)2 < 1, we get

1− 1− α√
α2 + 2α(1− α) cos d+ (1− α)2

≥ 1− 1− α√
α2 + (1− α)2

>
α2

2
.

It is obvious that β < 1. □



322 Y. KIMURA AND K. SASAKI

Lemma 3.11. Let X be an admissible CAT(1) space. Then for u, y, z ∈ X
and α ∈ ]0, 1[,

1− cos d(αu
1
⊕ (1− α)y, z)

≤ (1− β)(1− cos d(y, z))

+ β

1−

(
1− α+

√
α2 + 2α(1− α) cos d(u, y) + (1− α)2

)
cos d(u, z)

α+ 2(1− α) cos d(u, y)

 ,

where

β = 1− 1− α√
α2 + 2α(1− α) cos d(u, y) + (1− α)2

.

Proof. It is obvious if u = y. Otherwise, from Lemma 3.8, we have

1− cos d(αu
1
⊕ (1− α)y, z)

≤ 1− (1− β) cos d(y, z)− α cos d(u, z)√
α2 + 2α(1− α) cos d(u, y) + (1− α)2

= (1− β)(1− cos d(y, z)) + β

(
1− α cos d(u, z)

β
√
α2 + 2α(1− α) cos d(u, y) + (1− α)2

)
.

Since

α cos d(u, z)

β
√
α2 + 2α(1− α) cos d(u, y) + (1− α)2

=
α cos d(u, z)√

α2 + 2α(1− α) cos d(u, y) + (1− α)2 − (1− α)

=

(
1− α+

√
α2 + 2α(1− α) cos d(u, y) + (1− α)2

)
cos d(u, z)

α+ 2(1− α) cos d(u, y)
,

we get the conclusion. □

Lemma 3.12. Let {αn} be a sequence on ]0, 1[ such that limn→∞ αn = 0,
and {sn}, {tn} sequences on [0, π/2[ such that limn→∞ sn = d1 ∈ [0, π/2[,
limn→∞ tn = d2 ∈ [0, π/2[. Define sequences {σn}, {τn} ⊂ ]0, 1[ by

σn = 1− 1− αn√
α2
n + 2αn(1− αn) cos sn + (1− αn)2

,

τn = 1− 1− αn√
α2
n + 2αn(1− αn) cos tn + (1− αn)2
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for all n ∈ N, respectively. Then

lim
n→∞

τn
σn

=
cos d2
cos d1

.

Proof. Put

pn =
√

α2
n + 2αn(1− αn) cos sn + (1− αn)2,

qn =
√
α2
n + 2αn(1− αn) cos tn + (1− αn)2

for all n ∈ N. Then we have

τn
σn

=

1− 1− αn√
αn

2 + 2αn(1− αn) cos tn + (1− αn)2

1− 1− αn√
αn

2 + 2αn(1− αn) cos sn + (1− αn)2

=

αn + 2(1− αn) cos tn
qn(qn + 1− αn)

αn + 2(1− αn) cos sn
pn(pn + 1− αn)

.

Since limn→∞ pn = limn→∞ qn = 1, we get the conclusion. □

Now, we show the main result.

Theorem 3.13. Let X be an admissible complete CAT(1) space and suppose
that supu,v∈X d(u, v) < π/2. Let R,S, T be strongly quasinonexpansive and ∆-
demiclosed mappings from X into itself with F = F (R)∩F (S)∩F (T ) ̸= ∅. Let
{αn} ⊂ ]0, 1[ such that limn→∞ αn = 0 and

∑∞
n=1 α

2
n = ∞, and {βn}, {γn} ⊂

]0, 1[ such that limn→∞ βn = β ∈ ]0, 1[, limn→∞ γn = γ ∈ ]0, 1[.
Let u, v, w, x1 ∈ X and define a iterative sequence {xn} ⊂ X by

rn = αnu
1
⊕ (1− αn)Rxn,

sn = αnv
1
⊕ (1− αn)Sxn,

tn = αnw
1
⊕ (1− αn)Txn,

xn+1 = βnrn
1
⊕ (1− βn)(γnsn

1
⊕ (1− γn)tn)

for all n ∈ N. Then the sequence {xn} converges to a point p ∈ F , which is
a maximizer of the function g(x) = β cos d(u, x) + (1 − β)(γ cos d(v, x) + (1 −
γ) cos d(w, x)) on F .

Proof. Since F is a closed convex subset of X and from Lemma 3.3, the exis-
tence and uniqueness of the elements of the set argmaxx∈F g(x) are guaranteed.
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Let p = argmaxx∈F g(x) and put

an = 1− cos d(xn, p),

bRn = 1−

(
1− αn +

√
αn

2 + 2αn(1− αn) cos d(u,Rxn) + (1− αn)2
)
cos d(u, p)

αn + 2(1− αn) cos d(u,Rxn)
,

bSn = 1−

(
1− αn +

√
αn

2 + 2αn(1− αn) cos d(v, Sxn) + (1− αn)2
)
cos d(v, p)

αn + 2(1− αn) cos d(v, Sxn)
,

bTn = 1−

(
1− αn +

√
αn

2 + 2αn(1− αn) cos d(w, Txn) + (1− αn)2
)
cos d(w, p)

αn + 2(1− αn) cos d(w, Txn)
,

γR
n = 1− 1− αn√

αn
2 + 2αn(1− αn) cos d(u,Rxn) + (1− αn)2

,

γS
n = 1− 1− αn√

αn
2 + 2αn(1− αn) cos d(v, Sxn) + (1− αn)2

,

γT
n = 1− 1− αn√

αn
2 + 2αn(1− αn) cos d(w, Txn) + (1− αn)2

for all n ∈ N. Moreover, put βR
n = βn, β

S
n = (1− βn)γn, β

T
n = (1− βn)(1− γn)

for all n ∈ N and put βR = β, βS = (1−β)γ, βT = (1−β)(1−γ). Then {γR
n },

{γS
n} and {γT

n } are sequences on ]0, 1[. From Lemmas 3.8 and 3.11, we have

an+1 ≤ 1− βn cos d(rn, p)− (1− βn) cos d(γnsn
1
⊕ (1− γn)tn, p)

≤ 1− βR
n cos d(rn, p)− βS

n cos d(sn, p)− βT
n cos d(tn, p)

= βR
n (1− cos d(rn, p)) + βS

n (1− cos d(sn, p)) + βT
n (1− cos d(tn, p))

≤ βR
n

(
(1− γR

n )(1− cos d(Rxn, p)) + γR
n b

R
n

)
+ βS

n

(
(1− γS

n )(1− cos d(Sxn, p)) + γS
n b

S
n

)
+ βT

n

(
(1− γT

n )(1− cos d(Txn, p)) + γT
n b

T
n

)
≤
(
βR
n (1− γR

n ) + βS
n (1− γS

n ) + βT
n (1− γT

n )
)
an

+ βR
n γ

R
n b

R
n + βS

nγ
S
n b

S
n + βT

n γ
T
n b

T
n

=
(
1−

(
βR
n γ

R
n + βS

nγ
S
n + βT

n γ
T
n

))
an

+
(
βR
n γ

R
n + βS

nγ
S
n + βT

n γ
T
n

)
· β

R
n γ

R
n b

R
n + βS

nγ
S
n b

S
n + βT

n γ
T
n b

T
n

βR
n γ

R
n + βS

nγ
S
n + βT

n γ
T
n

for all n ∈ N.
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Now we show that the following conditions hold:

(i)

∞∑
n=1

(βR
n γ

R
n + βS

nγ
S
n + βT

n γ
T
n ) = ∞,

(ii) for any φ : N → N satisfying that φ is nondecreasing and limi→∞ φ(i) =
∞, lim infi→∞

(
aφ(i)+1 − aφ(i)

)
≥ 0 implies

lim sup
i→∞

βR
φ(i)γ

R
φ(i)b

R
φ(i) + βS

φ(i)γ
S
φ(i)b

S
φ(i) + βT

φ(i)γ
T
φ(i)b

T
φ(i)

βR
φ(i)γ

R
φ(i) + βS

φ(i)γ
S
φ(i) + βT

φ(i)γ
T
φ(i)

≤ 0.

First, we show (i). From Lemma 3.10, we have γR
n ≥ α2

n/2, γ
S
n ≥ α2

n/2 and
γT
n ≥ α2

n/2. Thus we get

∞∑
n=1

(βR
n γ

R
n + βS

nγ
S
n + βT

n γ
T
n ) ≥

∞∑
n=1

βR
n α

2
n + βS

nα
2
n + βT

nα
2
n

2
=

∞∑
n=1

α2
n

2
= ∞.

Next, we consider (ii). Let φ be a nondecreasing function from N into
itself with limi→∞ φ(i) = ∞ and put ni = φ(i) for all i ∈ N. Assume
lim infi→∞ (ani+1 − ani

) ≥ 0. Then we get

0 ≤ lim inf
i→∞

(ani+1 − ani)

= lim inf
i→∞

(cos d(xni
, p)− cos d(xni+1, p))

≤ lim inf
i→∞

(
cos d(xni

, p)− βR
ni

cos d(rni
, p)− βS

ni
cos d(sni

, p)

− βT
ni

cos d(tni
, p)
)

≤ lim inf
i→∞

(
cos d(xni

, p)− βR
ni
(αni

cos d(u, p) + (1− αni
) cos d(Rxni

, p))

− βS
ni
(αni

cos d(v, p) + (1− αni
) cos d(Sxni

, p))

− βT
ni
(αni

cos d(w, p) + (1− αni
) cos d(Txni

, p))
)

= lim inf
i→∞

(
βR(cos d(xni , p)− cos d(Rxni , p))

+ βS(cos d(xni
, p)− cos d(Sxni

, p))

+ βT (cos d(xni
, p)− cos d(Txni

, p))
)

≤ lim sup
i→∞

(
βR(cos d(xni , p)− cos d(Rxni , p))

+ βS(cos d(xni
, p)− cos d(Sxni

, p))

+ βT (cos d(xni , p)− cos d(Txni , p))
)

≤ 0.
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Thus we obtain

lim
i→∞

(
βR(cos d(xni

, p)− cos d(Rxni
, p)) + βS(cos d(xni

, p)− cos d(Sxni
, p))

+ βT (cos d(xni , p)− cos d(Txni , p))
)
= 0.

From Lemma 3.1, we have

lim
i→∞

(cos d(xni
, p)− cos d(Rxni

, p)) = 0,

lim
i→∞

(cos d(xni
, p)− cos d(Sxni

, p)) = 0,

lim
i→∞

(cos d(xni
, p)− cos d(Txni

, p)) = 0.

Since R,S, T are strongly quasinonexpansive, we obtain

(1) lim
i→∞

d(xni
, Rxni

) = lim
i→∞

d(xni
, Sxni

) = lim
i→∞

d(xni
, Txni

) = 0.

Take a subsequence {xnij
} of {xni

} satisfying

lim sup
i→∞

βR
ni
γR
ni
bRni

+ βS
ni
γS
ni
bSni

+ βT
ni
γT
ni
bTni

βR
ni
γR
ni

+ βS
ni
γS
ni

+ βT
ni
γT
ni

= lim
j→∞

βR
nij

γR
nij

bRnij
+ βS

nij
γS
nij

bSnij
+ βT

nij
γT
nij

bTnij

βR
nij

γR
nij

+ βS
nij

γS
nij

+ βT
nij

γT
nij

.

Moreover, take a subsequence {zr} of {xnij
} satisfying

lim inf
j→∞

d(u, xnij
) = lim

r→∞
d(u, zr)

and a subsequence {zrs} of {zr} with

lim inf
r→∞

d(v, zr) = lim
s→∞

d(v, zrs).

Furthermore, take a subsequence {zrst } of {zrs} satisfying

lim inf
s→∞

d(w, zrs) = lim
t→∞

d(w, zrst )

and a subsequence {vk} of {zrst } which satisfies vk
∆
⇀ z ∈ X. Then

from the formula (1), we have limk→∞ d(vk, Rvk) = limk→∞ d(vk, Svk) =
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limk→∞ d(vk, T vk) = 0 and hence z ∈ F . Further, since

lim
k→∞

d(u, vk) = lim inf
j→∞

d(u, xnij
) ≤ lim inf

j→∞
(d(u,Rxnij

) + d(Rxnij
, xnij

))

= lim inf
j→∞

d(u,Rxnij
)

≤ lim inf
k→∞

d(u,Rvk)

≤ lim sup
k→∞

d(u,Rvk)

≤ lim sup
k→∞

(d(u, vk) + d(vk, Rvk))

= lim
k→∞

d(u, vk),

we get limk→∞ d(u, vk) = limk→∞ d(u,Rvk). In the same way, we also obtain
limk→∞ d(v, vk) = limk→∞ d(v, Svk) and limk→∞ d(w, vk) = limk→∞ d(w, Tvk).
By Theorem 2.2, we have

lim
k→∞

d(u,Rvk) = lim
k→∞

d(u, vk) ≥ d(u, z),

lim
k→∞

d(v, Svk) = lim
k→∞

d(v, vk) ≥ d(v, z),

lim
k→∞

d(w, Tvk) = lim
k→∞

d(w, vk) ≥ d(w, z)

and hence

lim
k→∞

(
βR cos d(u,Rvk) + βS cos d(v, Svk) + βT cos d(w, Tvk)

)
≤ βR cos d(u, z) + βS cos d(v, z) + βT cos d(w, z)

≤ βR cos d(u, p) + βS cos d(v, p) + βT cos d(w, p).

Put d1 = limk→∞ d(u,Rvk), d2 = limk→∞ d(v, Svk), d3 = limk→∞ d(w, Tvk)
and put mk = nijrstk

for all k ∈ N. Then from Lemma 3.12, we obtain

lim
k→∞

γS
mk

γR
mk

=
cos d2
cos d1

, lim
k→∞

γT
mk

γR
mk

=
cos d3
cos d1

.

Put

µR =
βR cos d1

βR cos d1 + βS cos d2 + βT cos d3
,

µS =
βS cos d2

βR cos d1 + βS cos d2 + βT cos d3
,

µT =
βT cos d3

βR cos d1 + βS cos d2 + βT cos d3
.
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Then we get

lim sup
i→∞

βR
ni
γR
ni
bRni

+ βS
ni
γS
ni
bSni

+ βT
ni
γT
ni
bTni

βR
ni
γR
ni

+ βS
ni
γS
ni

+ βT
ni
γT
ni

= lim
k→∞

βR
mk

γR
mk

bRmk
+ βS

mk
γS
mk

bSmk
+ βT

mk
γT
mk

bTmk

βR
mk

γR
mk

+ βS
mk

γS
mk

+ βT
mk

γT
mk

= lim
k→∞

βRbRmk
+ βS · cos d2

cos d1
· bSmk

+ βT · cos d3
cos d1

· bTmk

βR + βS · cos d2
cos d1

+ βT · cos d3
cos d1

= lim
k→∞

(
µRbRmk

+ µSbSmk
+ µT bTmk

)
= lim

k→∞

(
µR

(
1− cos d(u, p)

cos d(u,Rvk)

)
+ µS

(
1− cos d(v, p)

cos d(v, Svk)

)
+ µT

(
1− cos d(w, p)

cos d(w, Tvk)

))
= lim

k→∞

(
µR · cos d(u,Rvk)− cos d(u, p)

cos d1
+ µS · cos d(v, Svk)− cos d(v, p)

cos d2

+ µT · cos d(w, Tvk)− cos d(w, p)

cos d3

)
= lim

k→∞

(
βR cos d(u,Rvk) + βS cos d(v, Svk) + βT cos d(w, Tvk)

βR cos d1 + βS cos d2 + βT cos d3

− βR cos d(u, p) + βS cos d(v, p) + βT cos d(w, p)

βR cos d1 + βS cos d2 + βT cos d3

)
≤ 0.

Thus we have (ii). Hence, using Lemma 2.5, we obtain the desired result. □

In the formula

xn+1 = βnsn
1
⊕ (1− βn)(γnrn

1
⊕ (1− γn)tn)

of Theorem 3.13, the limit of the sequence {xn} does not depend on the order
of the convex combination of rn, sn and tn unless the weight of the coefficient of
the convex combination of rn, sn and tn is changed. For example, the sequence
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{xn} defined by
rn = αnu

1
⊕ (1− αn)Rxn,

sn = αnv
1
⊕ (1− αn)Sxn,

tn = αnw
1
⊕ (1− αn)Txn,

xn+1 = β′
nsn

1
⊕ (1− β′

n)(γ
′
nrn

1
⊕ (1− γ′

n)tn)

for all n ∈ N converges to

p = argmax
x∈F

(β cos d(u, x) + (1− β)(γ cos d(v, x) + (1− γ) cos d(w, x))) ,

where β′
n = (1− βn)γn, (1− β′

n)γ
′
n = βn.
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